root / ase / utils / geometry.py @ 7
Historique | Voir | Annoter | Télécharger (12,3 ko)
| 1 |
# Copyright (C) 2010, Jesper Friis
|
|---|---|
| 2 |
# (see accompanying license files for details).
|
| 3 |
|
| 4 |
"""Utility tools for convenient creation of slabs and interfaces of
|
| 5 |
different orientations."""
|
| 6 |
|
| 7 |
import numpy as np |
| 8 |
|
| 9 |
|
| 10 |
|
| 11 |
def gcd(seq): |
| 12 |
"""Returns greatest common divisor of integers in *seq*."""
|
| 13 |
def _gcd(m, n): |
| 14 |
while n:
|
| 15 |
m, n = n, m%n |
| 16 |
return m
|
| 17 |
return reduce(_gcd, seq) |
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
def get_layers(atoms, miller, tolerance=0.001): |
| 23 |
"""Returns two arrays describing which layer each atom belongs
|
| 24 |
to and the distance between the layers and origo.
|
| 25 |
|
| 26 |
Parameters:
|
| 27 |
|
| 28 |
miller: 3 integers
|
| 29 |
The Miller indices of the planes. Actually, any direction
|
| 30 |
in reciprocal space works, so if a and b are two float
|
| 31 |
vectors spanning an atomic plane, you can get all layers
|
| 32 |
parallel to this with miller=np.cross(a,b).
|
| 33 |
tolerance: float
|
| 34 |
The maximum distance in Angstrom along the plane normal for
|
| 35 |
counting two atoms as belonging to the same plane.
|
| 36 |
|
| 37 |
Returns:
|
| 38 |
|
| 39 |
tags: array of integres
|
| 40 |
Array of layer indices for each atom.
|
| 41 |
levels: array of floats
|
| 42 |
Array of distances in Angstrom from each layer to origo.
|
| 43 |
|
| 44 |
Example:
|
| 45 |
|
| 46 |
>>> import numpy as np
|
| 47 |
>>> from ase.lattice.spacegroup import crystal
|
| 48 |
>>> atoms = crystal('Al', [(0,0,0)], spacegroup=225, cellpar=4.05)
|
| 49 |
>>> np.round(atoms.positions, decimals=5)
|
| 50 |
array([[ 0. , 0. , 0. ],
|
| 51 |
[ 0. , 2.025, 2.025],
|
| 52 |
[ 2.025, 0. , 2.025],
|
| 53 |
[ 2.025, 2.025, 0. ]])
|
| 54 |
>>> get_layers(atoms, (0,0,1))
|
| 55 |
(array([0, 1, 1, 0]), array([ 0. , 2.025]))
|
| 56 |
"""
|
| 57 |
miller = np.asarray(miller) |
| 58 |
|
| 59 |
metric = np.dot(atoms.cell, atoms.cell.T) |
| 60 |
c = np.linalg.solve(metric.T, miller.T).T |
| 61 |
miller_norm = np.sqrt(np.dot(c, miller)) |
| 62 |
d = np.dot(atoms.get_scaled_positions(), miller)/miller_norm |
| 63 |
|
| 64 |
keys = np.argsort(d) |
| 65 |
ikeys = np.argsort(keys) |
| 66 |
mask = np.concatenate(([True], np.diff(d[keys]) > tolerance))
|
| 67 |
tags = np.cumsum(mask)[ikeys] |
| 68 |
if tags.min() == 1: |
| 69 |
tags -= 1
|
| 70 |
|
| 71 |
levels = d[keys][mask] |
| 72 |
return tags, levels
|
| 73 |
|
| 74 |
|
| 75 |
|
| 76 |
|
| 77 |
def cut(atoms, a=(1,0,0), b=(0,1,0), c=(0,0,1), origo=(0,0,0), |
| 78 |
nlayers=None, extend=1.0, tolerance=0.001): |
| 79 |
"""Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
|
| 80 |
sufficiently repeated copy of *atoms*.
|
| 81 |
|
| 82 |
Typically, this function is used to create slabs of different
|
| 83 |
sizes and orientations. The vectors *a*, *b* and *c* are in scaled
|
| 84 |
coordinates and defines the returned cell and should normally be
|
| 85 |
integer-valued in order to end up with a periodic
|
| 86 |
structure. However, for systems with sub-translations, like fcc,
|
| 87 |
integer multiples of 1/2 or 1/3 might also make sence for some
|
| 88 |
directions (and will be treated correctly).
|
| 89 |
|
| 90 |
Parameters:
|
| 91 |
|
| 92 |
atoms: Atoms instance
|
| 93 |
This should correspond to a repeatable unit cell.
|
| 94 |
a: int | 3 floats
|
| 95 |
The a-vector in scaled coordinates of the cell to cut out. If
|
| 96 |
integer, the a-vector will be the scaled vector from *origo* to the
|
| 97 |
atom with index *a*.
|
| 98 |
b: int | 3 floats
|
| 99 |
The b-vector in scaled coordinates of the cell to cut out. If
|
| 100 |
integer, the b-vector will be the scaled vector from *origo* to the
|
| 101 |
atom with index *b*.
|
| 102 |
c: int | 3 floats
|
| 103 |
The c-vector in scaled coordinates of the cell to cut out. If
|
| 104 |
integer, the c-vector will be the scaled vector from *origo* to the
|
| 105 |
atom with index *c*. Not used if *nlayers* is given.
|
| 106 |
origo: int | 3 floats
|
| 107 |
Position of origo of the new cell in scaled coordinates. If
|
| 108 |
integer, the position of the atom with index *origo* is used.
|
| 109 |
nlayers: int
|
| 110 |
If *nlayers* is not *None*, the returned cell will have
|
| 111 |
*nlayers* atomic layers in the c-direction. The direction of
|
| 112 |
the c-vector will be along cross(a, b) converted to real
|
| 113 |
space, i.e. normal to the plane spanned by a and b in
|
| 114 |
orthorombic systems.
|
| 115 |
extend: 1 or 3 floats
|
| 116 |
The *extend* argument scales the effective cell in which atoms
|
| 117 |
will be included. It must either be three floats or a single
|
| 118 |
float scaling all 3 directions. By setting to a value just
|
| 119 |
above one, e.g. 1.05, it is possible to all the corner and
|
| 120 |
edge atoms in the returned cell. This will of cause make the
|
| 121 |
returned cell non-repeatable, but is very usefull for
|
| 122 |
visualisation.
|
| 123 |
tolerance: float
|
| 124 |
Determines what is defined as a plane. All atoms within
|
| 125 |
*tolerance* Angstroms from a given plane will be considered to
|
| 126 |
belong to that plane.
|
| 127 |
|
| 128 |
Example:
|
| 129 |
|
| 130 |
>>> import ase
|
| 131 |
>>> from ase.lattice.spacegroup import crystal
|
| 132 |
>>>
|
| 133 |
# Create an aluminium (111) slab with three layers
|
| 134 |
#
|
| 135 |
# First an unit cell of Al
|
| 136 |
>>> a = 4.05
|
| 137 |
>>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
|
| 138 |
... cellpar=[a, a, a, 90, 90, 90])
|
| 139 |
>>>
|
| 140 |
# Then cut out the slab
|
| 141 |
>>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)
|
| 142 |
>>>
|
| 143 |
# Visualisation of the skutterudite unit cell
|
| 144 |
#
|
| 145 |
# Again, create a skutterudite unit cell
|
| 146 |
>>> a = 9.04
|
| 147 |
>>> skutterudite = crystal(
|
| 148 |
... ('Co', 'Sb'),
|
| 149 |
... basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
|
| 150 |
... spacegroup=204,
|
| 151 |
... cellpar=[a, a, a, 90, 90, 90])
|
| 152 |
>>>
|
| 153 |
# Then use *origo* to put 'Co' at the corners and *extend* to
|
| 154 |
# include all corner and edge atoms.
|
| 155 |
>>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
|
| 156 |
>>> ase.view(s) # doctest: +SKIP
|
| 157 |
"""
|
| 158 |
atoms = atoms.copy() |
| 159 |
cell = atoms.cell |
| 160 |
|
| 161 |
if isinstance(origo, int): |
| 162 |
origo = atoms.get_scaled_positions()[origo] |
| 163 |
scaled = (atoms.get_scaled_positions() - origo)%1.0
|
| 164 |
scaled %= 1.0 # needed to ensure that all numbers are *less* than one |
| 165 |
atoms.set_scaled_positions(scaled) |
| 166 |
|
| 167 |
if isinstance(a, int): |
| 168 |
a = scaled[a] - origo |
| 169 |
if isinstance(b, int): |
| 170 |
b = scaled[b] - origo |
| 171 |
if isinstance(c, int): |
| 172 |
c = scaled[c] - origo |
| 173 |
|
| 174 |
a = np.array(a, dtype=float)
|
| 175 |
b = np.array(b, dtype=float)
|
| 176 |
origo = np.array(origo, dtype=float)
|
| 177 |
|
| 178 |
if nlayers:
|
| 179 |
miller = np.cross(a, b) # surface normal
|
| 180 |
# The factor 36 = 2*2*3*3 is because the elements of a and b
|
| 181 |
# might be multiples of 1/2 or 1/3 because of lattice
|
| 182 |
# subtranslations
|
| 183 |
if np.all(36*miller - np.rint(36*miller)) < 1e-5: |
| 184 |
miller = np.rint(36*miller)
|
| 185 |
miller /= gcd(miller) |
| 186 |
tags, layers = get_layers(atoms, miller, tolerance) |
| 187 |
while tags.max() < nlayers:
|
| 188 |
atoms = atoms.repeat(2)
|
| 189 |
tags, layers = get_layers(atoms, miller, tolerance) |
| 190 |
# Convert surface normal in reciprocal space to direction in
|
| 191 |
# real space
|
| 192 |
metric = np.dot(cell, cell.T) |
| 193 |
c = np.linalg.solve(metric.T, miller.T).T |
| 194 |
c *= layers[nlayers]/np.sqrt(np.dot(c, miller)) |
| 195 |
if np.linalg.det(np.dot(np.array([a, b, c]), cell)) < 0: |
| 196 |
c *= -1.0
|
| 197 |
|
| 198 |
newcell = np.dot(np.array([a, b, c]), cell) |
| 199 |
|
| 200 |
# Create a new atoms object, repeated and translated such that
|
| 201 |
# it completely covers the new cell
|
| 202 |
scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.], |
| 203 |
[0., 1., 0.], [0., 1., 1.], |
| 204 |
[1., 0., 0.], [1., 0., 1.], |
| 205 |
[1., 1., 0.], [1., 1., 1.]]) |
| 206 |
corners = np.dot(scorners_newcell, newcell*extend) |
| 207 |
scorners = np.linalg.solve(cell.T, corners.T).T |
| 208 |
rep = np.ceil(scorners.ptp(axis=0)).astype('int') + 1 |
| 209 |
trans = np.dot(np.floor(scorners.min(axis=0)), cell)
|
| 210 |
atoms = atoms.repeat(rep) |
| 211 |
atoms.translate(trans) |
| 212 |
atoms.set_cell(newcell) |
| 213 |
|
| 214 |
# Mask out atoms outside new cell
|
| 215 |
stol = tolerance # scaled tolerance, XXX
|
| 216 |
maskcell = atoms.cell*extend |
| 217 |
sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T |
| 218 |
mask = np.all(np.logical_and(-stol <= sp, sp < 1-stol), axis=1) |
| 219 |
atoms = atoms[mask] |
| 220 |
|
| 221 |
return atoms
|
| 222 |
|
| 223 |
|
| 224 |
|
| 225 |
|
| 226 |
def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5, |
| 227 |
maxstrain=0.5, distance=None): |
| 228 |
"""Return a new Atoms instance with *atoms2* added to atoms1
|
| 229 |
along the given axis. Periodicity in all directions is
|
| 230 |
ensured.
|
| 231 |
|
| 232 |
The size of the final cell is determined by *cell*, except
|
| 233 |
that the length alongh *axis* will be the sum of
|
| 234 |
*atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
|
| 235 |
it will be interpolated between *atoms1* and *atoms2*, where
|
| 236 |
*fix* determines their relative weight. Hence, if *fix* equals
|
| 237 |
zero, the final cell will be determined purely from *atoms1* and
|
| 238 |
if *fix* equals one, it will be determined purely from
|
| 239 |
*atoms2*.
|
| 240 |
|
| 241 |
An ValueError exception will be raised if the far corner of
|
| 242 |
the unit cell of either *atoms1* or *atoms2* is displaced more
|
| 243 |
than *maxstrain*. Setting *maxstrain* to None, disable this
|
| 244 |
check.
|
| 245 |
|
| 246 |
If *distance* is provided, the atomic positions in *atoms1* and
|
| 247 |
*atoms2* as well as the cell lengths along *axis* will be
|
| 248 |
adjusted such that the distance between the distance between
|
| 249 |
the closest atoms in *atoms1* and *atoms2* will equal *distance*.
|
| 250 |
This option uses scipy.optimize.fmin() and hence require scipy
|
| 251 |
to be installed.
|
| 252 |
|
| 253 |
Example:
|
| 254 |
|
| 255 |
>>> import ase
|
| 256 |
>>> from ase.lattice.spacegroup import crystal
|
| 257 |
>>>
|
| 258 |
# Create an Ag(110)-Si(110) interface with three atomic layers
|
| 259 |
# on each side.
|
| 260 |
>>> a_ag = 4.09
|
| 261 |
>>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225,
|
| 262 |
... cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
|
| 263 |
>>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
|
| 264 |
>>>
|
| 265 |
>>> a_si = 5.43
|
| 266 |
>>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227,
|
| 267 |
... cellpar=[a_si, a_si, a_si, 90., 90., 90.])
|
| 268 |
>>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
|
| 269 |
>>>
|
| 270 |
>>> interface = stack(ag110, si110, maxstrain=1)
|
| 271 |
>>> ase.view(interface) # doctest: +SKIP
|
| 272 |
>>>
|
| 273 |
# Once more, this time adjusted such that the distance between
|
| 274 |
# the closest Ag and Si atoms will be 2.3 Angstrom.
|
| 275 |
>>> interface2 = stack(ag110, si110,
|
| 276 |
... maxstrain=1, distance=2.3) # doctest:+ELLIPSIS
|
| 277 |
Optimization terminated successfully.
|
| 278 |
...
|
| 279 |
>>> ase.view(interface2) # doctest: +SKIP
|
| 280 |
"""
|
| 281 |
atoms1 = atoms1.copy() |
| 282 |
atoms2 = atoms2.copy() |
| 283 |
|
| 284 |
c1 = np.linalg.norm(atoms1.cell[axis]) |
| 285 |
c2 = np.linalg.norm(atoms2.cell[axis]) |
| 286 |
if cell is None: |
| 287 |
cell1 = atoms1.cell.copy() |
| 288 |
cell2 = atoms2.cell.copy() |
| 289 |
cell1[axis] /= c1 |
| 290 |
cell2[axis] /= c2 |
| 291 |
cell = cell1 + fix*(cell2 - cell1) |
| 292 |
cell[axis] /= np.linalg.norm(cell[axis]) |
| 293 |
cell1 = cell.copy() |
| 294 |
cell2 = cell.copy() |
| 295 |
cell1[axis] *= c1 |
| 296 |
cell2[axis] *= c2 |
| 297 |
|
| 298 |
if (maxstrain and |
| 299 |
(((cell1 - atoms1.cell).sum(axis=0)**2).sum() > maxstrain**2 or |
| 300 |
((cell2 - atoms2.cell).sum(axis=0)**2).sum() > maxstrain**2)): |
| 301 |
raise ValueError('Incompatible cells.') |
| 302 |
|
| 303 |
sp1 = np.linalg.solve(atoms1.cell.T, atoms1.positions.T).T |
| 304 |
sp2 = np.linalg.solve(atoms2.cell.T, atoms2.positions.T).T |
| 305 |
atoms1.set_cell(cell1) |
| 306 |
atoms2.set_cell(cell2) |
| 307 |
atoms1.set_scaled_positions(sp1) |
| 308 |
atoms2.set_scaled_positions(sp2) |
| 309 |
|
| 310 |
if distance is not None: |
| 311 |
from scipy.optimize import fmin |
| 312 |
def mindist(pos1, pos2): |
| 313 |
n1 = len(pos1)
|
| 314 |
n2 = len(pos2)
|
| 315 |
idx1 = np.arange(n1).repeat(n2) |
| 316 |
idx2 = np.tile(np.arange(n2), n1) |
| 317 |
return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min()) |
| 318 |
def func(x): |
| 319 |
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
| 320 |
pos1 = atoms1.positions + t1 |
| 321 |
pos2 = atoms2.positions + t2 |
| 322 |
d1 = mindist(pos1, pos2 + (h1 + 1.0)*atoms1.cell[axis])
|
| 323 |
d2 = mindist(pos2, pos1 + (h2 + 1.0)*atoms2.cell[axis])
|
| 324 |
return (d1 - distance)**2 + (d2 - distance)**2 |
| 325 |
atoms1.center() |
| 326 |
atoms2.center() |
| 327 |
x0 = np.zeros((8,))
|
| 328 |
x = fmin(func, x0) |
| 329 |
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
| 330 |
atoms1.translate(t1) |
| 331 |
atoms2.translate(t2) |
| 332 |
atoms1.cell[axis] *= 1.0 + h1
|
| 333 |
atoms2.cell[axis] *= 1.0 + h2
|
| 334 |
|
| 335 |
atoms2.translate(atoms1.cell[axis]) |
| 336 |
atoms1.cell[axis] += atoms2.cell[axis] |
| 337 |
atoms1.extend(atoms2) |
| 338 |
return atoms1
|
| 339 |
|
| 340 |
|
| 341 |
#-----------------------------------------------------------------
|
| 342 |
# Self test
|
| 343 |
if __name__ == '__main__': |
| 344 |
import doctest |
| 345 |
print 'doctest: ', doctest.testmod() |