root / ase / utils / geometry.py @ 7
Historique | Voir | Annoter | Télécharger (12,3 ko)
| 1 | 1 | tkerber | # Copyright (C) 2010, Jesper Friis
|
|---|---|---|---|
| 2 | 1 | tkerber | # (see accompanying license files for details).
|
| 3 | 1 | tkerber | |
| 4 | 1 | tkerber | """Utility tools for convenient creation of slabs and interfaces of
|
| 5 | 1 | tkerber | different orientations."""
|
| 6 | 1 | tkerber | |
| 7 | 1 | tkerber | import numpy as np |
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | |
| 10 | 1 | tkerber | |
| 11 | 1 | tkerber | def gcd(seq): |
| 12 | 1 | tkerber | """Returns greatest common divisor of integers in *seq*."""
|
| 13 | 1 | tkerber | def _gcd(m, n): |
| 14 | 1 | tkerber | while n:
|
| 15 | 1 | tkerber | m, n = n, m%n |
| 16 | 1 | tkerber | return m
|
| 17 | 1 | tkerber | return reduce(_gcd, seq) |
| 18 | 1 | tkerber | |
| 19 | 1 | tkerber | |
| 20 | 1 | tkerber | |
| 21 | 1 | tkerber | |
| 22 | 1 | tkerber | def get_layers(atoms, miller, tolerance=0.001): |
| 23 | 1 | tkerber | """Returns two arrays describing which layer each atom belongs
|
| 24 | 1 | tkerber | to and the distance between the layers and origo.
|
| 25 | 1 | tkerber |
|
| 26 | 1 | tkerber | Parameters:
|
| 27 | 1 | tkerber |
|
| 28 | 1 | tkerber | miller: 3 integers
|
| 29 | 1 | tkerber | The Miller indices of the planes. Actually, any direction
|
| 30 | 1 | tkerber | in reciprocal space works, so if a and b are two float
|
| 31 | 1 | tkerber | vectors spanning an atomic plane, you can get all layers
|
| 32 | 1 | tkerber | parallel to this with miller=np.cross(a,b).
|
| 33 | 1 | tkerber | tolerance: float
|
| 34 | 1 | tkerber | The maximum distance in Angstrom along the plane normal for
|
| 35 | 1 | tkerber | counting two atoms as belonging to the same plane.
|
| 36 | 1 | tkerber |
|
| 37 | 1 | tkerber | Returns:
|
| 38 | 1 | tkerber |
|
| 39 | 1 | tkerber | tags: array of integres
|
| 40 | 1 | tkerber | Array of layer indices for each atom.
|
| 41 | 1 | tkerber | levels: array of floats
|
| 42 | 1 | tkerber | Array of distances in Angstrom from each layer to origo.
|
| 43 | 1 | tkerber |
|
| 44 | 1 | tkerber | Example:
|
| 45 | 1 | tkerber |
|
| 46 | 1 | tkerber | >>> import numpy as np
|
| 47 | 1 | tkerber | >>> from ase.lattice.spacegroup import crystal
|
| 48 | 1 | tkerber | >>> atoms = crystal('Al', [(0,0,0)], spacegroup=225, cellpar=4.05)
|
| 49 | 1 | tkerber | >>> np.round(atoms.positions, decimals=5)
|
| 50 | 1 | tkerber | array([[ 0. , 0. , 0. ],
|
| 51 | 1 | tkerber | [ 0. , 2.025, 2.025],
|
| 52 | 1 | tkerber | [ 2.025, 0. , 2.025],
|
| 53 | 1 | tkerber | [ 2.025, 2.025, 0. ]])
|
| 54 | 1 | tkerber | >>> get_layers(atoms, (0,0,1))
|
| 55 | 1 | tkerber | (array([0, 1, 1, 0]), array([ 0. , 2.025]))
|
| 56 | 1 | tkerber | """
|
| 57 | 1 | tkerber | miller = np.asarray(miller) |
| 58 | 1 | tkerber | |
| 59 | 1 | tkerber | metric = np.dot(atoms.cell, atoms.cell.T) |
| 60 | 1 | tkerber | c = np.linalg.solve(metric.T, miller.T).T |
| 61 | 1 | tkerber | miller_norm = np.sqrt(np.dot(c, miller)) |
| 62 | 1 | tkerber | d = np.dot(atoms.get_scaled_positions(), miller)/miller_norm |
| 63 | 1 | tkerber | |
| 64 | 1 | tkerber | keys = np.argsort(d) |
| 65 | 1 | tkerber | ikeys = np.argsort(keys) |
| 66 | 1 | tkerber | mask = np.concatenate(([True], np.diff(d[keys]) > tolerance))
|
| 67 | 1 | tkerber | tags = np.cumsum(mask)[ikeys] |
| 68 | 1 | tkerber | if tags.min() == 1: |
| 69 | 1 | tkerber | tags -= 1
|
| 70 | 1 | tkerber | |
| 71 | 1 | tkerber | levels = d[keys][mask] |
| 72 | 1 | tkerber | return tags, levels
|
| 73 | 1 | tkerber | |
| 74 | 1 | tkerber | |
| 75 | 1 | tkerber | |
| 76 | 1 | tkerber | |
| 77 | 1 | tkerber | def cut(atoms, a=(1,0,0), b=(0,1,0), c=(0,0,1), origo=(0,0,0), |
| 78 | 1 | tkerber | nlayers=None, extend=1.0, tolerance=0.001): |
| 79 | 1 | tkerber | """Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
|
| 80 | 1 | tkerber | sufficiently repeated copy of *atoms*.
|
| 81 | 1 | tkerber |
|
| 82 | 1 | tkerber | Typically, this function is used to create slabs of different
|
| 83 | 1 | tkerber | sizes and orientations. The vectors *a*, *b* and *c* are in scaled
|
| 84 | 1 | tkerber | coordinates and defines the returned cell and should normally be
|
| 85 | 1 | tkerber | integer-valued in order to end up with a periodic
|
| 86 | 1 | tkerber | structure. However, for systems with sub-translations, like fcc,
|
| 87 | 1 | tkerber | integer multiples of 1/2 or 1/3 might also make sence for some
|
| 88 | 1 | tkerber | directions (and will be treated correctly).
|
| 89 | 1 | tkerber |
|
| 90 | 1 | tkerber | Parameters:
|
| 91 | 1 | tkerber |
|
| 92 | 1 | tkerber | atoms: Atoms instance
|
| 93 | 1 | tkerber | This should correspond to a repeatable unit cell.
|
| 94 | 1 | tkerber | a: int | 3 floats
|
| 95 | 1 | tkerber | The a-vector in scaled coordinates of the cell to cut out. If
|
| 96 | 1 | tkerber | integer, the a-vector will be the scaled vector from *origo* to the
|
| 97 | 1 | tkerber | atom with index *a*.
|
| 98 | 1 | tkerber | b: int | 3 floats
|
| 99 | 1 | tkerber | The b-vector in scaled coordinates of the cell to cut out. If
|
| 100 | 1 | tkerber | integer, the b-vector will be the scaled vector from *origo* to the
|
| 101 | 1 | tkerber | atom with index *b*.
|
| 102 | 1 | tkerber | c: int | 3 floats
|
| 103 | 1 | tkerber | The c-vector in scaled coordinates of the cell to cut out. If
|
| 104 | 1 | tkerber | integer, the c-vector will be the scaled vector from *origo* to the
|
| 105 | 1 | tkerber | atom with index *c*. Not used if *nlayers* is given.
|
| 106 | 1 | tkerber | origo: int | 3 floats
|
| 107 | 1 | tkerber | Position of origo of the new cell in scaled coordinates. If
|
| 108 | 1 | tkerber | integer, the position of the atom with index *origo* is used.
|
| 109 | 1 | tkerber | nlayers: int
|
| 110 | 1 | tkerber | If *nlayers* is not *None*, the returned cell will have
|
| 111 | 1 | tkerber | *nlayers* atomic layers in the c-direction. The direction of
|
| 112 | 1 | tkerber | the c-vector will be along cross(a, b) converted to real
|
| 113 | 1 | tkerber | space, i.e. normal to the plane spanned by a and b in
|
| 114 | 1 | tkerber | orthorombic systems.
|
| 115 | 1 | tkerber | extend: 1 or 3 floats
|
| 116 | 1 | tkerber | The *extend* argument scales the effective cell in which atoms
|
| 117 | 1 | tkerber | will be included. It must either be three floats or a single
|
| 118 | 1 | tkerber | float scaling all 3 directions. By setting to a value just
|
| 119 | 1 | tkerber | above one, e.g. 1.05, it is possible to all the corner and
|
| 120 | 1 | tkerber | edge atoms in the returned cell. This will of cause make the
|
| 121 | 1 | tkerber | returned cell non-repeatable, but is very usefull for
|
| 122 | 1 | tkerber | visualisation.
|
| 123 | 1 | tkerber | tolerance: float
|
| 124 | 1 | tkerber | Determines what is defined as a plane. All atoms within
|
| 125 | 1 | tkerber | *tolerance* Angstroms from a given plane will be considered to
|
| 126 | 1 | tkerber | belong to that plane.
|
| 127 | 1 | tkerber |
|
| 128 | 1 | tkerber | Example:
|
| 129 | 1 | tkerber |
|
| 130 | 1 | tkerber | >>> import ase
|
| 131 | 1 | tkerber | >>> from ase.lattice.spacegroup import crystal
|
| 132 | 1 | tkerber | >>>
|
| 133 | 1 | tkerber | # Create an aluminium (111) slab with three layers
|
| 134 | 1 | tkerber | #
|
| 135 | 1 | tkerber | # First an unit cell of Al
|
| 136 | 1 | tkerber | >>> a = 4.05
|
| 137 | 1 | tkerber | >>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
|
| 138 | 1 | tkerber | ... cellpar=[a, a, a, 90, 90, 90])
|
| 139 | 1 | tkerber | >>>
|
| 140 | 1 | tkerber | # Then cut out the slab
|
| 141 | 1 | tkerber | >>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)
|
| 142 | 1 | tkerber | >>>
|
| 143 | 1 | tkerber | # Visualisation of the skutterudite unit cell
|
| 144 | 1 | tkerber | #
|
| 145 | 1 | tkerber | # Again, create a skutterudite unit cell
|
| 146 | 1 | tkerber | >>> a = 9.04
|
| 147 | 1 | tkerber | >>> skutterudite = crystal(
|
| 148 | 1 | tkerber | ... ('Co', 'Sb'),
|
| 149 | 1 | tkerber | ... basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
|
| 150 | 1 | tkerber | ... spacegroup=204,
|
| 151 | 1 | tkerber | ... cellpar=[a, a, a, 90, 90, 90])
|
| 152 | 1 | tkerber | >>>
|
| 153 | 1 | tkerber | # Then use *origo* to put 'Co' at the corners and *extend* to
|
| 154 | 1 | tkerber | # include all corner and edge atoms.
|
| 155 | 1 | tkerber | >>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
|
| 156 | 1 | tkerber | >>> ase.view(s) # doctest: +SKIP
|
| 157 | 1 | tkerber | """
|
| 158 | 1 | tkerber | atoms = atoms.copy() |
| 159 | 1 | tkerber | cell = atoms.cell |
| 160 | 1 | tkerber | |
| 161 | 1 | tkerber | if isinstance(origo, int): |
| 162 | 1 | tkerber | origo = atoms.get_scaled_positions()[origo] |
| 163 | 1 | tkerber | scaled = (atoms.get_scaled_positions() - origo)%1.0
|
| 164 | 1 | tkerber | scaled %= 1.0 # needed to ensure that all numbers are *less* than one |
| 165 | 1 | tkerber | atoms.set_scaled_positions(scaled) |
| 166 | 1 | tkerber | |
| 167 | 1 | tkerber | if isinstance(a, int): |
| 168 | 1 | tkerber | a = scaled[a] - origo |
| 169 | 1 | tkerber | if isinstance(b, int): |
| 170 | 1 | tkerber | b = scaled[b] - origo |
| 171 | 1 | tkerber | if isinstance(c, int): |
| 172 | 1 | tkerber | c = scaled[c] - origo |
| 173 | 1 | tkerber | |
| 174 | 1 | tkerber | a = np.array(a, dtype=float)
|
| 175 | 1 | tkerber | b = np.array(b, dtype=float)
|
| 176 | 1 | tkerber | origo = np.array(origo, dtype=float)
|
| 177 | 1 | tkerber | |
| 178 | 1 | tkerber | if nlayers:
|
| 179 | 1 | tkerber | miller = np.cross(a, b) # surface normal
|
| 180 | 1 | tkerber | # The factor 36 = 2*2*3*3 is because the elements of a and b
|
| 181 | 1 | tkerber | # might be multiples of 1/2 or 1/3 because of lattice
|
| 182 | 1 | tkerber | # subtranslations
|
| 183 | 1 | tkerber | if np.all(36*miller - np.rint(36*miller)) < 1e-5: |
| 184 | 1 | tkerber | miller = np.rint(36*miller)
|
| 185 | 1 | tkerber | miller /= gcd(miller) |
| 186 | 1 | tkerber | tags, layers = get_layers(atoms, miller, tolerance) |
| 187 | 1 | tkerber | while tags.max() < nlayers:
|
| 188 | 1 | tkerber | atoms = atoms.repeat(2)
|
| 189 | 1 | tkerber | tags, layers = get_layers(atoms, miller, tolerance) |
| 190 | 1 | tkerber | # Convert surface normal in reciprocal space to direction in
|
| 191 | 1 | tkerber | # real space
|
| 192 | 1 | tkerber | metric = np.dot(cell, cell.T) |
| 193 | 1 | tkerber | c = np.linalg.solve(metric.T, miller.T).T |
| 194 | 1 | tkerber | c *= layers[nlayers]/np.sqrt(np.dot(c, miller)) |
| 195 | 1 | tkerber | if np.linalg.det(np.dot(np.array([a, b, c]), cell)) < 0: |
| 196 | 1 | tkerber | c *= -1.0
|
| 197 | 1 | tkerber | |
| 198 | 1 | tkerber | newcell = np.dot(np.array([a, b, c]), cell) |
| 199 | 1 | tkerber | |
| 200 | 1 | tkerber | # Create a new atoms object, repeated and translated such that
|
| 201 | 1 | tkerber | # it completely covers the new cell
|
| 202 | 1 | tkerber | scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.], |
| 203 | 1 | tkerber | [0., 1., 0.], [0., 1., 1.], |
| 204 | 1 | tkerber | [1., 0., 0.], [1., 0., 1.], |
| 205 | 1 | tkerber | [1., 1., 0.], [1., 1., 1.]]) |
| 206 | 1 | tkerber | corners = np.dot(scorners_newcell, newcell*extend) |
| 207 | 1 | tkerber | scorners = np.linalg.solve(cell.T, corners.T).T |
| 208 | 1 | tkerber | rep = np.ceil(scorners.ptp(axis=0)).astype('int') + 1 |
| 209 | 1 | tkerber | trans = np.dot(np.floor(scorners.min(axis=0)), cell)
|
| 210 | 1 | tkerber | atoms = atoms.repeat(rep) |
| 211 | 1 | tkerber | atoms.translate(trans) |
| 212 | 1 | tkerber | atoms.set_cell(newcell) |
| 213 | 1 | tkerber | |
| 214 | 1 | tkerber | # Mask out atoms outside new cell
|
| 215 | 1 | tkerber | stol = tolerance # scaled tolerance, XXX
|
| 216 | 1 | tkerber | maskcell = atoms.cell*extend |
| 217 | 1 | tkerber | sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T |
| 218 | 1 | tkerber | mask = np.all(np.logical_and(-stol <= sp, sp < 1-stol), axis=1) |
| 219 | 1 | tkerber | atoms = atoms[mask] |
| 220 | 1 | tkerber | |
| 221 | 1 | tkerber | return atoms
|
| 222 | 1 | tkerber | |
| 223 | 1 | tkerber | |
| 224 | 1 | tkerber | |
| 225 | 1 | tkerber | |
| 226 | 1 | tkerber | def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5, |
| 227 | 1 | tkerber | maxstrain=0.5, distance=None): |
| 228 | 1 | tkerber | """Return a new Atoms instance with *atoms2* added to atoms1
|
| 229 | 1 | tkerber | along the given axis. Periodicity in all directions is
|
| 230 | 1 | tkerber | ensured.
|
| 231 | 1 | tkerber |
|
| 232 | 1 | tkerber | The size of the final cell is determined by *cell*, except
|
| 233 | 1 | tkerber | that the length alongh *axis* will be the sum of
|
| 234 | 1 | tkerber | *atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
|
| 235 | 1 | tkerber | it will be interpolated between *atoms1* and *atoms2*, where
|
| 236 | 1 | tkerber | *fix* determines their relative weight. Hence, if *fix* equals
|
| 237 | 1 | tkerber | zero, the final cell will be determined purely from *atoms1* and
|
| 238 | 1 | tkerber | if *fix* equals one, it will be determined purely from
|
| 239 | 1 | tkerber | *atoms2*.
|
| 240 | 1 | tkerber |
|
| 241 | 1 | tkerber | An ValueError exception will be raised if the far corner of
|
| 242 | 1 | tkerber | the unit cell of either *atoms1* or *atoms2* is displaced more
|
| 243 | 1 | tkerber | than *maxstrain*. Setting *maxstrain* to None, disable this
|
| 244 | 1 | tkerber | check.
|
| 245 | 1 | tkerber |
|
| 246 | 1 | tkerber | If *distance* is provided, the atomic positions in *atoms1* and
|
| 247 | 1 | tkerber | *atoms2* as well as the cell lengths along *axis* will be
|
| 248 | 1 | tkerber | adjusted such that the distance between the distance between
|
| 249 | 1 | tkerber | the closest atoms in *atoms1* and *atoms2* will equal *distance*.
|
| 250 | 1 | tkerber | This option uses scipy.optimize.fmin() and hence require scipy
|
| 251 | 1 | tkerber | to be installed.
|
| 252 | 1 | tkerber |
|
| 253 | 1 | tkerber | Example:
|
| 254 | 1 | tkerber |
|
| 255 | 1 | tkerber | >>> import ase
|
| 256 | 1 | tkerber | >>> from ase.lattice.spacegroup import crystal
|
| 257 | 1 | tkerber | >>>
|
| 258 | 1 | tkerber | # Create an Ag(110)-Si(110) interface with three atomic layers
|
| 259 | 1 | tkerber | # on each side.
|
| 260 | 1 | tkerber | >>> a_ag = 4.09
|
| 261 | 1 | tkerber | >>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225,
|
| 262 | 1 | tkerber | ... cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
|
| 263 | 1 | tkerber | >>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
|
| 264 | 1 | tkerber | >>>
|
| 265 | 1 | tkerber | >>> a_si = 5.43
|
| 266 | 1 | tkerber | >>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227,
|
| 267 | 1 | tkerber | ... cellpar=[a_si, a_si, a_si, 90., 90., 90.])
|
| 268 | 1 | tkerber | >>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
|
| 269 | 1 | tkerber | >>>
|
| 270 | 1 | tkerber | >>> interface = stack(ag110, si110, maxstrain=1)
|
| 271 | 1 | tkerber | >>> ase.view(interface) # doctest: +SKIP
|
| 272 | 1 | tkerber | >>>
|
| 273 | 1 | tkerber | # Once more, this time adjusted such that the distance between
|
| 274 | 1 | tkerber | # the closest Ag and Si atoms will be 2.3 Angstrom.
|
| 275 | 1 | tkerber | >>> interface2 = stack(ag110, si110,
|
| 276 | 1 | tkerber | ... maxstrain=1, distance=2.3) # doctest:+ELLIPSIS
|
| 277 | 1 | tkerber | Optimization terminated successfully.
|
| 278 | 1 | tkerber | ...
|
| 279 | 1 | tkerber | >>> ase.view(interface2) # doctest: +SKIP
|
| 280 | 1 | tkerber | """
|
| 281 | 1 | tkerber | atoms1 = atoms1.copy() |
| 282 | 1 | tkerber | atoms2 = atoms2.copy() |
| 283 | 1 | tkerber | |
| 284 | 1 | tkerber | c1 = np.linalg.norm(atoms1.cell[axis]) |
| 285 | 1 | tkerber | c2 = np.linalg.norm(atoms2.cell[axis]) |
| 286 | 1 | tkerber | if cell is None: |
| 287 | 1 | tkerber | cell1 = atoms1.cell.copy() |
| 288 | 1 | tkerber | cell2 = atoms2.cell.copy() |
| 289 | 1 | tkerber | cell1[axis] /= c1 |
| 290 | 1 | tkerber | cell2[axis] /= c2 |
| 291 | 1 | tkerber | cell = cell1 + fix*(cell2 - cell1) |
| 292 | 1 | tkerber | cell[axis] /= np.linalg.norm(cell[axis]) |
| 293 | 1 | tkerber | cell1 = cell.copy() |
| 294 | 1 | tkerber | cell2 = cell.copy() |
| 295 | 1 | tkerber | cell1[axis] *= c1 |
| 296 | 1 | tkerber | cell2[axis] *= c2 |
| 297 | 1 | tkerber | |
| 298 | 1 | tkerber | if (maxstrain and |
| 299 | 1 | tkerber | (((cell1 - atoms1.cell).sum(axis=0)**2).sum() > maxstrain**2 or |
| 300 | 1 | tkerber | ((cell2 - atoms2.cell).sum(axis=0)**2).sum() > maxstrain**2)): |
| 301 | 1 | tkerber | raise ValueError('Incompatible cells.') |
| 302 | 1 | tkerber | |
| 303 | 1 | tkerber | sp1 = np.linalg.solve(atoms1.cell.T, atoms1.positions.T).T |
| 304 | 1 | tkerber | sp2 = np.linalg.solve(atoms2.cell.T, atoms2.positions.T).T |
| 305 | 1 | tkerber | atoms1.set_cell(cell1) |
| 306 | 1 | tkerber | atoms2.set_cell(cell2) |
| 307 | 1 | tkerber | atoms1.set_scaled_positions(sp1) |
| 308 | 1 | tkerber | atoms2.set_scaled_positions(sp2) |
| 309 | 1 | tkerber | |
| 310 | 1 | tkerber | if distance is not None: |
| 311 | 1 | tkerber | from scipy.optimize import fmin |
| 312 | 1 | tkerber | def mindist(pos1, pos2): |
| 313 | 1 | tkerber | n1 = len(pos1)
|
| 314 | 1 | tkerber | n2 = len(pos2)
|
| 315 | 1 | tkerber | idx1 = np.arange(n1).repeat(n2) |
| 316 | 1 | tkerber | idx2 = np.tile(np.arange(n2), n1) |
| 317 | 1 | tkerber | return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min()) |
| 318 | 1 | tkerber | def func(x): |
| 319 | 1 | tkerber | t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
| 320 | 1 | tkerber | pos1 = atoms1.positions + t1 |
| 321 | 1 | tkerber | pos2 = atoms2.positions + t2 |
| 322 | 1 | tkerber | d1 = mindist(pos1, pos2 + (h1 + 1.0)*atoms1.cell[axis])
|
| 323 | 1 | tkerber | d2 = mindist(pos2, pos1 + (h2 + 1.0)*atoms2.cell[axis])
|
| 324 | 1 | tkerber | return (d1 - distance)**2 + (d2 - distance)**2 |
| 325 | 1 | tkerber | atoms1.center() |
| 326 | 1 | tkerber | atoms2.center() |
| 327 | 1 | tkerber | x0 = np.zeros((8,))
|
| 328 | 1 | tkerber | x = fmin(func, x0) |
| 329 | 1 | tkerber | t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
| 330 | 1 | tkerber | atoms1.translate(t1) |
| 331 | 1 | tkerber | atoms2.translate(t2) |
| 332 | 1 | tkerber | atoms1.cell[axis] *= 1.0 + h1
|
| 333 | 1 | tkerber | atoms2.cell[axis] *= 1.0 + h2
|
| 334 | 1 | tkerber | |
| 335 | 1 | tkerber | atoms2.translate(atoms1.cell[axis]) |
| 336 | 1 | tkerber | atoms1.cell[axis] += atoms2.cell[axis] |
| 337 | 1 | tkerber | atoms1.extend(atoms2) |
| 338 | 1 | tkerber | return atoms1
|
| 339 | 1 | tkerber | |
| 340 | 1 | tkerber | |
| 341 | 1 | tkerber | #-----------------------------------------------------------------
|
| 342 | 1 | tkerber | # Self test
|
| 343 | 1 | tkerber | if __name__ == '__main__': |
| 344 | 1 | tkerber | import doctest |
| 345 | 1 | tkerber | print 'doctest: ', doctest.testmod() |