root / ase / utils / __init__.py @ 7
Historique | Voir | Annoter | Télécharger (3,34 ko)
| 1 |
from math import sin, cos, radians, atan2, degrees |
|---|---|
| 2 |
|
| 3 |
import numpy as np |
| 4 |
|
| 5 |
|
| 6 |
class DevNull: |
| 7 |
def write(self, string): pass |
| 8 |
def flush(self): pass |
| 9 |
def tell(self): return 0 |
| 10 |
def close(self): pass |
| 11 |
|
| 12 |
devnull = DevNull() |
| 13 |
|
| 14 |
|
| 15 |
def rotate(rotations, rotation=np.identity(3)): |
| 16 |
"""Convert string of format '50x,-10y,120z' to a rotation matrix.
|
| 17 |
|
| 18 |
Note that the order of rotation matters, i.e. '50x,40z' is different
|
| 19 |
from '40z,50x'.
|
| 20 |
"""
|
| 21 |
|
| 22 |
if rotations == '': |
| 23 |
return rotation.copy()
|
| 24 |
|
| 25 |
for i, a in [('xyz'.index(s[-1]), radians(float(s[:-1]))) |
| 26 |
for s in rotations.split(',')]: |
| 27 |
s = sin(a) |
| 28 |
c = cos(a) |
| 29 |
if i == 0: |
| 30 |
rotation = np.dot(rotation, [( 1, 0, 0), |
| 31 |
( 0, c, s),
|
| 32 |
( 0, -s, c)])
|
| 33 |
elif i == 1: |
| 34 |
rotation = np.dot(rotation, [( c, 0, -s),
|
| 35 |
( 0, 1, 0), |
| 36 |
( s, 0, c)])
|
| 37 |
else:
|
| 38 |
rotation = np.dot(rotation, [( c, s, 0),
|
| 39 |
( -s, c, 0),
|
| 40 |
( 0, 0, 1)]) |
| 41 |
return rotation
|
| 42 |
|
| 43 |
|
| 44 |
def givens(a, b): |
| 45 |
"""Solve the equation system::
|
| 46 |
|
| 47 |
[ c s] [a] [r]
|
| 48 |
[ ] . [ ] = [ ]
|
| 49 |
[-s c] [b] [0]
|
| 50 |
"""
|
| 51 |
sgn = lambda x: cmp(x, 0) |
| 52 |
if b == 0: |
| 53 |
c = sgn(a) |
| 54 |
s = 0
|
| 55 |
r = abs(a)
|
| 56 |
elif abs(b) >= abs(a): |
| 57 |
cot = a / b |
| 58 |
u = sgn(b) * (1 + cot**2)**.5 |
| 59 |
s = 1. / u
|
| 60 |
c = s * cot |
| 61 |
r = b * u |
| 62 |
else:
|
| 63 |
tan = b / a |
| 64 |
u = sgn(a) * (1 + tan**2)**.5 |
| 65 |
c = 1. / u
|
| 66 |
s = c * tan |
| 67 |
r = a * u |
| 68 |
return c, s, r
|
| 69 |
|
| 70 |
|
| 71 |
def irotate(rotation, initial=np.identity(3)): |
| 72 |
"""Determine x, y, z rotation angles from rotation matrix."""
|
| 73 |
a = np.dot(initial, rotation) |
| 74 |
cx, sx, rx = givens(a[2, 2], a[1, 2]) |
| 75 |
cy, sy, ry = givens(rx, a[0, 2]) |
| 76 |
cz, sz, rz = givens(cx * a[1, 1] - sx * a[2, 1], |
| 77 |
cy * a[0, 1] - sy * (sx * a[1, 1] + cx * a[2, 1])) |
| 78 |
x = degrees(atan2(sx, cx)) |
| 79 |
y = degrees(atan2(-sy, cy)) |
| 80 |
z = degrees(atan2(sz, cz)) |
| 81 |
return x, y, z
|
| 82 |
|
| 83 |
|
| 84 |
def hsv2rgb(h, s, v): |
| 85 |
"""http://en.wikipedia.org/wiki/HSL_and_HSV
|
| 86 |
|
| 87 |
h (hue) in [0, 360[
|
| 88 |
s (saturation) in [0, 1]
|
| 89 |
v (value) in [0, 1]
|
| 90 |
|
| 91 |
return rgb in range [0, 1]
|
| 92 |
"""
|
| 93 |
if v == 0: |
| 94 |
return 0, 0, 0 |
| 95 |
if s == 0: |
| 96 |
return v, v, v
|
| 97 |
|
| 98 |
i, f = divmod(h / 60., 1) |
| 99 |
p = v * (1 - s)
|
| 100 |
q = v * (1 - s * f)
|
| 101 |
t = v * (1 - s * (1 - f)) |
| 102 |
|
| 103 |
if i == 0: |
| 104 |
return v, t, p
|
| 105 |
elif i == 1: |
| 106 |
return q, v, p
|
| 107 |
elif i == 2: |
| 108 |
return p, v, t
|
| 109 |
elif i == 3: |
| 110 |
return p, q, v
|
| 111 |
elif i == 4: |
| 112 |
return t, p, v
|
| 113 |
elif i == 5: |
| 114 |
return v, p, q
|
| 115 |
else:
|
| 116 |
raise RuntimeError, 'h must be in [0, 360]' |
| 117 |
|
| 118 |
|
| 119 |
def hsv(array, s=.9, v=.9): |
| 120 |
array = (array + array.min()) * 359. / (array.max() - array.min())
|
| 121 |
result = np.empty((len(array.flat), 3)) |
| 122 |
for rgb, h in zip(result, array.flat): |
| 123 |
rgb[:] = hsv2rgb(h, s, v) |
| 124 |
return np.reshape(result, array.shape + (3,)) |
| 125 |
|
| 126 |
## This code does the same, but requires pylab
|
| 127 |
## def cmap(array, name='hsv'):
|
| 128 |
## import pylab
|
| 129 |
## a = (array + array.min()) / array.ptp()
|
| 130 |
## rgba = getattr(pylab.cm, name)(a)
|
| 131 |
## return rgba[:-1] # return rgb only (not alpha)
|