root / tmp / org.txm.analec.rcp / src / JamaPlus / CholeskyDecomposition.java @ 1203
Historique | Voir | Annoter | Télécharger (5,63 ko)
| 1 |
package JamaPlus; |
|---|---|
| 2 |
|
| 3 |
/** Cholesky Decomposition.
|
| 4 |
<P>
|
| 5 |
For a symmetric, positive definite matrix A, the Cholesky decomposition
|
| 6 |
is an lower triangular matrix L so that A = L*L'.
|
| 7 |
<P>
|
| 8 |
If the matrix is not symmetric or positive definite, the constructor
|
| 9 |
returns a partial decomposition and sets an internal flag that may
|
| 10 |
be queried by the isSPD() method.
|
| 11 |
*/
|
| 12 |
|
| 13 |
public class CholeskyDecomposition implements java.io.Serializable { |
| 14 |
|
| 15 |
/* ------------------------
|
| 16 |
Class variables
|
| 17 |
* ------------------------ */
|
| 18 |
|
| 19 |
/** Array for internal storage of decomposition.
|
| 20 |
@serial internal array storage.
|
| 21 |
*/
|
| 22 |
private double[][] L; |
| 23 |
|
| 24 |
/** Row and column dimension (square matrix).
|
| 25 |
@serial matrix dimension.
|
| 26 |
*/
|
| 27 |
private int n; |
| 28 |
|
| 29 |
/** Symmetric and positive definite flag.
|
| 30 |
@serial is symmetric and positive definite flag.
|
| 31 |
*/
|
| 32 |
private boolean isspd; |
| 33 |
|
| 34 |
/* ------------------------
|
| 35 |
Constructor
|
| 36 |
* ------------------------ */
|
| 37 |
|
| 38 |
/** Cholesky algorithm for symmetric and positive definite matrix.
|
| 39 |
@param A Square, symmetric matrix.
|
| 40 |
@return Structure to access L and isspd flag.
|
| 41 |
*/
|
| 42 |
|
| 43 |
public CholeskyDecomposition (Matrix Arg) {
|
| 44 |
|
| 45 |
|
| 46 |
// Initialize.
|
| 47 |
double[][] A = Arg.getArray(); |
| 48 |
n = Arg.getRowDimension(); |
| 49 |
L = new double[n][n]; |
| 50 |
isspd = (Arg.getColumnDimension() == n); |
| 51 |
// Main loop.
|
| 52 |
for (int j = 0; j < n; j++) { |
| 53 |
double[] Lrowj = L[j]; |
| 54 |
double d = 0.0; |
| 55 |
for (int k = 0; k < j; k++) { |
| 56 |
double[] Lrowk = L[k]; |
| 57 |
double s = 0.0; |
| 58 |
for (int i = 0; i < k; i++) { |
| 59 |
s += Lrowk[i]*Lrowj[i]; |
| 60 |
} |
| 61 |
Lrowj[k] = s = (A[j][k] - s)/L[k][k]; |
| 62 |
d = d + s*s; |
| 63 |
isspd = isspd & (A[k][j] == A[j][k]); |
| 64 |
} |
| 65 |
d = A[j][j] - d; |
| 66 |
isspd = isspd & (d > 0.0);
|
| 67 |
L[j][j] = Math.sqrt(Math.max(d,0.0)); |
| 68 |
for (int k = j+1; k < n; k++) { |
| 69 |
L[j][k] = 0.0;
|
| 70 |
} |
| 71 |
} |
| 72 |
} |
| 73 |
|
| 74 |
/* ------------------------
|
| 75 |
Temporary, experimental code.
|
| 76 |
* ------------------------ *\
|
| 77 |
|
| 78 |
\** Right Triangular Cholesky Decomposition.
|
| 79 |
<P>
|
| 80 |
For a symmetric, positive definite matrix A, the Right Cholesky
|
| 81 |
decomposition is an upper triangular matrix R so that A = R'*R.
|
| 82 |
This constructor computes R with the Fortran inspired column oriented
|
| 83 |
algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
|
| 84 |
lower triangular decomposition is faster. We have temporarily included
|
| 85 |
this constructor here until timing experiments confirm this suspicion.
|
| 86 |
*\
|
| 87 |
|
| 88 |
\** Array for internal storage of right triangular decomposition. **\
|
| 89 |
private transient double[][] R;
|
| 90 |
|
| 91 |
\** Cholesky algorithm for symmetric and positive definite matrix.
|
| 92 |
@param A Square, symmetric matrix.
|
| 93 |
@param rightflag Actual value ignored.
|
| 94 |
@return Structure to access R and isspd flag.
|
| 95 |
*\
|
| 96 |
|
| 97 |
public CholeskyDecomposition (Matrix Arg, int rightflag) {
|
| 98 |
// Initialize.
|
| 99 |
double[][] A = Arg.getArray();
|
| 100 |
n = Arg.getColumnDimension();
|
| 101 |
R = new double[n][n];
|
| 102 |
isspd = (Arg.getColumnDimension() == n);
|
| 103 |
// Main loop.
|
| 104 |
for (int j = 0; j < n; j++) {
|
| 105 |
double d = 0.0;
|
| 106 |
for (int k = 0; k < j; k++) {
|
| 107 |
double s = A[k][j];
|
| 108 |
for (int i = 0; i < k; i++) {
|
| 109 |
s = s - R[i][k]*R[i][j];
|
| 110 |
}
|
| 111 |
R[k][j] = s = s/R[k][k];
|
| 112 |
d = d + s*s;
|
| 113 |
isspd = isspd & (A[k][j] == A[j][k]);
|
| 114 |
}
|
| 115 |
d = A[j][j] - d;
|
| 116 |
isspd = isspd & (d > 0.0);
|
| 117 |
R[j][j] = Math.sqrt(Math.max(d,0.0));
|
| 118 |
for (int k = j+1; k < n; k++) {
|
| 119 |
R[k][j] = 0.0;
|
| 120 |
}
|
| 121 |
}
|
| 122 |
}
|
| 123 |
|
| 124 |
\** Return upper triangular factor.
|
| 125 |
@return R
|
| 126 |
*\
|
| 127 |
|
| 128 |
public Matrix getR () {
|
| 129 |
return new Matrix(R,n,n);
|
| 130 |
}
|
| 131 |
|
| 132 |
\* ------------------------
|
| 133 |
End of temporary code.
|
| 134 |
* ------------------------ */
|
| 135 |
|
| 136 |
/* ------------------------
|
| 137 |
Public Methods
|
| 138 |
* ------------------------ */
|
| 139 |
|
| 140 |
/** Is the matrix symmetric and positive definite?
|
| 141 |
@return true if A is symmetric and positive definite.
|
| 142 |
*/
|
| 143 |
|
| 144 |
public boolean isSPD () { |
| 145 |
return isspd;
|
| 146 |
} |
| 147 |
|
| 148 |
/** Return triangular factor.
|
| 149 |
@return L
|
| 150 |
*/
|
| 151 |
|
| 152 |
public Matrix getL () {
|
| 153 |
return new Matrix(L,n,n); |
| 154 |
} |
| 155 |
|
| 156 |
/** Solve A*X = B
|
| 157 |
@param B A Matrix with as many rows as A and any number of columns.
|
| 158 |
@return X so that L*L'*X = B
|
| 159 |
@exception IllegalArgumentException Matrix row dimensions must agree.
|
| 160 |
@exception RuntimeException Matrix is not symmetric positive definite.
|
| 161 |
*/
|
| 162 |
|
| 163 |
public Matrix solve (Matrix B) {
|
| 164 |
if (B.getRowDimension() != n) {
|
| 165 |
throw new IllegalArgumentException("Matrix row dimensions must agree."); |
| 166 |
} |
| 167 |
if (!isspd) {
|
| 168 |
throw new RuntimeException("Matrix is not symmetric positive definite."); |
| 169 |
} |
| 170 |
|
| 171 |
// Copy right hand side.
|
| 172 |
double[][] X = B.getArrayCopy(); |
| 173 |
int nx = B.getColumnDimension();
|
| 174 |
|
| 175 |
// Solve L*Y = B;
|
| 176 |
for (int k = 0; k < n; k++) { |
| 177 |
for (int j = 0; j < nx; j++) { |
| 178 |
for (int i = 0; i < k ; i++) { |
| 179 |
X[k][j] -= X[i][j]*L[k][i]; |
| 180 |
} |
| 181 |
X[k][j] /= L[k][k]; |
| 182 |
} |
| 183 |
} |
| 184 |
|
| 185 |
// Solve L'*X = Y;
|
| 186 |
for (int k = n-1; k >= 0; k--) { |
| 187 |
for (int j = 0; j < nx; j++) { |
| 188 |
for (int i = k+1; i < n ; i++) { |
| 189 |
X[k][j] -= X[i][j]*L[i][k]; |
| 190 |
} |
| 191 |
X[k][j] /= L[k][k]; |
| 192 |
} |
| 193 |
} |
| 194 |
|
| 195 |
|
| 196 |
return new Matrix(X,n,nx); |
| 197 |
} |
| 198 |
} |
| 199 |
|