root / tmp / org.txm.analec.rcp / src / JamaPlus / QRDecomposition.java @ 673
Historique | Voir | Annoter | Télécharger (5,92 ko)
| 1 | package JamaPlus; | 
|---|---|
| 2 | import JamaPlus.util.*; | 
| 3 |  | 
| 4 | /** QR Decomposition.
 | 
| 5 | <P>
 | 
| 6 |    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
 | 
| 7 |    orthogonal matrix Q and an n-by-n upper triangular matrix R so that
 | 
| 8 |    A = Q*R.
 | 
| 9 | <P>
 | 
| 10 |    The QR decompostion always exists, even if the matrix does not have
 | 
| 11 |    full rank, so the constructor will never fail.  The primary use of the
 | 
| 12 |    QR decomposition is in the least squares solution of nonsquare systems
 | 
| 13 |    of simultaneous linear equations.  This will fail if isFullRank()
 | 
| 14 |    returns false.
 | 
| 15 | */
 | 
| 16 |  | 
| 17 | public class QRDecomposition implements java.io.Serializable { | 
| 18 |  | 
| 19 | /* ------------------------
 | 
| 20 |    Class variables
 | 
| 21 |  * ------------------------ */
 | 
| 22 |  | 
| 23 |    /** Array for internal storage of decomposition.
 | 
| 24 |    @serial internal array storage.
 | 
| 25 |    */
 | 
| 26 | private double[][] QR; | 
| 27 |  | 
| 28 |    /** Row and column dimensions.
 | 
| 29 |    @serial column dimension.
 | 
| 30 |    @serial row dimension.
 | 
| 31 |    */
 | 
| 32 | private int m, n; | 
| 33 |  | 
| 34 |    /** Array for internal storage of diagonal of R.
 | 
| 35 |    @serial diagonal of R.
 | 
| 36 |    */
 | 
| 37 | private double[] Rdiag; | 
| 38 |  | 
| 39 | /* ------------------------
 | 
| 40 |    Constructor
 | 
| 41 |  * ------------------------ */
 | 
| 42 |  | 
| 43 |    /** QR Decomposition, computed by Householder reflections.
 | 
| 44 |    @param A    Rectangular matrix
 | 
| 45 |    @return     Structure to access R and the Householder vectors and compute Q.
 | 
| 46 |    */
 | 
| 47 |  | 
| 48 |    public QRDecomposition (Matrix A) {
 | 
| 49 |       // Initialize.
 | 
| 50 | QR = A.getArrayCopy(); | 
| 51 | m = A.getRowDimension(); | 
| 52 | n = A.getColumnDimension(); | 
| 53 | Rdiag = new double[n]; | 
| 54 |  | 
| 55 |       // Main loop.
 | 
| 56 | for (int k = 0; k < n; k++) { | 
| 57 |          // Compute 2-norm of k-th column without under/overflow.
 | 
| 58 | double nrm = 0; | 
| 59 | for (int i = k; i < m; i++) { | 
| 60 |             nrm = Math.hypot(nrm,QR[i][k]);
 | 
| 61 | } | 
| 62 |  | 
| 63 | if (nrm != 0.0) { | 
| 64 |             // Form k-th Householder vector.
 | 
| 65 | if (QR[k][k] < 0) { | 
| 66 | nrm = -nrm; | 
| 67 | } | 
| 68 | for (int i = k; i < m; i++) { | 
| 69 | QR[i][k] /= nrm; | 
| 70 | } | 
| 71 |             QR[k][k] += 1.0;
 | 
| 72 |  | 
| 73 |             // Apply transformation to remaining columns.
 | 
| 74 | for (int j = k+1; j < n; j++) { | 
| 75 | double s = 0.0; | 
| 76 | for (int i = k; i < m; i++) { | 
| 77 | s += QR[i][k]*QR[i][j]; | 
| 78 | } | 
| 79 | s = -s/QR[k][k]; | 
| 80 | for (int i = k; i < m; i++) { | 
| 81 | QR[i][j] += s*QR[i][k]; | 
| 82 | } | 
| 83 | } | 
| 84 | } | 
| 85 | Rdiag[k] = -nrm; | 
| 86 | } | 
| 87 | } | 
| 88 |  | 
| 89 | /* ------------------------
 | 
| 90 |    Public Methods
 | 
| 91 |  * ------------------------ */
 | 
| 92 |  | 
| 93 |    /** Is the matrix full rank?
 | 
| 94 |    @return     true if R, and hence A, has full rank.
 | 
| 95 |    */
 | 
| 96 |  | 
| 97 | public boolean isFullRank () { | 
| 98 | for (int j = 0; j < n; j++) { | 
| 99 | if (Rdiag[j] == 0) | 
| 100 | return false; | 
| 101 | } | 
| 102 | return true; | 
| 103 | } | 
| 104 |  | 
| 105 |    /** Return the Householder vectors
 | 
| 106 |    @return     Lower trapezoidal matrix whose columns define the reflections
 | 
| 107 |    */
 | 
| 108 |  | 
| 109 |    public Matrix getH () {
 | 
| 110 |       Matrix X = new Matrix(m,n);
 | 
| 111 | double[][] H = X.getArray(); | 
| 112 | for (int i = 0; i < m; i++) { | 
| 113 | for (int j = 0; j < n; j++) { | 
| 114 |             if (i >= j) {
 | 
| 115 | H[i][j] = QR[i][j]; | 
| 116 |             } else {
 | 
| 117 |                H[i][j] = 0.0;
 | 
| 118 | } | 
| 119 | } | 
| 120 | } | 
| 121 |       return X;
 | 
| 122 | } | 
| 123 |  | 
| 124 |    /** Return the upper triangular factor
 | 
| 125 |    @return     R
 | 
| 126 |    */
 | 
| 127 |  | 
| 128 |    public Matrix getR () {
 | 
| 129 |       Matrix X = new Matrix(n,n);
 | 
| 130 | double[][] R = X.getArray(); | 
| 131 | for (int i = 0; i < n; i++) { | 
| 132 | for (int j = 0; j < n; j++) { | 
| 133 |             if (i < j) {
 | 
| 134 | R[i][j] = QR[i][j]; | 
| 135 | } else if (i == j) { | 
| 136 | R[i][j] = Rdiag[i]; | 
| 137 |             } else {
 | 
| 138 |                R[i][j] = 0.0;
 | 
| 139 | } | 
| 140 | } | 
| 141 | } | 
| 142 |       return X;
 | 
| 143 | } | 
| 144 |  | 
| 145 |    /** Generate and return the (economy-sized) orthogonal factor
 | 
| 146 |    @return     Q
 | 
| 147 |    */
 | 
| 148 |  | 
| 149 |    public Matrix getQ () {
 | 
| 150 |       Matrix X = new Matrix(m,n);
 | 
| 151 | double[][] Q = X.getArray(); | 
| 152 | for (int k = n-1; k >= 0; k--) { | 
| 153 | for (int i = 0; i < m; i++) { | 
| 154 |             Q[i][k] = 0.0;
 | 
| 155 | } | 
| 156 |          Q[k][k] = 1.0;
 | 
| 157 | for (int j = k; j < n; j++) { | 
| 158 | if (QR[k][k] != 0) { | 
| 159 | double s = 0.0; | 
| 160 | for (int i = k; i < m; i++) { | 
| 161 | s += QR[i][k]*Q[i][j]; | 
| 162 | } | 
| 163 | s = -s/QR[k][k]; | 
| 164 | for (int i = k; i < m; i++) { | 
| 165 | Q[i][j] += s*QR[i][k]; | 
| 166 | } | 
| 167 | } | 
| 168 | } | 
| 169 | } | 
| 170 |       return X;
 | 
| 171 | } | 
| 172 |  | 
| 173 |    /** Least squares solution of A*X = B
 | 
| 174 |    @param B    A Matrix with as many rows as A and any number of columns.
 | 
| 175 |    @return     X that minimizes the two norm of Q*R*X-B.
 | 
| 176 |    @exception  IllegalArgumentException  Matrix row dimensions must agree.
 | 
| 177 |    @exception  RuntimeException  Matrix is rank deficient.
 | 
| 178 |    */
 | 
| 179 |  | 
| 180 |    public Matrix solve (Matrix B) {
 | 
| 181 |       if (B.getRowDimension() != m) {
 | 
| 182 | throw new IllegalArgumentException("Matrix row dimensions must agree."); | 
| 183 | } | 
| 184 | if (!this.isFullRank()) { | 
| 185 | throw new RuntimeException("Matrix is rank deficient."); | 
| 186 | } | 
| 187 |  | 
| 188 |       // Copy right hand side
 | 
| 189 |       int nx = B.getColumnDimension();
 | 
| 190 | double[][] X = B.getArrayCopy(); | 
| 191 |  | 
| 192 |       // Compute Y = transpose(Q)*B
 | 
| 193 | for (int k = 0; k < n; k++) { | 
| 194 | for (int j = 0; j < nx; j++) { | 
| 195 | double s = 0.0; | 
| 196 | for (int i = k; i < m; i++) { | 
| 197 | s += QR[i][k]*X[i][j]; | 
| 198 | } | 
| 199 | s = -s/QR[k][k]; | 
| 200 | for (int i = k; i < m; i++) { | 
| 201 | X[i][j] += s*QR[i][k]; | 
| 202 | } | 
| 203 | } | 
| 204 | } | 
| 205 |       // Solve R*X = Y;
 | 
| 206 | for (int k = n-1; k >= 0; k--) { | 
| 207 | for (int j = 0; j < nx; j++) { | 
| 208 | X[k][j] /= Rdiag[k]; | 
| 209 | } | 
| 210 | for (int i = 0; i < k; i++) { | 
| 211 | for (int j = 0; j < nx; j++) { | 
| 212 | X[i][j] -= X[k][j]*QR[i][k]; | 
| 213 | } | 
| 214 | } | 
| 215 | } | 
| 216 | return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1)); | 
| 217 | } | 
| 218 | } |