root / ase / utils / __init__.py @ 7
Historique | Voir | Annoter | Télécharger (3,34 ko)
| 1 | 1 | tkerber | from math import sin, cos, radians, atan2, degrees |
|---|---|---|---|
| 2 | 1 | tkerber | |
| 3 | 1 | tkerber | import numpy as np |
| 4 | 1 | tkerber | |
| 5 | 1 | tkerber | |
| 6 | 1 | tkerber | class DevNull: |
| 7 | 1 | tkerber | def write(self, string): pass |
| 8 | 1 | tkerber | def flush(self): pass |
| 9 | 1 | tkerber | def tell(self): return 0 |
| 10 | 1 | tkerber | def close(self): pass |
| 11 | 1 | tkerber | |
| 12 | 1 | tkerber | devnull = DevNull() |
| 13 | 1 | tkerber | |
| 14 | 1 | tkerber | |
| 15 | 1 | tkerber | def rotate(rotations, rotation=np.identity(3)): |
| 16 | 1 | tkerber | """Convert string of format '50x,-10y,120z' to a rotation matrix.
|
| 17 | 1 | tkerber |
|
| 18 | 1 | tkerber | Note that the order of rotation matters, i.e. '50x,40z' is different
|
| 19 | 1 | tkerber | from '40z,50x'.
|
| 20 | 1 | tkerber | """
|
| 21 | 1 | tkerber | |
| 22 | 1 | tkerber | if rotations == '': |
| 23 | 1 | tkerber | return rotation.copy()
|
| 24 | 1 | tkerber | |
| 25 | 1 | tkerber | for i, a in [('xyz'.index(s[-1]), radians(float(s[:-1]))) |
| 26 | 1 | tkerber | for s in rotations.split(',')]: |
| 27 | 1 | tkerber | s = sin(a) |
| 28 | 1 | tkerber | c = cos(a) |
| 29 | 1 | tkerber | if i == 0: |
| 30 | 1 | tkerber | rotation = np.dot(rotation, [( 1, 0, 0), |
| 31 | 1 | tkerber | ( 0, c, s),
|
| 32 | 1 | tkerber | ( 0, -s, c)])
|
| 33 | 1 | tkerber | elif i == 1: |
| 34 | 1 | tkerber | rotation = np.dot(rotation, [( c, 0, -s),
|
| 35 | 1 | tkerber | ( 0, 1, 0), |
| 36 | 1 | tkerber | ( s, 0, c)])
|
| 37 | 1 | tkerber | else:
|
| 38 | 1 | tkerber | rotation = np.dot(rotation, [( c, s, 0),
|
| 39 | 1 | tkerber | ( -s, c, 0),
|
| 40 | 1 | tkerber | ( 0, 0, 1)]) |
| 41 | 1 | tkerber | return rotation
|
| 42 | 1 | tkerber | |
| 43 | 1 | tkerber | |
| 44 | 1 | tkerber | def givens(a, b): |
| 45 | 1 | tkerber | """Solve the equation system::
|
| 46 | 1 | tkerber |
|
| 47 | 1 | tkerber | [ c s] [a] [r]
|
| 48 | 1 | tkerber | [ ] . [ ] = [ ]
|
| 49 | 1 | tkerber | [-s c] [b] [0]
|
| 50 | 1 | tkerber | """
|
| 51 | 1 | tkerber | sgn = lambda x: cmp(x, 0) |
| 52 | 1 | tkerber | if b == 0: |
| 53 | 1 | tkerber | c = sgn(a) |
| 54 | 1 | tkerber | s = 0
|
| 55 | 1 | tkerber | r = abs(a)
|
| 56 | 1 | tkerber | elif abs(b) >= abs(a): |
| 57 | 1 | tkerber | cot = a / b |
| 58 | 1 | tkerber | u = sgn(b) * (1 + cot**2)**.5 |
| 59 | 1 | tkerber | s = 1. / u
|
| 60 | 1 | tkerber | c = s * cot |
| 61 | 1 | tkerber | r = b * u |
| 62 | 1 | tkerber | else:
|
| 63 | 1 | tkerber | tan = b / a |
| 64 | 1 | tkerber | u = sgn(a) * (1 + tan**2)**.5 |
| 65 | 1 | tkerber | c = 1. / u
|
| 66 | 1 | tkerber | s = c * tan |
| 67 | 1 | tkerber | r = a * u |
| 68 | 1 | tkerber | return c, s, r
|
| 69 | 1 | tkerber | |
| 70 | 1 | tkerber | |
| 71 | 1 | tkerber | def irotate(rotation, initial=np.identity(3)): |
| 72 | 1 | tkerber | """Determine x, y, z rotation angles from rotation matrix."""
|
| 73 | 1 | tkerber | a = np.dot(initial, rotation) |
| 74 | 1 | tkerber | cx, sx, rx = givens(a[2, 2], a[1, 2]) |
| 75 | 1 | tkerber | cy, sy, ry = givens(rx, a[0, 2]) |
| 76 | 1 | tkerber | cz, sz, rz = givens(cx * a[1, 1] - sx * a[2, 1], |
| 77 | 1 | tkerber | cy * a[0, 1] - sy * (sx * a[1, 1] + cx * a[2, 1])) |
| 78 | 1 | tkerber | x = degrees(atan2(sx, cx)) |
| 79 | 1 | tkerber | y = degrees(atan2(-sy, cy)) |
| 80 | 1 | tkerber | z = degrees(atan2(sz, cz)) |
| 81 | 1 | tkerber | return x, y, z
|
| 82 | 1 | tkerber | |
| 83 | 1 | tkerber | |
| 84 | 1 | tkerber | def hsv2rgb(h, s, v): |
| 85 | 1 | tkerber | """http://en.wikipedia.org/wiki/HSL_and_HSV
|
| 86 | 1 | tkerber |
|
| 87 | 1 | tkerber | h (hue) in [0, 360[
|
| 88 | 1 | tkerber | s (saturation) in [0, 1]
|
| 89 | 1 | tkerber | v (value) in [0, 1]
|
| 90 | 1 | tkerber |
|
| 91 | 1 | tkerber | return rgb in range [0, 1]
|
| 92 | 1 | tkerber | """
|
| 93 | 1 | tkerber | if v == 0: |
| 94 | 1 | tkerber | return 0, 0, 0 |
| 95 | 1 | tkerber | if s == 0: |
| 96 | 1 | tkerber | return v, v, v
|
| 97 | 1 | tkerber | |
| 98 | 1 | tkerber | i, f = divmod(h / 60., 1) |
| 99 | 1 | tkerber | p = v * (1 - s)
|
| 100 | 1 | tkerber | q = v * (1 - s * f)
|
| 101 | 1 | tkerber | t = v * (1 - s * (1 - f)) |
| 102 | 1 | tkerber | |
| 103 | 1 | tkerber | if i == 0: |
| 104 | 1 | tkerber | return v, t, p
|
| 105 | 1 | tkerber | elif i == 1: |
| 106 | 1 | tkerber | return q, v, p
|
| 107 | 1 | tkerber | elif i == 2: |
| 108 | 1 | tkerber | return p, v, t
|
| 109 | 1 | tkerber | elif i == 3: |
| 110 | 1 | tkerber | return p, q, v
|
| 111 | 1 | tkerber | elif i == 4: |
| 112 | 1 | tkerber | return t, p, v
|
| 113 | 1 | tkerber | elif i == 5: |
| 114 | 1 | tkerber | return v, p, q
|
| 115 | 1 | tkerber | else:
|
| 116 | 1 | tkerber | raise RuntimeError, 'h must be in [0, 360]' |
| 117 | 1 | tkerber | |
| 118 | 1 | tkerber | |
| 119 | 1 | tkerber | def hsv(array, s=.9, v=.9): |
| 120 | 1 | tkerber | array = (array + array.min()) * 359. / (array.max() - array.min())
|
| 121 | 1 | tkerber | result = np.empty((len(array.flat), 3)) |
| 122 | 1 | tkerber | for rgb, h in zip(result, array.flat): |
| 123 | 1 | tkerber | rgb[:] = hsv2rgb(h, s, v) |
| 124 | 1 | tkerber | return np.reshape(result, array.shape + (3,)) |
| 125 | 1 | tkerber | |
| 126 | 1 | tkerber | ## This code does the same, but requires pylab
|
| 127 | 1 | tkerber | ## def cmap(array, name='hsv'):
|
| 128 | 1 | tkerber | ## import pylab
|
| 129 | 1 | tkerber | ## a = (array + array.min()) / array.ptp()
|
| 130 | 1 | tkerber | ## rgba = getattr(pylab.cm, name)(a)
|
| 131 | 1 | tkerber | ## return rgba[:-1] # return rgb only (not alpha) |