root / tmp / org.txm.analec.rcp / src / JamaPlus / QRDecomposition.java @ 673
Historique | Voir | Annoter | Télécharger (5,92 ko)
| 1 | 481 | mdecorde | package JamaPlus; | 
|---|---|---|---|
| 2 | 481 | mdecorde | import JamaPlus.util.*; | 
| 3 | 481 | mdecorde | |
| 4 | 481 | mdecorde | /** QR Decomposition.
 | 
| 5 | 481 | mdecorde | <P>
 | 
| 6 | 481 | mdecorde |    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
 | 
| 7 | 481 | mdecorde |    orthogonal matrix Q and an n-by-n upper triangular matrix R so that
 | 
| 8 | 481 | mdecorde |    A = Q*R.
 | 
| 9 | 481 | mdecorde | <P>
 | 
| 10 | 481 | mdecorde |    The QR decompostion always exists, even if the matrix does not have
 | 
| 11 | 481 | mdecorde |    full rank, so the constructor will never fail.  The primary use of the
 | 
| 12 | 481 | mdecorde |    QR decomposition is in the least squares solution of nonsquare systems
 | 
| 13 | 481 | mdecorde |    of simultaneous linear equations.  This will fail if isFullRank()
 | 
| 14 | 481 | mdecorde |    returns false.
 | 
| 15 | 481 | mdecorde | */
 | 
| 16 | 481 | mdecorde | |
| 17 | 481 | mdecorde | public class QRDecomposition implements java.io.Serializable { | 
| 18 | 481 | mdecorde | |
| 19 | 481 | mdecorde | /* ------------------------
 | 
| 20 | 481 | mdecorde |    Class variables
 | 
| 21 | 481 | mdecorde |  * ------------------------ */
 | 
| 22 | 481 | mdecorde | |
| 23 | 481 | mdecorde |    /** Array for internal storage of decomposition.
 | 
| 24 | 481 | mdecorde |    @serial internal array storage.
 | 
| 25 | 481 | mdecorde |    */
 | 
| 26 | 481 | mdecorde | private double[][] QR; | 
| 27 | 481 | mdecorde | |
| 28 | 481 | mdecorde |    /** Row and column dimensions.
 | 
| 29 | 481 | mdecorde |    @serial column dimension.
 | 
| 30 | 481 | mdecorde |    @serial row dimension.
 | 
| 31 | 481 | mdecorde |    */
 | 
| 32 | 481 | mdecorde | private int m, n; | 
| 33 | 481 | mdecorde | |
| 34 | 481 | mdecorde |    /** Array for internal storage of diagonal of R.
 | 
| 35 | 481 | mdecorde |    @serial diagonal of R.
 | 
| 36 | 481 | mdecorde |    */
 | 
| 37 | 481 | mdecorde | private double[] Rdiag; | 
| 38 | 481 | mdecorde | |
| 39 | 481 | mdecorde | /* ------------------------
 | 
| 40 | 481 | mdecorde |    Constructor
 | 
| 41 | 481 | mdecorde |  * ------------------------ */
 | 
| 42 | 481 | mdecorde | |
| 43 | 481 | mdecorde |    /** QR Decomposition, computed by Householder reflections.
 | 
| 44 | 481 | mdecorde |    @param A    Rectangular matrix
 | 
| 45 | 481 | mdecorde |    @return     Structure to access R and the Householder vectors and compute Q.
 | 
| 46 | 481 | mdecorde |    */
 | 
| 47 | 481 | mdecorde | |
| 48 | 481 | mdecorde |    public QRDecomposition (Matrix A) {
 | 
| 49 | 481 | mdecorde |       // Initialize.
 | 
| 50 | 481 | mdecorde | QR = A.getArrayCopy(); | 
| 51 | 481 | mdecorde | m = A.getRowDimension(); | 
| 52 | 481 | mdecorde | n = A.getColumnDimension(); | 
| 53 | 481 | mdecorde | Rdiag = new double[n]; | 
| 54 | 481 | mdecorde | |
| 55 | 481 | mdecorde |       // Main loop.
 | 
| 56 | 481 | mdecorde | for (int k = 0; k < n; k++) { | 
| 57 | 481 | mdecorde |          // Compute 2-norm of k-th column without under/overflow.
 | 
| 58 | 481 | mdecorde | double nrm = 0; | 
| 59 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 60 | 481 | mdecorde |             nrm = Math.hypot(nrm,QR[i][k]);
 | 
| 61 | 481 | mdecorde | } | 
| 62 | 481 | mdecorde | |
| 63 | 481 | mdecorde | if (nrm != 0.0) { | 
| 64 | 481 | mdecorde |             // Form k-th Householder vector.
 | 
| 65 | 481 | mdecorde | if (QR[k][k] < 0) { | 
| 66 | 481 | mdecorde | nrm = -nrm; | 
| 67 | 481 | mdecorde | } | 
| 68 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 69 | 481 | mdecorde | QR[i][k] /= nrm; | 
| 70 | 481 | mdecorde | } | 
| 71 | 481 | mdecorde |             QR[k][k] += 1.0;
 | 
| 72 | 481 | mdecorde | |
| 73 | 481 | mdecorde |             // Apply transformation to remaining columns.
 | 
| 74 | 481 | mdecorde | for (int j = k+1; j < n; j++) { | 
| 75 | 481 | mdecorde | double s = 0.0; | 
| 76 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 77 | 481 | mdecorde | s += QR[i][k]*QR[i][j]; | 
| 78 | 481 | mdecorde | } | 
| 79 | 481 | mdecorde | s = -s/QR[k][k]; | 
| 80 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 81 | 481 | mdecorde | QR[i][j] += s*QR[i][k]; | 
| 82 | 481 | mdecorde | } | 
| 83 | 481 | mdecorde | } | 
| 84 | 481 | mdecorde | } | 
| 85 | 481 | mdecorde | Rdiag[k] = -nrm; | 
| 86 | 481 | mdecorde | } | 
| 87 | 481 | mdecorde | } | 
| 88 | 481 | mdecorde | |
| 89 | 481 | mdecorde | /* ------------------------
 | 
| 90 | 481 | mdecorde |    Public Methods
 | 
| 91 | 481 | mdecorde |  * ------------------------ */
 | 
| 92 | 481 | mdecorde | |
| 93 | 481 | mdecorde |    /** Is the matrix full rank?
 | 
| 94 | 481 | mdecorde |    @return     true if R, and hence A, has full rank.
 | 
| 95 | 481 | mdecorde |    */
 | 
| 96 | 481 | mdecorde | |
| 97 | 481 | mdecorde | public boolean isFullRank () { | 
| 98 | 481 | mdecorde | for (int j = 0; j < n; j++) { | 
| 99 | 481 | mdecorde | if (Rdiag[j] == 0) | 
| 100 | 481 | mdecorde | return false; | 
| 101 | 481 | mdecorde | } | 
| 102 | 481 | mdecorde | return true; | 
| 103 | 481 | mdecorde | } | 
| 104 | 481 | mdecorde | |
| 105 | 481 | mdecorde |    /** Return the Householder vectors
 | 
| 106 | 481 | mdecorde |    @return     Lower trapezoidal matrix whose columns define the reflections
 | 
| 107 | 481 | mdecorde |    */
 | 
| 108 | 481 | mdecorde | |
| 109 | 481 | mdecorde |    public Matrix getH () {
 | 
| 110 | 481 | mdecorde |       Matrix X = new Matrix(m,n);
 | 
| 111 | 481 | mdecorde | double[][] H = X.getArray(); | 
| 112 | 481 | mdecorde | for (int i = 0; i < m; i++) { | 
| 113 | 481 | mdecorde | for (int j = 0; j < n; j++) { | 
| 114 | 481 | mdecorde |             if (i >= j) {
 | 
| 115 | 481 | mdecorde | H[i][j] = QR[i][j]; | 
| 116 | 481 | mdecorde |             } else {
 | 
| 117 | 481 | mdecorde |                H[i][j] = 0.0;
 | 
| 118 | 481 | mdecorde | } | 
| 119 | 481 | mdecorde | } | 
| 120 | 481 | mdecorde | } | 
| 121 | 481 | mdecorde |       return X;
 | 
| 122 | 481 | mdecorde | } | 
| 123 | 481 | mdecorde | |
| 124 | 481 | mdecorde |    /** Return the upper triangular factor
 | 
| 125 | 481 | mdecorde |    @return     R
 | 
| 126 | 481 | mdecorde |    */
 | 
| 127 | 481 | mdecorde | |
| 128 | 481 | mdecorde |    public Matrix getR () {
 | 
| 129 | 481 | mdecorde |       Matrix X = new Matrix(n,n);
 | 
| 130 | 481 | mdecorde | double[][] R = X.getArray(); | 
| 131 | 481 | mdecorde | for (int i = 0; i < n; i++) { | 
| 132 | 481 | mdecorde | for (int j = 0; j < n; j++) { | 
| 133 | 481 | mdecorde |             if (i < j) {
 | 
| 134 | 481 | mdecorde | R[i][j] = QR[i][j]; | 
| 135 | 481 | mdecorde | } else if (i == j) { | 
| 136 | 481 | mdecorde | R[i][j] = Rdiag[i]; | 
| 137 | 481 | mdecorde |             } else {
 | 
| 138 | 481 | mdecorde |                R[i][j] = 0.0;
 | 
| 139 | 481 | mdecorde | } | 
| 140 | 481 | mdecorde | } | 
| 141 | 481 | mdecorde | } | 
| 142 | 481 | mdecorde |       return X;
 | 
| 143 | 481 | mdecorde | } | 
| 144 | 481 | mdecorde | |
| 145 | 481 | mdecorde |    /** Generate and return the (economy-sized) orthogonal factor
 | 
| 146 | 481 | mdecorde |    @return     Q
 | 
| 147 | 481 | mdecorde |    */
 | 
| 148 | 481 | mdecorde | |
| 149 | 481 | mdecorde |    public Matrix getQ () {
 | 
| 150 | 481 | mdecorde |       Matrix X = new Matrix(m,n);
 | 
| 151 | 481 | mdecorde | double[][] Q = X.getArray(); | 
| 152 | 481 | mdecorde | for (int k = n-1; k >= 0; k--) { | 
| 153 | 481 | mdecorde | for (int i = 0; i < m; i++) { | 
| 154 | 481 | mdecorde |             Q[i][k] = 0.0;
 | 
| 155 | 481 | mdecorde | } | 
| 156 | 481 | mdecorde |          Q[k][k] = 1.0;
 | 
| 157 | 481 | mdecorde | for (int j = k; j < n; j++) { | 
| 158 | 481 | mdecorde | if (QR[k][k] != 0) { | 
| 159 | 481 | mdecorde | double s = 0.0; | 
| 160 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 161 | 481 | mdecorde | s += QR[i][k]*Q[i][j]; | 
| 162 | 481 | mdecorde | } | 
| 163 | 481 | mdecorde | s = -s/QR[k][k]; | 
| 164 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 165 | 481 | mdecorde | Q[i][j] += s*QR[i][k]; | 
| 166 | 481 | mdecorde | } | 
| 167 | 481 | mdecorde | } | 
| 168 | 481 | mdecorde | } | 
| 169 | 481 | mdecorde | } | 
| 170 | 481 | mdecorde |       return X;
 | 
| 171 | 481 | mdecorde | } | 
| 172 | 481 | mdecorde | |
| 173 | 481 | mdecorde |    /** Least squares solution of A*X = B
 | 
| 174 | 481 | mdecorde |    @param B    A Matrix with as many rows as A and any number of columns.
 | 
| 175 | 481 | mdecorde |    @return     X that minimizes the two norm of Q*R*X-B.
 | 
| 176 | 481 | mdecorde |    @exception  IllegalArgumentException  Matrix row dimensions must agree.
 | 
| 177 | 481 | mdecorde |    @exception  RuntimeException  Matrix is rank deficient.
 | 
| 178 | 481 | mdecorde |    */
 | 
| 179 | 481 | mdecorde | |
| 180 | 481 | mdecorde |    public Matrix solve (Matrix B) {
 | 
| 181 | 481 | mdecorde |       if (B.getRowDimension() != m) {
 | 
| 182 | 481 | mdecorde | throw new IllegalArgumentException("Matrix row dimensions must agree."); | 
| 183 | 481 | mdecorde | } | 
| 184 | 481 | mdecorde | if (!this.isFullRank()) { | 
| 185 | 481 | mdecorde | throw new RuntimeException("Matrix is rank deficient."); | 
| 186 | 481 | mdecorde | } | 
| 187 | 481 | mdecorde | |
| 188 | 481 | mdecorde |       // Copy right hand side
 | 
| 189 | 481 | mdecorde |       int nx = B.getColumnDimension();
 | 
| 190 | 481 | mdecorde | double[][] X = B.getArrayCopy(); | 
| 191 | 481 | mdecorde | |
| 192 | 481 | mdecorde |       // Compute Y = transpose(Q)*B
 | 
| 193 | 481 | mdecorde | for (int k = 0; k < n; k++) { | 
| 194 | 481 | mdecorde | for (int j = 0; j < nx; j++) { | 
| 195 | 481 | mdecorde | double s = 0.0; | 
| 196 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 197 | 481 | mdecorde | s += QR[i][k]*X[i][j]; | 
| 198 | 481 | mdecorde | } | 
| 199 | 481 | mdecorde | s = -s/QR[k][k]; | 
| 200 | 481 | mdecorde | for (int i = k; i < m; i++) { | 
| 201 | 481 | mdecorde | X[i][j] += s*QR[i][k]; | 
| 202 | 481 | mdecorde | } | 
| 203 | 481 | mdecorde | } | 
| 204 | 481 | mdecorde | } | 
| 205 | 481 | mdecorde |       // Solve R*X = Y;
 | 
| 206 | 481 | mdecorde | for (int k = n-1; k >= 0; k--) { | 
| 207 | 481 | mdecorde | for (int j = 0; j < nx; j++) { | 
| 208 | 481 | mdecorde | X[k][j] /= Rdiag[k]; | 
| 209 | 481 | mdecorde | } | 
| 210 | 481 | mdecorde | for (int i = 0; i < k; i++) { | 
| 211 | 481 | mdecorde | for (int j = 0; j < nx; j++) { | 
| 212 | 481 | mdecorde | X[i][j] -= X[k][j]*QR[i][k]; | 
| 213 | 481 | mdecorde | } | 
| 214 | 481 | mdecorde | } | 
| 215 | 481 | mdecorde | } | 
| 216 | 481 | mdecorde | return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1)); | 
| 217 | 481 | mdecorde | } | 
| 218 | 481 | mdecorde | } |