root / ase / examples / COCu111.py @ 7
Historique | Voir | Annoter | Télécharger (1,87 ko)
| 1 |
from math import sqrt |
|---|---|
| 2 |
from ase import Atoms, Atom |
| 3 |
from ase.constraints import FixAtoms |
| 4 |
from ase.optimize import QuasiNewton |
| 5 |
from ase.io import PickleTrajectory |
| 6 |
from ase.neb import NEB |
| 7 |
from ase.calculators.emt import EMT |
| 8 |
|
| 9 |
# Distance between Cu atoms on a (111) surface:
|
| 10 |
a = 3.6
|
| 11 |
d = a / sqrt(2)
|
| 12 |
y = d * sqrt(3) / 2 |
| 13 |
fcc111 = Atoms('Cu',
|
| 14 |
cell=[(d, 0, 0), |
| 15 |
(d / 2, y, 0), |
| 16 |
(d / 2, y / 3, -a / sqrt(3))], |
| 17 |
pbc=True)
|
| 18 |
slab = fcc111 * (2, 2, 4) |
| 19 |
slab.set_cell([2 * d, 2 * y, 1]) |
| 20 |
slab.set_pbc((1, 1, 0)) |
| 21 |
slab.set_calculator(EMT()) |
| 22 |
Z = slab.get_positions()[:, 2]
|
| 23 |
indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
| 24 |
constraint = FixAtoms(indices=indices) |
| 25 |
slab.set_constraint(constraint) |
| 26 |
dyn = QuasiNewton(slab) |
| 27 |
dyn.run(fmax=0.05)
|
| 28 |
Z = slab.get_positions()[:, 2]
|
| 29 |
print Z[0] - Z[1] |
| 30 |
print Z[1] - Z[2] |
| 31 |
print Z[2] - Z[3] |
| 32 |
|
| 33 |
b = 1.2
|
| 34 |
h = 2.0
|
| 35 |
slab += Atom('C', (d, 2 * y / 3, h)) |
| 36 |
slab += Atom('O', (3 * d / 2, y / 3, h)) |
| 37 |
traj = PickleTrajectory('initial.traj', 'w', slab) |
| 38 |
dyn = QuasiNewton(slab) |
| 39 |
dyn.attach(traj.write) |
| 40 |
dyn.run(fmax=0.05)
|
| 41 |
#view(slab)
|
| 42 |
# Make band:
|
| 43 |
images = [slab.copy() for i in range(6)] |
| 44 |
neb = NEB(images, climb=True)
|
| 45 |
|
| 46 |
# Set constraints and calculator:
|
| 47 |
for image in images: |
| 48 |
image.set_calculator(EMT()) |
| 49 |
image.set_constraint(constraint) |
| 50 |
|
| 51 |
# Displace last image:
|
| 52 |
images[-1].positions[-1] = (2 * d, 2 * y / 3, h) |
| 53 |
traj = PickleTrajectory('final.traj', 'w', images[-1]) |
| 54 |
dyn = QuasiNewton(images[-1])
|
| 55 |
dyn.attach(traj.write) |
| 56 |
dyn.run(fmax=0.05)
|
| 57 |
|
| 58 |
# Interpolate positions between initial and final states:
|
| 59 |
neb.interpolate() |
| 60 |
|
| 61 |
for image in images: |
| 62 |
print image.positions[-1], image.get_potential_energy() |
| 63 |
|
| 64 |
traj = PickleTrajectory('mep.traj', 'w') |
| 65 |
|
| 66 |
#dyn = MDMin(neb, dt=0.4)
|
| 67 |
#dyn = FIRE(neb, dt=0.4)
|
| 68 |
dyn = QuasiNewton(neb) |
| 69 |
dyn.attach(neb.writer(traj)) |
| 70 |
dyn.run(fmax=0.05)
|
| 71 |
|
| 72 |
for image in images: |
| 73 |
print image.positions[-1], image.get_potential_energy() |