root / ase / dft / kpoints.py @ 7
Historique | Voir | Annoter | Télécharger (9,57 ko)
| 1 |
from __future__ import division |
|---|---|
| 2 |
import numpy as np |
| 3 |
|
| 4 |
|
| 5 |
def monkhorst_pack(size): |
| 6 |
"""Construct a uniform sampling of k-space of given size."""
|
| 7 |
if np.less_equal(size, 0).any(): |
| 8 |
raise ValueError('Illegal size: %s' % list(size)) |
| 9 |
kpts = np.indices(size).transpose((1, 2, 3, 0)).reshape((-1, 3)) |
| 10 |
return (kpts + 0.5) / size - 0.5 |
| 11 |
|
| 12 |
|
| 13 |
def get_monkhorst_shape(kpts, tol=1e-5): |
| 14 |
"""Return the number of k-points along each axis of input Monkhorst pack.
|
| 15 |
|
| 16 |
The set of k-points must not have been symmetry reduced.
|
| 17 |
"""
|
| 18 |
nkpts = len(kpts)
|
| 19 |
if nkpts == 1: |
| 20 |
return np.ones(3, int) |
| 21 |
|
| 22 |
Nk_c = np.zeros(3, int) |
| 23 |
for c in range(3): |
| 24 |
# Determine increment between kpoints along current axis
|
| 25 |
DeltaK = max(np.diff(np.sort(kpts[:, c])))
|
| 26 |
|
| 27 |
# Determine number of kpoints as inverse of distance between kpoints
|
| 28 |
if DeltaK > tol:
|
| 29 |
Nk_c[c] = int(round(1. / DeltaK)) |
| 30 |
else:
|
| 31 |
Nk_c[c] = 1
|
| 32 |
return Nk_c
|
| 33 |
|
| 34 |
|
| 35 |
def kpoint_convert(cell_cv, skpts_kc=None, ckpts_kv=None): |
| 36 |
"""Convert k-points between scaled and cartesian coordinates.
|
| 37 |
|
| 38 |
Given the atomic unit cell, and either the scaled or cartesian k-point
|
| 39 |
coordinates, the other is determined.
|
| 40 |
|
| 41 |
The k-point arrays can be either a single point, or a list of points,
|
| 42 |
i.e. the dimension k can be empty or multidimensional.
|
| 43 |
"""
|
| 44 |
if ckpts_kv is None: |
| 45 |
icell_cv = 2 * np.pi * np.linalg.inv(cell_cv).T
|
| 46 |
return np.dot(skpts_kc, icell_cv)
|
| 47 |
elif skpts_kc is None: |
| 48 |
return np.dot(ckpts_kv, cell_cv.T) / (2 * np.pi) |
| 49 |
else:
|
| 50 |
raise KeyError('Either scaled or cartesian coordinates must be given.') |
| 51 |
|
| 52 |
|
| 53 |
def get_bandpath(points, cell, npoints=50): |
| 54 |
"""Make a list of kpoints defining the path between the given points.
|
| 55 |
|
| 56 |
points: list
|
| 57 |
List of special IBZ point pairs, e.g. ``points =
|
| 58 |
[W, L, Gamma, X, W, K]``. These should be given in
|
| 59 |
scaled coordinates.
|
| 60 |
cell: 3x3 ndarray
|
| 61 |
Unit cell of the atoms.
|
| 62 |
npoints: int
|
| 63 |
Length of the output kpts list.
|
| 64 |
|
| 65 |
Return list of k-points, list of x-coordinates and list of
|
| 66 |
x-coordinates of special points."""
|
| 67 |
|
| 68 |
points = np.asarray(points) |
| 69 |
dists = points[1:] - points[:-1] |
| 70 |
lengths = [np.linalg.norm(d) for d in kpoint_convert(cell, skpts_kc=dists)] |
| 71 |
length = sum(lengths)
|
| 72 |
kpts = [] |
| 73 |
x0 = 0
|
| 74 |
x = [] |
| 75 |
X = [0]
|
| 76 |
for P, d, L in zip(points[:-1], dists, lengths): |
| 77 |
n = int(round(L * (npoints - 1 - len(x)) / (length - x0))) |
| 78 |
for t in np.linspace(0, 1, n, endpoint=False): |
| 79 |
kpts.append(P + t * d) |
| 80 |
x.append(x0 + t * L) |
| 81 |
x0 += L |
| 82 |
X.append(x0) |
| 83 |
kpts.append(points[-1])
|
| 84 |
x.append(x0) |
| 85 |
return kpts, np.array(x), np.array(X)
|
| 86 |
|
| 87 |
|
| 88 |
# The following is a list of the critical points in the 1. Brillouin zone
|
| 89 |
# for some typical crystal structures.
|
| 90 |
# (In units of the reciprocal basis vectors)
|
| 91 |
# See http://en.wikipedia.org/wiki/Brillouin_zone
|
| 92 |
ibz_points = {'cubic': {'Gamma': [0, 0, 0 ],
|
| 93 |
'X': [0, 0 / 2, 1 / 2], |
| 94 |
'R': [1 / 2, 1 / 2, 1 / 2], |
| 95 |
'M': [0 / 2, 1 / 2, 1 / 2]}, |
| 96 |
|
| 97 |
'fcc': {'Gamma': [0, 0, 0 ], |
| 98 |
'X': [1 / 2, 0, 1 / 2], |
| 99 |
'W': [1 / 2, 1 / 4, 3 / 4], |
| 100 |
'K': [3 / 8, 3 / 8, 3 / 4], |
| 101 |
'U': [5 / 8, 1 / 4, 5 / 8], |
| 102 |
'L': [1 / 2, 1 / 2, 1 / 2]}, |
| 103 |
|
| 104 |
'bcc': {'Gamma': [0, 0, 0 ], |
| 105 |
'H': [1 / 2, -1 / 2, 1 / 2], |
| 106 |
'N': [0, 0, 1 / 2], |
| 107 |
'P': [1 / 4, 1 / 4, 1 / 4]}, |
| 108 |
|
| 109 |
} |
| 110 |
|
| 111 |
# ChadiCohen k point grids. The k point grids are given in units of the
|
| 112 |
# reciprocal unit cell. The variables are named after the following
|
| 113 |
# convention: cc+'<Nkpoints>'+_+'shape'. For example an 18 k point
|
| 114 |
# sq(3)xsq(3) is named 'cc18_sq3xsq3'.
|
| 115 |
|
| 116 |
cc6_1x1 = np.array([1, 1, 0, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, |
| 117 |
0, 1, 0] ).reshape((6, 3)) / 3.0 |
| 118 |
|
| 119 |
cc12_2x3 = np.array([3, 4, 0, 3, 10, 0, 6, 8, 0, 3, -2, 0, 6, -4, 0, |
| 120 |
6, 2, 0, -3, 8, 0, -3, 2, 0, -3, -4, 0, -6, 4, 0, -6, -2, 0, -6, |
| 121 |
-8, 0] ).reshape((12, 3)) / 18.0 |
| 122 |
|
| 123 |
cc18_sq3xsq3 = np.array([2, 2, 0, 4, 4, 0, 8, 2, 0, 4, -2, 0, 8, -4, |
| 124 |
0, 10, -2, 0, 10, -8, 0, 8, -10, 0, 2, -10, 0, 4, -8, 0, -2, -8, |
| 125 |
0, 2, -4, 0, -4, -4, 0, -2, -2, 0, -4, 2, 0, -2, 4, 0, -8, 4, 0, |
| 126 |
-4, 8, 0] ).reshape((18, 3)) / 18.0 |
| 127 |
|
| 128 |
cc18_1x1 = np.array([2, 4, 0, 2, 10, 0, 4, 8, 0, 8, 4, 0, 8, 10, 0, |
| 129 |
10, 8, 0, 2, -2, 0, 4, -4, 0, 4, 2, 0, -2, 8, 0, -2, 2, 0, -2, -4, |
| 130 |
0, -4, 4, 0, -4, -2, 0, -4, -8, 0, -8, 2, 0, -8, -4, 0, -10, -2, |
| 131 |
0] ).reshape((18, 3)) / 18.0 |
| 132 |
|
| 133 |
cc54_sq3xsq3 = np.array([4, -10, 0, 6, -10, 0, 0, -8, 0, 2, -8, 0, 6, |
| 134 |
-8, 0, 8, -8, 0, -4, -6, 0, -2, -6, 0, 2, -6, 0, 4, -6, 0, 8, -6, |
| 135 |
0, 10, -6, 0, -6, -4, 0, -2, -4, 0, 0, -4, 0, 4, -4, 0, 6, -4, 0, |
| 136 |
10, -4, 0, -6, -2, 0, -4, -2, 0, 0, -2, 0, 2, -2, 0, 6, -2, 0, 8, |
| 137 |
-2, 0, -8, 0, 0, -4, 0, 0, -2, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, |
| 138 |
-8, 2, 0, -6, 2, 0, -2, 2, 0, 0, 2, 0, 4, 2, 0, 6, 2, 0, -10, 4, |
| 139 |
0, -6, 4, 0, -4, 4, 0, 0, 4, 0, 2, 4, 0, 6, 4, 0, -10, 6, 0, -8, |
| 140 |
6, 0, -4, 6, 0, -2, 6, 0, 2, 6, 0, 4, 6, 0, -8, 8, 0, -6, 8, 0, |
| 141 |
-2, 8, 0, 0, 8, 0, -6, 10, 0, -4, 10, 0]).reshape((54, 3)) / 18.0 |
| 142 |
|
| 143 |
cc54_1x1 = np.array([2, 2, 0, 4, 4, 0, 8, 8, 0, 6, 8, 0, 4, 6, 0, 6, |
| 144 |
10, 0, 4, 10, 0, 2, 6, 0, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, -2, |
| 145 |
6, 0, -2, 4, 0, -4, 6, 0, -6, 4, 0, -4, 2, 0, -6, 2, 0, -2, 0, 0, |
| 146 |
-4, 0, 0, -8, 0, 0, -8, -2, 0, -6, -2, 0, -10, -4, 0, -10, -6, 0, |
| 147 |
-6, -4, 0, -8, -6, 0, -2, -2, 0, -4, -4, 0, -8, -8, 0, 4, -2, 0, |
| 148 |
6, -2, 0, 6, -4, 0, 2, 0, 0, 4, 0, 0, 6, 2, 0, 6, 4, 0, 8, 6, 0, |
| 149 |
8, 0, 0, 8, 2, 0, 10, 4, 0, 10, 6, 0, 2, -4, 0, 2, -6, 0, 4, -6, |
| 150 |
0, 0, -2, 0, 0, -4, 0, -2, -6, 0, -4, -6, 0, -6, -8, 0, 0, -8, 0, |
| 151 |
-2, -8, 0, -4, -10, 0, -6, -10, 0] ).reshape((54, 3)) / 18.0 |
| 152 |
|
| 153 |
cc162_sq3xsq3 = np.array([-8, 16, 0, -10, 14, 0, -7, 14, 0, -4, 14, |
| 154 |
0, -11, 13, 0, -8, 13, 0, -5, 13, 0, -2, 13, 0, -13, 11, 0, -10, |
| 155 |
11, 0, -7, 11, 0, -4, 11, 0, -1, 11, 0, 2, 11, 0, -14, 10, 0, -11, |
| 156 |
10, 0, -8, 10, 0, -5, 10, 0, -2, 10, 0, 1, 10, 0, 4, 10, 0, -16, |
| 157 |
8, 0, -13, 8, 0, -10, 8, 0, -7, 8, 0, -4, 8, 0, -1, 8, 0, 2, 8, 0, |
| 158 |
5, 8, 0, 8, 8, 0, -14, 7, 0, -11, 7, 0, -8, 7, 0, -5, 7, 0, -2, 7, |
| 159 |
0, 1, 7, 0, 4, 7, 0, 7, 7, 0, 10, 7, 0, -13, 5, 0, -10, 5, 0, -7, |
| 160 |
5, 0, -4, 5, 0, -1, 5, 0, 2, 5, 0, 5, 5, 0, 8, 5, 0, 11, 5, 0, |
| 161 |
-14, 4, 0, -11, 4, 0, -8, 4, 0, -5, 4, 0, -2, 4, 0, 1, 4, 0, 4, 4, |
| 162 |
0, 7, 4, 0, 10, 4, 0, -13, 2, 0, -10, 2, 0, -7, 2, 0, -4, 2, 0, |
| 163 |
-1, 2, 0, 2, 2, 0, 5, 2, 0, 8, 2, 0, 11, 2, 0, -11, 1, 0, -8, 1, |
| 164 |
0, -5, 1, 0, -2, 1, 0, 1, 1, 0, 4, 1, 0, 7, 1, 0, 10, 1, 0, 13, 1, |
| 165 |
0, -10, -1, 0, -7, -1, 0, -4, -1, 0, -1, -1, 0, 2, -1, 0, 5, -1, |
| 166 |
0, 8, -1, 0, 11, -1, 0, 14, -1, 0, -11, -2, 0, -8, -2, 0, -5, -2, |
| 167 |
0, -2, -2, 0, 1, -2, 0, 4, -2, 0, 7, -2, 0, 10, -2, 0, 13, -2, 0, |
| 168 |
-10, -4, 0, -7, -4, 0, -4, -4, 0, -1, -4, 0, 2, -4, 0, 5, -4, 0, |
| 169 |
8, -4, 0, 11, -4, 0, 14, -4, 0, -8, -5, 0, -5, -5, 0, -2, -5, 0, |
| 170 |
1, -5, 0, 4, -5, 0, 7, -5, 0, 10, -5, 0, 13, -5, 0, 16, -5, 0, -7, |
| 171 |
-7, 0, -4, -7, 0, -1, -7, 0, 2, -7, 0, 5, -7, 0, 8, -7, 0, 11, -7, |
| 172 |
0, 14, -7, 0, 17, -7, 0, -8, -8, 0, -5, -8, 0, -2, -8, 0, 1, -8, |
| 173 |
0, 4, -8, 0, 7, -8, 0, 10, -8, 0, 13, -8, 0, 16, -8, 0, -7, -10, |
| 174 |
0, -4, -10, 0, -1, -10, 0, 2, -10, 0, 5, -10, 0, 8, -10, 0, 11, |
| 175 |
-10, 0, 14, -10, 0, 17, -10, 0, -5, -11, 0, -2, -11, 0, 1, -11, 0, |
| 176 |
4, -11, 0, 7, -11, 0, 10, -11, 0, 13, -11, 0, 16, -11, 0, -1, -13, |
| 177 |
0, 2, -13, 0, 5, -13, 0, 8, -13, 0, 11, -13, 0, 14, -13, 0, 1, |
| 178 |
-14, 0, 4, -14, 0, 7, -14, 0, 10, -14, 0, 13, -14, 0, 5, -16, 0, |
| 179 |
8, -16, 0, 11, -16, 0, 7, -17, 0, 10, -17, 0]).reshape((162, 3)) / 27.0 |
| 180 |
|
| 181 |
cc162_1x1 = np.array([-8, -16, 0, -10, -14, 0, -7, -14, 0, -4, -14, |
| 182 |
0, -11, -13, 0, -8, -13, 0, -5, -13, 0, -2, -13, 0, -13, -11, 0, |
| 183 |
-10, -11, 0, -7, -11, 0, -4, -11, 0, -1, -11, 0, 2, -11, 0, -14, |
| 184 |
-10, 0, -11, -10, 0, -8, -10, 0, -5, -10, 0, -2, -10, 0, 1, -10, |
| 185 |
0, 4, -10, 0, -16, -8, 0, -13, -8, 0, -10, -8, 0, -7, -8, 0, -4, |
| 186 |
-8, 0, -1, -8, 0, 2, -8, 0, 5, -8, 0, 8, -8, 0, -14, -7, 0, -11, |
| 187 |
-7, 0, -8, -7, 0, -5, -7, 0, -2, -7, 0, 1, -7, 0, 4, -7, 0, 7, -7, |
| 188 |
0, 10, -7, 0, -13, -5, 0, -10, -5, 0, -7, -5, 0, -4, -5, 0, -1, |
| 189 |
-5, 0, 2, -5, 0, 5, -5, 0, 8, -5, 0, 11, -5, 0, -14, -4, 0, -11, |
| 190 |
-4, 0, -8, -4, 0, -5, -4, 0, -2, -4, 0, 1, -4, 0, 4, -4, 0, 7, -4, |
| 191 |
0, 10, -4, 0, -13, -2, 0, -10, -2, 0, -7, -2, 0, -4, -2, 0, -1, |
| 192 |
-2, 0, 2, -2, 0, 5, -2, 0, 8, -2, 0, 11, -2, 0, -11, -1, 0, -8, |
| 193 |
-1, 0, -5, -1, 0, -2, -1, 0, 1, -1, 0, 4, -1, 0, 7, -1, 0, 10, -1, |
| 194 |
0, 13, -1, 0, -10, 1, 0, -7, 1, 0, -4, 1, 0, -1, 1, 0, 2, 1, 0, 5, |
| 195 |
1, 0, 8, 1, 0, 11, 1, 0, 14, 1, 0, -11, 2, 0, -8, 2, 0, -5, 2, 0, |
| 196 |
-2, 2, 0, 1, 2, 0, 4, 2, 0, 7, 2, 0, 10, 2, 0, 13, 2, 0, -10, 4, |
| 197 |
0, -7, 4, 0, -4, 4, 0, -1, 4, 0, 2, 4, 0, 5, 4, 0, 8, 4, 0, 11, 4, |
| 198 |
0, 14, 4, 0, -8, 5, 0, -5, 5, 0, -2, 5, 0, 1, 5, 0, 4, 5, 0, 7, 5, |
| 199 |
0, 10, 5, 0, 13, 5, 0, 16, 5, 0, -7, 7, 0, -4, 7, 0, -1, 7, 0, 2, |
| 200 |
7, 0, 5, 7, 0, 8, 7, 0, 11, 7, 0, 14, 7, 0, 17, 7, 0, -8, 8, 0, |
| 201 |
-5, 8, 0, -2, 8, 0, 1, 8, 0, 4, 8, 0, 7, 8, 0, 10, 8, 0, 13, 8, 0, |
| 202 |
16, 8, 0, -7, 10, 0, -4, 10, 0, -1, 10, 0, 2, 10, 0, 5, 10, 0, 8, |
| 203 |
10, 0, 11, 10, 0, 14, 10, 0, 17, 10, 0, -5, 11, 0, -2, 11, 0, 1, |
| 204 |
11, 0, 4, 11, 0, 7, 11, 0, 10, 11, 0, 13, 11, 0, 16, 11, 0, -1, |
| 205 |
13, 0, 2, 13, 0, 5, 13, 0, 8, 13, 0, 11, 13, 0, 14, 13, 0, 1, 14, |
| 206 |
0, 4, 14, 0, 7, 14, 0, 10, 14, 0, 13, 14, 0, 5, 16, 0, 8, 16, 0, |
| 207 |
11, 16, 0, 7, 17, 0, 10, 17, 0]).reshape((162, 3)) / 27.0 |