root / tmp / org.txm.analec.rcp / src / JamaPlus / CholeskyDecomposition.java @ 1203
Historique | Voir | Annoter | Télécharger (5,63 ko)
| 1 | 481 | mdecorde | package JamaPlus; |
|---|---|---|---|
| 2 | 481 | mdecorde | |
| 3 | 481 | mdecorde | /** Cholesky Decomposition.
|
| 4 | 481 | mdecorde | <P>
|
| 5 | 481 | mdecorde | For a symmetric, positive definite matrix A, the Cholesky decomposition
|
| 6 | 481 | mdecorde | is an lower triangular matrix L so that A = L*L'.
|
| 7 | 481 | mdecorde | <P>
|
| 8 | 481 | mdecorde | If the matrix is not symmetric or positive definite, the constructor
|
| 9 | 481 | mdecorde | returns a partial decomposition and sets an internal flag that may
|
| 10 | 481 | mdecorde | be queried by the isSPD() method.
|
| 11 | 481 | mdecorde | */
|
| 12 | 481 | mdecorde | |
| 13 | 481 | mdecorde | public class CholeskyDecomposition implements java.io.Serializable { |
| 14 | 481 | mdecorde | |
| 15 | 481 | mdecorde | /* ------------------------
|
| 16 | 481 | mdecorde | Class variables
|
| 17 | 481 | mdecorde | * ------------------------ */
|
| 18 | 481 | mdecorde | |
| 19 | 481 | mdecorde | /** Array for internal storage of decomposition.
|
| 20 | 481 | mdecorde | @serial internal array storage.
|
| 21 | 481 | mdecorde | */
|
| 22 | 481 | mdecorde | private double[][] L; |
| 23 | 481 | mdecorde | |
| 24 | 481 | mdecorde | /** Row and column dimension (square matrix).
|
| 25 | 481 | mdecorde | @serial matrix dimension.
|
| 26 | 481 | mdecorde | */
|
| 27 | 481 | mdecorde | private int n; |
| 28 | 481 | mdecorde | |
| 29 | 481 | mdecorde | /** Symmetric and positive definite flag.
|
| 30 | 481 | mdecorde | @serial is symmetric and positive definite flag.
|
| 31 | 481 | mdecorde | */
|
| 32 | 481 | mdecorde | private boolean isspd; |
| 33 | 481 | mdecorde | |
| 34 | 481 | mdecorde | /* ------------------------
|
| 35 | 481 | mdecorde | Constructor
|
| 36 | 481 | mdecorde | * ------------------------ */
|
| 37 | 481 | mdecorde | |
| 38 | 481 | mdecorde | /** Cholesky algorithm for symmetric and positive definite matrix.
|
| 39 | 481 | mdecorde | @param A Square, symmetric matrix.
|
| 40 | 481 | mdecorde | @return Structure to access L and isspd flag.
|
| 41 | 481 | mdecorde | */
|
| 42 | 481 | mdecorde | |
| 43 | 481 | mdecorde | public CholeskyDecomposition (Matrix Arg) {
|
| 44 | 481 | mdecorde | |
| 45 | 481 | mdecorde | |
| 46 | 481 | mdecorde | // Initialize.
|
| 47 | 481 | mdecorde | double[][] A = Arg.getArray(); |
| 48 | 481 | mdecorde | n = Arg.getRowDimension(); |
| 49 | 481 | mdecorde | L = new double[n][n]; |
| 50 | 481 | mdecorde | isspd = (Arg.getColumnDimension() == n); |
| 51 | 481 | mdecorde | // Main loop.
|
| 52 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 53 | 481 | mdecorde | double[] Lrowj = L[j]; |
| 54 | 481 | mdecorde | double d = 0.0; |
| 55 | 481 | mdecorde | for (int k = 0; k < j; k++) { |
| 56 | 481 | mdecorde | double[] Lrowk = L[k]; |
| 57 | 481 | mdecorde | double s = 0.0; |
| 58 | 481 | mdecorde | for (int i = 0; i < k; i++) { |
| 59 | 481 | mdecorde | s += Lrowk[i]*Lrowj[i]; |
| 60 | 481 | mdecorde | } |
| 61 | 481 | mdecorde | Lrowj[k] = s = (A[j][k] - s)/L[k][k]; |
| 62 | 481 | mdecorde | d = d + s*s; |
| 63 | 481 | mdecorde | isspd = isspd & (A[k][j] == A[j][k]); |
| 64 | 481 | mdecorde | } |
| 65 | 481 | mdecorde | d = A[j][j] - d; |
| 66 | 481 | mdecorde | isspd = isspd & (d > 0.0);
|
| 67 | 481 | mdecorde | L[j][j] = Math.sqrt(Math.max(d,0.0)); |
| 68 | 481 | mdecorde | for (int k = j+1; k < n; k++) { |
| 69 | 481 | mdecorde | L[j][k] = 0.0;
|
| 70 | 481 | mdecorde | } |
| 71 | 481 | mdecorde | } |
| 72 | 481 | mdecorde | } |
| 73 | 481 | mdecorde | |
| 74 | 481 | mdecorde | /* ------------------------
|
| 75 | 481 | mdecorde | Temporary, experimental code.
|
| 76 | 481 | mdecorde | * ------------------------ *\
|
| 77 | 481 | mdecorde | |
| 78 | 481 | mdecorde | \** Right Triangular Cholesky Decomposition.
|
| 79 | 481 | mdecorde | <P>
|
| 80 | 481 | mdecorde | For a symmetric, positive definite matrix A, the Right Cholesky
|
| 81 | 481 | mdecorde | decomposition is an upper triangular matrix R so that A = R'*R.
|
| 82 | 481 | mdecorde | This constructor computes R with the Fortran inspired column oriented
|
| 83 | 481 | mdecorde | algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
|
| 84 | 481 | mdecorde | lower triangular decomposition is faster. We have temporarily included
|
| 85 | 481 | mdecorde | this constructor here until timing experiments confirm this suspicion.
|
| 86 | 481 | mdecorde | *\
|
| 87 | 481 | mdecorde | |
| 88 | 481 | mdecorde | \** Array for internal storage of right triangular decomposition. **\
|
| 89 | 481 | mdecorde | private transient double[][] R;
|
| 90 | 481 | mdecorde | |
| 91 | 481 | mdecorde | \** Cholesky algorithm for symmetric and positive definite matrix.
|
| 92 | 481 | mdecorde | @param A Square, symmetric matrix.
|
| 93 | 481 | mdecorde | @param rightflag Actual value ignored.
|
| 94 | 481 | mdecorde | @return Structure to access R and isspd flag.
|
| 95 | 481 | mdecorde | *\
|
| 96 | 481 | mdecorde | |
| 97 | 481 | mdecorde | public CholeskyDecomposition (Matrix Arg, int rightflag) {
|
| 98 | 481 | mdecorde | // Initialize.
|
| 99 | 481 | mdecorde | double[][] A = Arg.getArray();
|
| 100 | 481 | mdecorde | n = Arg.getColumnDimension();
|
| 101 | 481 | mdecorde | R = new double[n][n];
|
| 102 | 481 | mdecorde | isspd = (Arg.getColumnDimension() == n);
|
| 103 | 481 | mdecorde | // Main loop.
|
| 104 | 481 | mdecorde | for (int j = 0; j < n; j++) {
|
| 105 | 481 | mdecorde | double d = 0.0;
|
| 106 | 481 | mdecorde | for (int k = 0; k < j; k++) {
|
| 107 | 481 | mdecorde | double s = A[k][j];
|
| 108 | 481 | mdecorde | for (int i = 0; i < k; i++) {
|
| 109 | 481 | mdecorde | s = s - R[i][k]*R[i][j];
|
| 110 | 481 | mdecorde | }
|
| 111 | 481 | mdecorde | R[k][j] = s = s/R[k][k];
|
| 112 | 481 | mdecorde | d = d + s*s;
|
| 113 | 481 | mdecorde | isspd = isspd & (A[k][j] == A[j][k]);
|
| 114 | 481 | mdecorde | }
|
| 115 | 481 | mdecorde | d = A[j][j] - d;
|
| 116 | 481 | mdecorde | isspd = isspd & (d > 0.0);
|
| 117 | 481 | mdecorde | R[j][j] = Math.sqrt(Math.max(d,0.0));
|
| 118 | 481 | mdecorde | for (int k = j+1; k < n; k++) {
|
| 119 | 481 | mdecorde | R[k][j] = 0.0;
|
| 120 | 481 | mdecorde | }
|
| 121 | 481 | mdecorde | }
|
| 122 | 481 | mdecorde | }
|
| 123 | 481 | mdecorde | |
| 124 | 481 | mdecorde | \** Return upper triangular factor.
|
| 125 | 481 | mdecorde | @return R
|
| 126 | 481 | mdecorde | *\
|
| 127 | 481 | mdecorde | |
| 128 | 481 | mdecorde | public Matrix getR () {
|
| 129 | 481 | mdecorde | return new Matrix(R,n,n);
|
| 130 | 481 | mdecorde | }
|
| 131 | 481 | mdecorde | |
| 132 | 481 | mdecorde | \* ------------------------
|
| 133 | 481 | mdecorde | End of temporary code.
|
| 134 | 481 | mdecorde | * ------------------------ */
|
| 135 | 481 | mdecorde | |
| 136 | 481 | mdecorde | /* ------------------------
|
| 137 | 481 | mdecorde | Public Methods
|
| 138 | 481 | mdecorde | * ------------------------ */
|
| 139 | 481 | mdecorde | |
| 140 | 481 | mdecorde | /** Is the matrix symmetric and positive definite?
|
| 141 | 481 | mdecorde | @return true if A is symmetric and positive definite.
|
| 142 | 481 | mdecorde | */
|
| 143 | 481 | mdecorde | |
| 144 | 481 | mdecorde | public boolean isSPD () { |
| 145 | 481 | mdecorde | return isspd;
|
| 146 | 481 | mdecorde | } |
| 147 | 481 | mdecorde | |
| 148 | 481 | mdecorde | /** Return triangular factor.
|
| 149 | 481 | mdecorde | @return L
|
| 150 | 481 | mdecorde | */
|
| 151 | 481 | mdecorde | |
| 152 | 481 | mdecorde | public Matrix getL () {
|
| 153 | 481 | mdecorde | return new Matrix(L,n,n); |
| 154 | 481 | mdecorde | } |
| 155 | 481 | mdecorde | |
| 156 | 481 | mdecorde | /** Solve A*X = B
|
| 157 | 481 | mdecorde | @param B A Matrix with as many rows as A and any number of columns.
|
| 158 | 481 | mdecorde | @return X so that L*L'*X = B
|
| 159 | 481 | mdecorde | @exception IllegalArgumentException Matrix row dimensions must agree.
|
| 160 | 481 | mdecorde | @exception RuntimeException Matrix is not symmetric positive definite.
|
| 161 | 481 | mdecorde | */
|
| 162 | 481 | mdecorde | |
| 163 | 481 | mdecorde | public Matrix solve (Matrix B) {
|
| 164 | 481 | mdecorde | if (B.getRowDimension() != n) {
|
| 165 | 481 | mdecorde | throw new IllegalArgumentException("Matrix row dimensions must agree."); |
| 166 | 481 | mdecorde | } |
| 167 | 481 | mdecorde | if (!isspd) {
|
| 168 | 481 | mdecorde | throw new RuntimeException("Matrix is not symmetric positive definite."); |
| 169 | 481 | mdecorde | } |
| 170 | 481 | mdecorde | |
| 171 | 481 | mdecorde | // Copy right hand side.
|
| 172 | 481 | mdecorde | double[][] X = B.getArrayCopy(); |
| 173 | 481 | mdecorde | int nx = B.getColumnDimension();
|
| 174 | 481 | mdecorde | |
| 175 | 481 | mdecorde | // Solve L*Y = B;
|
| 176 | 481 | mdecorde | for (int k = 0; k < n; k++) { |
| 177 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
| 178 | 481 | mdecorde | for (int i = 0; i < k ; i++) { |
| 179 | 481 | mdecorde | X[k][j] -= X[i][j]*L[k][i]; |
| 180 | 481 | mdecorde | } |
| 181 | 481 | mdecorde | X[k][j] /= L[k][k]; |
| 182 | 481 | mdecorde | } |
| 183 | 481 | mdecorde | } |
| 184 | 481 | mdecorde | |
| 185 | 481 | mdecorde | // Solve L'*X = Y;
|
| 186 | 481 | mdecorde | for (int k = n-1; k >= 0; k--) { |
| 187 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
| 188 | 481 | mdecorde | for (int i = k+1; i < n ; i++) { |
| 189 | 481 | mdecorde | X[k][j] -= X[i][j]*L[i][k]; |
| 190 | 481 | mdecorde | } |
| 191 | 481 | mdecorde | X[k][j] /= L[k][k]; |
| 192 | 481 | mdecorde | } |
| 193 | 481 | mdecorde | } |
| 194 | 481 | mdecorde | |
| 195 | 481 | mdecorde | |
| 196 | 481 | mdecorde | return new Matrix(X,n,nx); |
| 197 | 481 | mdecorde | } |
| 198 | 481 | mdecorde | } |