root / ase / examples / COCu111.py @ 7
Historique | Voir | Annoter | Télécharger (1,87 ko)
| 1 | 1 | tkerber | from math import sqrt |
|---|---|---|---|
| 2 | 1 | tkerber | from ase import Atoms, Atom |
| 3 | 1 | tkerber | from ase.constraints import FixAtoms |
| 4 | 1 | tkerber | from ase.optimize import QuasiNewton |
| 5 | 1 | tkerber | from ase.io import PickleTrajectory |
| 6 | 1 | tkerber | from ase.neb import NEB |
| 7 | 1 | tkerber | from ase.calculators.emt import EMT |
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | # Distance between Cu atoms on a (111) surface:
|
| 10 | 1 | tkerber | a = 3.6
|
| 11 | 1 | tkerber | d = a / sqrt(2)
|
| 12 | 1 | tkerber | y = d * sqrt(3) / 2 |
| 13 | 1 | tkerber | fcc111 = Atoms('Cu',
|
| 14 | 1 | tkerber | cell=[(d, 0, 0), |
| 15 | 1 | tkerber | (d / 2, y, 0), |
| 16 | 1 | tkerber | (d / 2, y / 3, -a / sqrt(3))], |
| 17 | 1 | tkerber | pbc=True)
|
| 18 | 1 | tkerber | slab = fcc111 * (2, 2, 4) |
| 19 | 1 | tkerber | slab.set_cell([2 * d, 2 * y, 1]) |
| 20 | 1 | tkerber | slab.set_pbc((1, 1, 0)) |
| 21 | 1 | tkerber | slab.set_calculator(EMT()) |
| 22 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
| 23 | 1 | tkerber | indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
| 24 | 1 | tkerber | constraint = FixAtoms(indices=indices) |
| 25 | 1 | tkerber | slab.set_constraint(constraint) |
| 26 | 1 | tkerber | dyn = QuasiNewton(slab) |
| 27 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 28 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
| 29 | 1 | tkerber | print Z[0] - Z[1] |
| 30 | 1 | tkerber | print Z[1] - Z[2] |
| 31 | 1 | tkerber | print Z[2] - Z[3] |
| 32 | 1 | tkerber | |
| 33 | 1 | tkerber | b = 1.2
|
| 34 | 1 | tkerber | h = 2.0
|
| 35 | 1 | tkerber | slab += Atom('C', (d, 2 * y / 3, h)) |
| 36 | 1 | tkerber | slab += Atom('O', (3 * d / 2, y / 3, h)) |
| 37 | 1 | tkerber | traj = PickleTrajectory('initial.traj', 'w', slab) |
| 38 | 1 | tkerber | dyn = QuasiNewton(slab) |
| 39 | 1 | tkerber | dyn.attach(traj.write) |
| 40 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 41 | 1 | tkerber | #view(slab)
|
| 42 | 1 | tkerber | # Make band:
|
| 43 | 1 | tkerber | images = [slab.copy() for i in range(6)] |
| 44 | 1 | tkerber | neb = NEB(images, climb=True)
|
| 45 | 1 | tkerber | |
| 46 | 1 | tkerber | # Set constraints and calculator:
|
| 47 | 1 | tkerber | for image in images: |
| 48 | 1 | tkerber | image.set_calculator(EMT()) |
| 49 | 1 | tkerber | image.set_constraint(constraint) |
| 50 | 1 | tkerber | |
| 51 | 1 | tkerber | # Displace last image:
|
| 52 | 1 | tkerber | images[-1].positions[-1] = (2 * d, 2 * y / 3, h) |
| 53 | 1 | tkerber | traj = PickleTrajectory('final.traj', 'w', images[-1]) |
| 54 | 1 | tkerber | dyn = QuasiNewton(images[-1])
|
| 55 | 1 | tkerber | dyn.attach(traj.write) |
| 56 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 57 | 1 | tkerber | |
| 58 | 1 | tkerber | # Interpolate positions between initial and final states:
|
| 59 | 1 | tkerber | neb.interpolate() |
| 60 | 1 | tkerber | |
| 61 | 1 | tkerber | for image in images: |
| 62 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
| 63 | 1 | tkerber | |
| 64 | 1 | tkerber | traj = PickleTrajectory('mep.traj', 'w') |
| 65 | 1 | tkerber | |
| 66 | 1 | tkerber | #dyn = MDMin(neb, dt=0.4)
|
| 67 | 1 | tkerber | #dyn = FIRE(neb, dt=0.4)
|
| 68 | 1 | tkerber | dyn = QuasiNewton(neb) |
| 69 | 1 | tkerber | dyn.attach(neb.writer(traj)) |
| 70 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 71 | 1 | tkerber | |
| 72 | 1 | tkerber | for image in images: |
| 73 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |