root / ase / dft / kpoints.py @ 7
Historique | Voir | Annoter | Télécharger (9,57 ko)
| 1 | 1 | tkerber | from __future__ import division |
|---|---|---|---|
| 2 | 1 | tkerber | import numpy as np |
| 3 | 1 | tkerber | |
| 4 | 1 | tkerber | |
| 5 | 1 | tkerber | def monkhorst_pack(size): |
| 6 | 1 | tkerber | """Construct a uniform sampling of k-space of given size."""
|
| 7 | 1 | tkerber | if np.less_equal(size, 0).any(): |
| 8 | 1 | tkerber | raise ValueError('Illegal size: %s' % list(size)) |
| 9 | 1 | tkerber | kpts = np.indices(size).transpose((1, 2, 3, 0)).reshape((-1, 3)) |
| 10 | 1 | tkerber | return (kpts + 0.5) / size - 0.5 |
| 11 | 1 | tkerber | |
| 12 | 1 | tkerber | |
| 13 | 1 | tkerber | def get_monkhorst_shape(kpts, tol=1e-5): |
| 14 | 1 | tkerber | """Return the number of k-points along each axis of input Monkhorst pack.
|
| 15 | 1 | tkerber |
|
| 16 | 1 | tkerber | The set of k-points must not have been symmetry reduced.
|
| 17 | 1 | tkerber | """
|
| 18 | 1 | tkerber | nkpts = len(kpts)
|
| 19 | 1 | tkerber | if nkpts == 1: |
| 20 | 1 | tkerber | return np.ones(3, int) |
| 21 | 1 | tkerber | |
| 22 | 1 | tkerber | Nk_c = np.zeros(3, int) |
| 23 | 1 | tkerber | for c in range(3): |
| 24 | 1 | tkerber | # Determine increment between kpoints along current axis
|
| 25 | 1 | tkerber | DeltaK = max(np.diff(np.sort(kpts[:, c])))
|
| 26 | 1 | tkerber | |
| 27 | 1 | tkerber | # Determine number of kpoints as inverse of distance between kpoints
|
| 28 | 1 | tkerber | if DeltaK > tol:
|
| 29 | 1 | tkerber | Nk_c[c] = int(round(1. / DeltaK)) |
| 30 | 1 | tkerber | else:
|
| 31 | 1 | tkerber | Nk_c[c] = 1
|
| 32 | 1 | tkerber | return Nk_c
|
| 33 | 1 | tkerber | |
| 34 | 1 | tkerber | |
| 35 | 1 | tkerber | def kpoint_convert(cell_cv, skpts_kc=None, ckpts_kv=None): |
| 36 | 1 | tkerber | """Convert k-points between scaled and cartesian coordinates.
|
| 37 | 1 | tkerber |
|
| 38 | 1 | tkerber | Given the atomic unit cell, and either the scaled or cartesian k-point
|
| 39 | 1 | tkerber | coordinates, the other is determined.
|
| 40 | 1 | tkerber |
|
| 41 | 1 | tkerber | The k-point arrays can be either a single point, or a list of points,
|
| 42 | 1 | tkerber | i.e. the dimension k can be empty or multidimensional.
|
| 43 | 1 | tkerber | """
|
| 44 | 1 | tkerber | if ckpts_kv is None: |
| 45 | 1 | tkerber | icell_cv = 2 * np.pi * np.linalg.inv(cell_cv).T
|
| 46 | 1 | tkerber | return np.dot(skpts_kc, icell_cv)
|
| 47 | 1 | tkerber | elif skpts_kc is None: |
| 48 | 1 | tkerber | return np.dot(ckpts_kv, cell_cv.T) / (2 * np.pi) |
| 49 | 1 | tkerber | else:
|
| 50 | 1 | tkerber | raise KeyError('Either scaled or cartesian coordinates must be given.') |
| 51 | 1 | tkerber | |
| 52 | 1 | tkerber | |
| 53 | 1 | tkerber | def get_bandpath(points, cell, npoints=50): |
| 54 | 1 | tkerber | """Make a list of kpoints defining the path between the given points.
|
| 55 | 1 | tkerber |
|
| 56 | 1 | tkerber | points: list
|
| 57 | 1 | tkerber | List of special IBZ point pairs, e.g. ``points =
|
| 58 | 1 | tkerber | [W, L, Gamma, X, W, K]``. These should be given in
|
| 59 | 1 | tkerber | scaled coordinates.
|
| 60 | 1 | tkerber | cell: 3x3 ndarray
|
| 61 | 1 | tkerber | Unit cell of the atoms.
|
| 62 | 1 | tkerber | npoints: int
|
| 63 | 1 | tkerber | Length of the output kpts list.
|
| 64 | 1 | tkerber |
|
| 65 | 1 | tkerber | Return list of k-points, list of x-coordinates and list of
|
| 66 | 1 | tkerber | x-coordinates of special points."""
|
| 67 | 1 | tkerber | |
| 68 | 1 | tkerber | points = np.asarray(points) |
| 69 | 1 | tkerber | dists = points[1:] - points[:-1] |
| 70 | 1 | tkerber | lengths = [np.linalg.norm(d) for d in kpoint_convert(cell, skpts_kc=dists)] |
| 71 | 1 | tkerber | length = sum(lengths)
|
| 72 | 1 | tkerber | kpts = [] |
| 73 | 1 | tkerber | x0 = 0
|
| 74 | 1 | tkerber | x = [] |
| 75 | 1 | tkerber | X = [0]
|
| 76 | 1 | tkerber | for P, d, L in zip(points[:-1], dists, lengths): |
| 77 | 1 | tkerber | n = int(round(L * (npoints - 1 - len(x)) / (length - x0))) |
| 78 | 1 | tkerber | for t in np.linspace(0, 1, n, endpoint=False): |
| 79 | 1 | tkerber | kpts.append(P + t * d) |
| 80 | 1 | tkerber | x.append(x0 + t * L) |
| 81 | 1 | tkerber | x0 += L |
| 82 | 1 | tkerber | X.append(x0) |
| 83 | 1 | tkerber | kpts.append(points[-1])
|
| 84 | 1 | tkerber | x.append(x0) |
| 85 | 1 | tkerber | return kpts, np.array(x), np.array(X)
|
| 86 | 1 | tkerber | |
| 87 | 1 | tkerber | |
| 88 | 1 | tkerber | # The following is a list of the critical points in the 1. Brillouin zone
|
| 89 | 1 | tkerber | # for some typical crystal structures.
|
| 90 | 1 | tkerber | # (In units of the reciprocal basis vectors)
|
| 91 | 1 | tkerber | # See http://en.wikipedia.org/wiki/Brillouin_zone
|
| 92 | 1 | tkerber | ibz_points = {'cubic': {'Gamma': [0, 0, 0 ],
|
| 93 | 1 | tkerber | 'X': [0, 0 / 2, 1 / 2], |
| 94 | 1 | tkerber | 'R': [1 / 2, 1 / 2, 1 / 2], |
| 95 | 1 | tkerber | 'M': [0 / 2, 1 / 2, 1 / 2]}, |
| 96 | 1 | tkerber | |
| 97 | 1 | tkerber | 'fcc': {'Gamma': [0, 0, 0 ], |
| 98 | 1 | tkerber | 'X': [1 / 2, 0, 1 / 2], |
| 99 | 1 | tkerber | 'W': [1 / 2, 1 / 4, 3 / 4], |
| 100 | 1 | tkerber | 'K': [3 / 8, 3 / 8, 3 / 4], |
| 101 | 1 | tkerber | 'U': [5 / 8, 1 / 4, 5 / 8], |
| 102 | 1 | tkerber | 'L': [1 / 2, 1 / 2, 1 / 2]}, |
| 103 | 1 | tkerber | |
| 104 | 1 | tkerber | 'bcc': {'Gamma': [0, 0, 0 ], |
| 105 | 1 | tkerber | 'H': [1 / 2, -1 / 2, 1 / 2], |
| 106 | 1 | tkerber | 'N': [0, 0, 1 / 2], |
| 107 | 1 | tkerber | 'P': [1 / 4, 1 / 4, 1 / 4]}, |
| 108 | 1 | tkerber | |
| 109 | 1 | tkerber | } |
| 110 | 1 | tkerber | |
| 111 | 1 | tkerber | # ChadiCohen k point grids. The k point grids are given in units of the
|
| 112 | 1 | tkerber | # reciprocal unit cell. The variables are named after the following
|
| 113 | 1 | tkerber | # convention: cc+'<Nkpoints>'+_+'shape'. For example an 18 k point
|
| 114 | 1 | tkerber | # sq(3)xsq(3) is named 'cc18_sq3xsq3'.
|
| 115 | 1 | tkerber | |
| 116 | 1 | tkerber | cc6_1x1 = np.array([1, 1, 0, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, |
| 117 | 1 | tkerber | 0, 1, 0] ).reshape((6, 3)) / 3.0 |
| 118 | 1 | tkerber | |
| 119 | 1 | tkerber | cc12_2x3 = np.array([3, 4, 0, 3, 10, 0, 6, 8, 0, 3, -2, 0, 6, -4, 0, |
| 120 | 1 | tkerber | 6, 2, 0, -3, 8, 0, -3, 2, 0, -3, -4, 0, -6, 4, 0, -6, -2, 0, -6, |
| 121 | 1 | tkerber | -8, 0] ).reshape((12, 3)) / 18.0 |
| 122 | 1 | tkerber | |
| 123 | 1 | tkerber | cc18_sq3xsq3 = np.array([2, 2, 0, 4, 4, 0, 8, 2, 0, 4, -2, 0, 8, -4, |
| 124 | 1 | tkerber | 0, 10, -2, 0, 10, -8, 0, 8, -10, 0, 2, -10, 0, 4, -8, 0, -2, -8, |
| 125 | 1 | tkerber | 0, 2, -4, 0, -4, -4, 0, -2, -2, 0, -4, 2, 0, -2, 4, 0, -8, 4, 0, |
| 126 | 1 | tkerber | -4, 8, 0] ).reshape((18, 3)) / 18.0 |
| 127 | 1 | tkerber | |
| 128 | 1 | tkerber | cc18_1x1 = np.array([2, 4, 0, 2, 10, 0, 4, 8, 0, 8, 4, 0, 8, 10, 0, |
| 129 | 1 | tkerber | 10, 8, 0, 2, -2, 0, 4, -4, 0, 4, 2, 0, -2, 8, 0, -2, 2, 0, -2, -4, |
| 130 | 1 | tkerber | 0, -4, 4, 0, -4, -2, 0, -4, -8, 0, -8, 2, 0, -8, -4, 0, -10, -2, |
| 131 | 1 | tkerber | 0] ).reshape((18, 3)) / 18.0 |
| 132 | 1 | tkerber | |
| 133 | 1 | tkerber | cc54_sq3xsq3 = np.array([4, -10, 0, 6, -10, 0, 0, -8, 0, 2, -8, 0, 6, |
| 134 | 1 | tkerber | -8, 0, 8, -8, 0, -4, -6, 0, -2, -6, 0, 2, -6, 0, 4, -6, 0, 8, -6, |
| 135 | 1 | tkerber | 0, 10, -6, 0, -6, -4, 0, -2, -4, 0, 0, -4, 0, 4, -4, 0, 6, -4, 0, |
| 136 | 1 | tkerber | 10, -4, 0, -6, -2, 0, -4, -2, 0, 0, -2, 0, 2, -2, 0, 6, -2, 0, 8, |
| 137 | 1 | tkerber | -2, 0, -8, 0, 0, -4, 0, 0, -2, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, |
| 138 | 1 | tkerber | -8, 2, 0, -6, 2, 0, -2, 2, 0, 0, 2, 0, 4, 2, 0, 6, 2, 0, -10, 4, |
| 139 | 1 | tkerber | 0, -6, 4, 0, -4, 4, 0, 0, 4, 0, 2, 4, 0, 6, 4, 0, -10, 6, 0, -8, |
| 140 | 1 | tkerber | 6, 0, -4, 6, 0, -2, 6, 0, 2, 6, 0, 4, 6, 0, -8, 8, 0, -6, 8, 0, |
| 141 | 1 | tkerber | -2, 8, 0, 0, 8, 0, -6, 10, 0, -4, 10, 0]).reshape((54, 3)) / 18.0 |
| 142 | 1 | tkerber | |
| 143 | 1 | tkerber | cc54_1x1 = np.array([2, 2, 0, 4, 4, 0, 8, 8, 0, 6, 8, 0, 4, 6, 0, 6, |
| 144 | 1 | tkerber | 10, 0, 4, 10, 0, 2, 6, 0, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, -2, |
| 145 | 1 | tkerber | 6, 0, -2, 4, 0, -4, 6, 0, -6, 4, 0, -4, 2, 0, -6, 2, 0, -2, 0, 0, |
| 146 | 1 | tkerber | -4, 0, 0, -8, 0, 0, -8, -2, 0, -6, -2, 0, -10, -4, 0, -10, -6, 0, |
| 147 | 1 | tkerber | -6, -4, 0, -8, -6, 0, -2, -2, 0, -4, -4, 0, -8, -8, 0, 4, -2, 0, |
| 148 | 1 | tkerber | 6, -2, 0, 6, -4, 0, 2, 0, 0, 4, 0, 0, 6, 2, 0, 6, 4, 0, 8, 6, 0, |
| 149 | 1 | tkerber | 8, 0, 0, 8, 2, 0, 10, 4, 0, 10, 6, 0, 2, -4, 0, 2, -6, 0, 4, -6, |
| 150 | 1 | tkerber | 0, 0, -2, 0, 0, -4, 0, -2, -6, 0, -4, -6, 0, -6, -8, 0, 0, -8, 0, |
| 151 | 1 | tkerber | -2, -8, 0, -4, -10, 0, -6, -10, 0] ).reshape((54, 3)) / 18.0 |
| 152 | 1 | tkerber | |
| 153 | 1 | tkerber | cc162_sq3xsq3 = np.array([-8, 16, 0, -10, 14, 0, -7, 14, 0, -4, 14, |
| 154 | 1 | tkerber | 0, -11, 13, 0, -8, 13, 0, -5, 13, 0, -2, 13, 0, -13, 11, 0, -10, |
| 155 | 1 | tkerber | 11, 0, -7, 11, 0, -4, 11, 0, -1, 11, 0, 2, 11, 0, -14, 10, 0, -11, |
| 156 | 1 | tkerber | 10, 0, -8, 10, 0, -5, 10, 0, -2, 10, 0, 1, 10, 0, 4, 10, 0, -16, |
| 157 | 1 | tkerber | 8, 0, -13, 8, 0, -10, 8, 0, -7, 8, 0, -4, 8, 0, -1, 8, 0, 2, 8, 0, |
| 158 | 1 | tkerber | 5, 8, 0, 8, 8, 0, -14, 7, 0, -11, 7, 0, -8, 7, 0, -5, 7, 0, -2, 7, |
| 159 | 1 | tkerber | 0, 1, 7, 0, 4, 7, 0, 7, 7, 0, 10, 7, 0, -13, 5, 0, -10, 5, 0, -7, |
| 160 | 1 | tkerber | 5, 0, -4, 5, 0, -1, 5, 0, 2, 5, 0, 5, 5, 0, 8, 5, 0, 11, 5, 0, |
| 161 | 1 | tkerber | -14, 4, 0, -11, 4, 0, -8, 4, 0, -5, 4, 0, -2, 4, 0, 1, 4, 0, 4, 4, |
| 162 | 1 | tkerber | 0, 7, 4, 0, 10, 4, 0, -13, 2, 0, -10, 2, 0, -7, 2, 0, -4, 2, 0, |
| 163 | 1 | tkerber | -1, 2, 0, 2, 2, 0, 5, 2, 0, 8, 2, 0, 11, 2, 0, -11, 1, 0, -8, 1, |
| 164 | 1 | tkerber | 0, -5, 1, 0, -2, 1, 0, 1, 1, 0, 4, 1, 0, 7, 1, 0, 10, 1, 0, 13, 1, |
| 165 | 1 | tkerber | 0, -10, -1, 0, -7, -1, 0, -4, -1, 0, -1, -1, 0, 2, -1, 0, 5, -1, |
| 166 | 1 | tkerber | 0, 8, -1, 0, 11, -1, 0, 14, -1, 0, -11, -2, 0, -8, -2, 0, -5, -2, |
| 167 | 1 | tkerber | 0, -2, -2, 0, 1, -2, 0, 4, -2, 0, 7, -2, 0, 10, -2, 0, 13, -2, 0, |
| 168 | 1 | tkerber | -10, -4, 0, -7, -4, 0, -4, -4, 0, -1, -4, 0, 2, -4, 0, 5, -4, 0, |
| 169 | 1 | tkerber | 8, -4, 0, 11, -4, 0, 14, -4, 0, -8, -5, 0, -5, -5, 0, -2, -5, 0, |
| 170 | 1 | tkerber | 1, -5, 0, 4, -5, 0, 7, -5, 0, 10, -5, 0, 13, -5, 0, 16, -5, 0, -7, |
| 171 | 1 | tkerber | -7, 0, -4, -7, 0, -1, -7, 0, 2, -7, 0, 5, -7, 0, 8, -7, 0, 11, -7, |
| 172 | 1 | tkerber | 0, 14, -7, 0, 17, -7, 0, -8, -8, 0, -5, -8, 0, -2, -8, 0, 1, -8, |
| 173 | 1 | tkerber | 0, 4, -8, 0, 7, -8, 0, 10, -8, 0, 13, -8, 0, 16, -8, 0, -7, -10, |
| 174 | 1 | tkerber | 0, -4, -10, 0, -1, -10, 0, 2, -10, 0, 5, -10, 0, 8, -10, 0, 11, |
| 175 | 1 | tkerber | -10, 0, 14, -10, 0, 17, -10, 0, -5, -11, 0, -2, -11, 0, 1, -11, 0, |
| 176 | 1 | tkerber | 4, -11, 0, 7, -11, 0, 10, -11, 0, 13, -11, 0, 16, -11, 0, -1, -13, |
| 177 | 1 | tkerber | 0, 2, -13, 0, 5, -13, 0, 8, -13, 0, 11, -13, 0, 14, -13, 0, 1, |
| 178 | 1 | tkerber | -14, 0, 4, -14, 0, 7, -14, 0, 10, -14, 0, 13, -14, 0, 5, -16, 0, |
| 179 | 1 | tkerber | 8, -16, 0, 11, -16, 0, 7, -17, 0, 10, -17, 0]).reshape((162, 3)) / 27.0 |
| 180 | 1 | tkerber | |
| 181 | 1 | tkerber | cc162_1x1 = np.array([-8, -16, 0, -10, -14, 0, -7, -14, 0, -4, -14, |
| 182 | 1 | tkerber | 0, -11, -13, 0, -8, -13, 0, -5, -13, 0, -2, -13, 0, -13, -11, 0, |
| 183 | 1 | tkerber | -10, -11, 0, -7, -11, 0, -4, -11, 0, -1, -11, 0, 2, -11, 0, -14, |
| 184 | 1 | tkerber | -10, 0, -11, -10, 0, -8, -10, 0, -5, -10, 0, -2, -10, 0, 1, -10, |
| 185 | 1 | tkerber | 0, 4, -10, 0, -16, -8, 0, -13, -8, 0, -10, -8, 0, -7, -8, 0, -4, |
| 186 | 1 | tkerber | -8, 0, -1, -8, 0, 2, -8, 0, 5, -8, 0, 8, -8, 0, -14, -7, 0, -11, |
| 187 | 1 | tkerber | -7, 0, -8, -7, 0, -5, -7, 0, -2, -7, 0, 1, -7, 0, 4, -7, 0, 7, -7, |
| 188 | 1 | tkerber | 0, 10, -7, 0, -13, -5, 0, -10, -5, 0, -7, -5, 0, -4, -5, 0, -1, |
| 189 | 1 | tkerber | -5, 0, 2, -5, 0, 5, -5, 0, 8, -5, 0, 11, -5, 0, -14, -4, 0, -11, |
| 190 | 1 | tkerber | -4, 0, -8, -4, 0, -5, -4, 0, -2, -4, 0, 1, -4, 0, 4, -4, 0, 7, -4, |
| 191 | 1 | tkerber | 0, 10, -4, 0, -13, -2, 0, -10, -2, 0, -7, -2, 0, -4, -2, 0, -1, |
| 192 | 1 | tkerber | -2, 0, 2, -2, 0, 5, -2, 0, 8, -2, 0, 11, -2, 0, -11, -1, 0, -8, |
| 193 | 1 | tkerber | -1, 0, -5, -1, 0, -2, -1, 0, 1, -1, 0, 4, -1, 0, 7, -1, 0, 10, -1, |
| 194 | 1 | tkerber | 0, 13, -1, 0, -10, 1, 0, -7, 1, 0, -4, 1, 0, -1, 1, 0, 2, 1, 0, 5, |
| 195 | 1 | tkerber | 1, 0, 8, 1, 0, 11, 1, 0, 14, 1, 0, -11, 2, 0, -8, 2, 0, -5, 2, 0, |
| 196 | 1 | tkerber | -2, 2, 0, 1, 2, 0, 4, 2, 0, 7, 2, 0, 10, 2, 0, 13, 2, 0, -10, 4, |
| 197 | 1 | tkerber | 0, -7, 4, 0, -4, 4, 0, -1, 4, 0, 2, 4, 0, 5, 4, 0, 8, 4, 0, 11, 4, |
| 198 | 1 | tkerber | 0, 14, 4, 0, -8, 5, 0, -5, 5, 0, -2, 5, 0, 1, 5, 0, 4, 5, 0, 7, 5, |
| 199 | 1 | tkerber | 0, 10, 5, 0, 13, 5, 0, 16, 5, 0, -7, 7, 0, -4, 7, 0, -1, 7, 0, 2, |
| 200 | 1 | tkerber | 7, 0, 5, 7, 0, 8, 7, 0, 11, 7, 0, 14, 7, 0, 17, 7, 0, -8, 8, 0, |
| 201 | 1 | tkerber | -5, 8, 0, -2, 8, 0, 1, 8, 0, 4, 8, 0, 7, 8, 0, 10, 8, 0, 13, 8, 0, |
| 202 | 1 | tkerber | 16, 8, 0, -7, 10, 0, -4, 10, 0, -1, 10, 0, 2, 10, 0, 5, 10, 0, 8, |
| 203 | 1 | tkerber | 10, 0, 11, 10, 0, 14, 10, 0, 17, 10, 0, -5, 11, 0, -2, 11, 0, 1, |
| 204 | 1 | tkerber | 11, 0, 4, 11, 0, 7, 11, 0, 10, 11, 0, 13, 11, 0, 16, 11, 0, -1, |
| 205 | 1 | tkerber | 13, 0, 2, 13, 0, 5, 13, 0, 8, 13, 0, 11, 13, 0, 14, 13, 0, 1, 14, |
| 206 | 1 | tkerber | 0, 4, 14, 0, 7, 14, 0, 10, 14, 0, 13, 14, 0, 5, 16, 0, 8, 16, 0, |
| 207 | 1 | tkerber | 11, 16, 0, 7, 17, 0, 10, 17, 0]).reshape((162, 3)) / 27.0 |