root / ase / calculators / jacapo / jacapo.py @ 7
Historique | Voir | Annoter | Télécharger (140,74 ko)
| 1 |
'''
|
|---|---|
| 2 |
python module for ASE2-free and Numeric-free dacapo
|
| 3 |
|
| 4 |
U{John Kitchin<mailto:jkitchin@andrew.cmu.edu>} December 25, 2008
|
| 5 |
|
| 6 |
This module supports numpy directly.
|
| 7 |
|
| 8 |
* ScientificPython2.8 is required
|
| 9 |
|
| 10 |
- this is the first version to use numpy by default.
|
| 11 |
|
| 12 |
see https://wiki.fysik.dtu.dk/stuff/nc/ for dacapo netcdf variable
|
| 13 |
documentation
|
| 14 |
'''
|
| 15 |
|
| 16 |
__docformat__ = 'restructuredtext'
|
| 17 |
|
| 18 |
import exceptions, glob, os, pickle, string |
| 19 |
from Scientific.IO.NetCDF import NetCDFFile as netCDF |
| 20 |
import numpy as np |
| 21 |
import subprocess as sp |
| 22 |
|
| 23 |
import validate |
| 24 |
import changed |
| 25 |
|
| 26 |
import logging |
| 27 |
log = logging.getLogger('Jacapo')
|
| 28 |
|
| 29 |
handler = logging.StreamHandler() |
| 30 |
formatter = logging.Formatter('''\
|
| 31 |
%(levelname)-10s function: %(funcName)s lineno: %(lineno)-4d \
|
| 32 |
%(message)s''')
|
| 33 |
handler.setFormatter(formatter) |
| 34 |
log.addHandler(handler) |
| 35 |
|
| 36 |
|
| 37 |
class DacapoRunning(exceptions.Exception): |
| 38 |
"""Raised when ncfile.status = 'running'"""
|
| 39 |
pass
|
| 40 |
|
| 41 |
class DacapoAborted(exceptions.Exception): |
| 42 |
"""Raised when ncfile.status = 'aborted'"""
|
| 43 |
pass
|
| 44 |
|
| 45 |
class DacapoInput(exceptions.Exception): |
| 46 |
''' raised for bad input variables'''
|
| 47 |
pass
|
| 48 |
|
| 49 |
class DacapoAbnormalTermination(exceptions.Exception): |
| 50 |
"""Raised when text file does not end correctly"""
|
| 51 |
pass
|
| 52 |
|
| 53 |
def read(ncfile): |
| 54 |
'''return atoms and calculator from ncfile
|
| 55 |
|
| 56 |
>>> atoms, calc = read('co.nc')
|
| 57 |
'''
|
| 58 |
calc = Jacapo(ncfile) |
| 59 |
atoms = calc.get_atoms() #this returns a copy
|
| 60 |
return (atoms, calc)
|
| 61 |
|
| 62 |
class Jacapo: |
| 63 |
'''
|
| 64 |
Python interface to the Fortran DACAPO code
|
| 65 |
'''
|
| 66 |
|
| 67 |
__name__ = 'Jacapo'
|
| 68 |
__version__ = 0.4
|
| 69 |
|
| 70 |
#dictionary of valid input variables and default settings
|
| 71 |
default_input = {'atoms':None,
|
| 72 |
'pw':350, |
| 73 |
'dw':350, |
| 74 |
'xc':'PW91', |
| 75 |
'nbands':None, |
| 76 |
'ft':0.1, |
| 77 |
'kpts':(1,1,1), |
| 78 |
'spinpol':False, |
| 79 |
'fixmagmom':None, |
| 80 |
'symmetry':False, |
| 81 |
'calculate_stress':False, |
| 82 |
'dipole':{'status':False, |
| 83 |
'mixpar':0.2, |
| 84 |
'initval':0.0, |
| 85 |
'adddipfield':0.0, |
| 86 |
'position':None}, |
| 87 |
'status':'new', |
| 88 |
'pseudopotentials':None, |
| 89 |
'extracharge':None, |
| 90 |
'extpot':None, |
| 91 |
'fftgrid':None, |
| 92 |
'ascii_debug':'Off', |
| 93 |
'ncoutput':{'wf':'Yes', |
| 94 |
'cd':'Yes', |
| 95 |
'efp':'Yes', |
| 96 |
'esp':'Yes'}, |
| 97 |
'ados':None, |
| 98 |
'decoupling':None, |
| 99 |
'external_dipole':None, |
| 100 |
'convergence':{'energy':0.00001, |
| 101 |
'density':0.0001, |
| 102 |
'occupation':0.001, |
| 103 |
'maxsteps':None, |
| 104 |
'maxtime':None}, |
| 105 |
'charge_mixing':{'method':'Pulay', |
| 106 |
'mixinghistory':10, |
| 107 |
'mixingcoeff':0.1, |
| 108 |
'precondition':'No', |
| 109 |
'updatecharge':'Yes'}, |
| 110 |
'electronic_minimization':{'method':'eigsolve', |
| 111 |
'diagsperband':2}, |
| 112 |
'occupationstatistics':'FermiDirac', |
| 113 |
'fftgrid':{'soft':None, |
| 114 |
'hard':None}, |
| 115 |
'mdos':None, |
| 116 |
'psp':None |
| 117 |
} |
| 118 |
|
| 119 |
def __init__(self, |
| 120 |
nc='out.nc',
|
| 121 |
outnc=None,
|
| 122 |
debug=logging.WARN, |
| 123 |
stay_alive=False,
|
| 124 |
**kwargs): |
| 125 |
'''
|
| 126 |
Initialize the Jacapo calculator
|
| 127 |
|
| 128 |
:Parameters:
|
| 129 |
|
| 130 |
nc : string
|
| 131 |
output netcdf file, or input file if nc already exists
|
| 132 |
|
| 133 |
outnc : string
|
| 134 |
output file. by default equal to nc
|
| 135 |
|
| 136 |
debug : integer
|
| 137 |
logging debug level.
|
| 138 |
|
| 139 |
Valid kwargs:
|
| 140 |
|
| 141 |
atoms : ASE.Atoms instance
|
| 142 |
atoms is an ase.Atoms object that will be attached
|
| 143 |
to this calculator.
|
| 144 |
|
| 145 |
pw : integer
|
| 146 |
sets planewave cutoff
|
| 147 |
|
| 148 |
dw : integer
|
| 149 |
sets density cutoff
|
| 150 |
|
| 151 |
kpts : iterable
|
| 152 |
set chadi-cohen, monkhorst-pack kpt grid,
|
| 153 |
e.g. kpts = (2,2,1) or explicit list of kpts
|
| 154 |
|
| 155 |
spinpol : Boolean
|
| 156 |
sets whether spin-polarization is used or not.
|
| 157 |
|
| 158 |
fixmagmom : float
|
| 159 |
set the magnetic moment of the unit cell. only used
|
| 160 |
in spin polarize calculations
|
| 161 |
|
| 162 |
ft : float
|
| 163 |
set the Fermi temperature used in occupation smearing
|
| 164 |
|
| 165 |
xc : string
|
| 166 |
set the exchange-correlation functional.
|
| 167 |
one of ['PZ','VWN','PW91','PBE','RPBE','revPBE'],
|
| 168 |
|
| 169 |
dipole
|
| 170 |
boolean
|
| 171 |
turn the dipole correction on (True) or off (False)
|
| 172 |
|
| 173 |
or:
|
| 174 |
dictionary of parameters to fine-tune behavior
|
| 175 |
{'status':False,
|
| 176 |
'mixpar':0.2,
|
| 177 |
'initval':0.0,
|
| 178 |
'adddipfield':0.0,
|
| 179 |
'position':None}
|
| 180 |
|
| 181 |
nbands : integer
|
| 182 |
set the number of bands
|
| 183 |
|
| 184 |
symmetry : Boolean
|
| 185 |
Turn symmetry reduction on (True) or off (False)
|
| 186 |
|
| 187 |
stress : Boolean
|
| 188 |
Turn stress calculation on (True) or off (False)
|
| 189 |
|
| 190 |
debug : level for logging
|
| 191 |
could be something like
|
| 192 |
logging.DEBUG or an integer 0-50. The higher the integer,
|
| 193 |
the less information you see set debug level (0 = off, 10 =
|
| 194 |
extreme)
|
| 195 |
|
| 196 |
Modification of the nc file only occurs at calculate time if needed
|
| 197 |
|
| 198 |
>>> calc = Jacapo('CO.nc')
|
| 199 |
|
| 200 |
reads the calculator from CO.nc if it exists or
|
| 201 |
minimally initializes CO.nc with dimensions if it does not exist.
|
| 202 |
|
| 203 |
>>> calc = Jacapo('CO.nc', pw=300)
|
| 204 |
|
| 205 |
reads the calculator from CO.nc or initializes it if
|
| 206 |
it does not exist and changes the planewave cutoff energy to
|
| 207 |
300eV
|
| 208 |
|
| 209 |
>>> atoms = Jacapo.read_atoms('CO.nc')
|
| 210 |
|
| 211 |
returns the atoms in the netcdffile CO.nc, with the calculator
|
| 212 |
attached to it.
|
| 213 |
|
| 214 |
>>> atoms, calc = read('CO.nc')
|
| 215 |
|
| 216 |
'''
|
| 217 |
self.debug = debug
|
| 218 |
log.setLevel(debug) |
| 219 |
|
| 220 |
self.pars = Jacapo.default_input.copy()
|
| 221 |
self.pars_uptodate = {}
|
| 222 |
|
| 223 |
log.debug(self.pars)
|
| 224 |
|
| 225 |
for key in self.pars: |
| 226 |
self.pars_uptodate[key] = False |
| 227 |
|
| 228 |
self.kwargs = kwargs
|
| 229 |
self.set_psp_database()
|
| 230 |
|
| 231 |
self.set_nc(nc)
|
| 232 |
#assume not ready at init, rely on code later to change this
|
| 233 |
self.ready = False |
| 234 |
|
| 235 |
# need to set a default value for stay_alive
|
| 236 |
self.stay_alive = stay_alive
|
| 237 |
|
| 238 |
# Jacapo('out.nc') should return a calculator with atoms in
|
| 239 |
# out.nc attached or initialize out.nc
|
| 240 |
if os.path.exists(nc):
|
| 241 |
|
| 242 |
# for correct updating, we need to set the correct frame number
|
| 243 |
# before setting atoms or calculator
|
| 244 |
|
| 245 |
self._set_frame_number()
|
| 246 |
|
| 247 |
self.atoms = self.read_only_atoms(nc) |
| 248 |
|
| 249 |
#if atoms object is passed to
|
| 250 |
#__init__ we assume the user wants the atoms object
|
| 251 |
# updated to the current state in the file.
|
| 252 |
if 'atoms' in kwargs: |
| 253 |
log.debug('Updating the atoms in kwargs')
|
| 254 |
|
| 255 |
atoms = kwargs['atoms']
|
| 256 |
atoms.set_cell(self.atoms.get_cell())
|
| 257 |
atoms.set_positions(self.atoms.get_positions())
|
| 258 |
atoms.calc = self
|
| 259 |
|
| 260 |
#update the parameter list from the ncfile
|
| 261 |
self.update_input_parameters()
|
| 262 |
|
| 263 |
self.ready = True |
| 264 |
|
| 265 |
#change output file if needed
|
| 266 |
if outnc:
|
| 267 |
self.set_nc(outnc)
|
| 268 |
|
| 269 |
if len(kwargs) > 0: |
| 270 |
|
| 271 |
if 'stress' in kwargs: |
| 272 |
raise DacapoInput, '''\ |
| 273 |
stress keyword is deprecated.
|
| 274 |
you must use calculate_stress instead'''
|
| 275 |
|
| 276 |
#make sure to set calculator on atoms if it was in kwargs
|
| 277 |
#and do this first, since some parameters need info from atoms
|
| 278 |
if 'atoms' in kwargs: |
| 279 |
#we need to set_atoms here so the atoms are written to
|
| 280 |
#the ncfile
|
| 281 |
self.set_atoms(kwargs['atoms']) |
| 282 |
kwargs['atoms'].calc = self |
| 283 |
del kwargs['atoms'] #so we don't call it in the next |
| 284 |
#line. we don't want to do that
|
| 285 |
#because it will update the _frame
|
| 286 |
#counter, and that should not be
|
| 287 |
#done here.
|
| 288 |
|
| 289 |
self.set(**kwargs) #if nothing changes, nothing will be done |
| 290 |
|
| 291 |
def set(self, **kwargs): |
| 292 |
'''set a parameter
|
| 293 |
|
| 294 |
parameter is stored in dictionary that is processed later if a
|
| 295 |
calculation is need.
|
| 296 |
'''
|
| 297 |
for key in kwargs: |
| 298 |
if key not in self.default_input: |
| 299 |
raise DacapoInput, '%s is not valid input' % key |
| 300 |
|
| 301 |
if kwargs[key] is None: |
| 302 |
continue
|
| 303 |
|
| 304 |
#now check for valid input
|
| 305 |
validf = 'validate.valid_%s' % key
|
| 306 |
valid = eval('%s(kwargs[key])' % validf) |
| 307 |
if not valid: |
| 308 |
s = 'Warning invalid input detected for key "%s" %s'
|
| 309 |
log.warn(s % (key, |
| 310 |
kwargs[key])) |
| 311 |
raise DacapoInput, s % (key, kwargs[key])
|
| 312 |
|
| 313 |
#now see if key has changed
|
| 314 |
if key in self.pars: |
| 315 |
changef = 'changed.%s_changed' % key
|
| 316 |
if os.path.exists(self.get_nc()): |
| 317 |
notchanged = not eval('%s(self,kwargs[key])' % changef) |
| 318 |
else:
|
| 319 |
notchanged = False
|
| 320 |
log.debug('%s notchanged = %s' % (key, notchanged))
|
| 321 |
|
| 322 |
if notchanged:
|
| 323 |
continue
|
| 324 |
|
| 325 |
log.debug('setting: %s. self.ready = False ' % key)
|
| 326 |
|
| 327 |
self.pars[key] = kwargs[key]
|
| 328 |
self.pars_uptodate[key] = False |
| 329 |
self.ready = False |
| 330 |
log.debug('exiting set function')
|
| 331 |
|
| 332 |
def write_input(self): |
| 333 |
'''write out input parameters as needed
|
| 334 |
|
| 335 |
you must define a self._set_keyword function that does all the
|
| 336 |
actual writing.
|
| 337 |
'''
|
| 338 |
log.debug('Writing input variables out')
|
| 339 |
log.debug(self.pars)
|
| 340 |
|
| 341 |
if 'DACAPO_READONLY' in os.environ: |
| 342 |
raise Exception, 'DACAPO_READONLY set and you tried to write!' |
| 343 |
|
| 344 |
if self.ready: |
| 345 |
return
|
| 346 |
# Only write out changed parameters. this function does not do
|
| 347 |
# the writing, that is done for each variable in private
|
| 348 |
# functions.
|
| 349 |
for key in self.pars: |
| 350 |
if self.pars_uptodate[key] is False: |
| 351 |
setf = 'set_%s' % key
|
| 352 |
|
| 353 |
if self.pars[key] is None: |
| 354 |
continue
|
| 355 |
|
| 356 |
log.debug('trying to call: %s' % setf)
|
| 357 |
log.debug('self.%s(self.pars[key])' % setf)
|
| 358 |
log.debug('key = %s' % str(self.pars[key])) |
| 359 |
|
| 360 |
if isinstance(self.pars[key], dict): |
| 361 |
eval('self.%s(**self.pars[key])' % setf) |
| 362 |
else:
|
| 363 |
eval('self.%s(self.pars[key])' % setf) |
| 364 |
|
| 365 |
self.pars_uptodate[key] = True #update the changed flag |
| 366 |
|
| 367 |
log.debug('wrote %s: %s' % (key, str(self.pars[key]))) |
| 368 |
|
| 369 |
#set Jacapo version
|
| 370 |
ncf = netCDF(self.get_nc(), 'a') |
| 371 |
ncf.Jacapo_version = Jacapo.__version__ |
| 372 |
ncf.sync() |
| 373 |
ncf.close() |
| 374 |
|
| 375 |
def update_input_parameters(self): |
| 376 |
'''read in all the input parameters from the netcdfile'''
|
| 377 |
|
| 378 |
log.debug('Updating parameters')
|
| 379 |
|
| 380 |
for key in self.default_input: |
| 381 |
getf = 'self.get_%s()' % key
|
| 382 |
log.debug('getting key: %s' % key)
|
| 383 |
self.pars[key] = eval(getf) |
| 384 |
self.pars_uptodate[key] = True |
| 385 |
return self.pars |
| 386 |
|
| 387 |
def initnc(self, ncfile=None): |
| 388 |
'''create an ncfile with minimal dimensions in it
|
| 389 |
|
| 390 |
this makes sure the dimensions needed for other set functions
|
| 391 |
exist when needed.'''
|
| 392 |
|
| 393 |
if ncfile is None: |
| 394 |
ncfile = self.get_nc()
|
| 395 |
else:
|
| 396 |
self.set_nc(ncfile)
|
| 397 |
|
| 398 |
log.debug('initializing %s' % ncfile)
|
| 399 |
|
| 400 |
base = os.path.split(ncfile)[0]
|
| 401 |
if base is not '' and not os.path.isdir(base): |
| 402 |
os.makedirs(base) |
| 403 |
|
| 404 |
ncf = netCDF(ncfile, 'w')
|
| 405 |
#first, we define some dimensions we always need
|
| 406 |
#unlimited
|
| 407 |
ncf.createDimension('number_ionic_steps', None) |
| 408 |
ncf.createDimension('dim1', 1) |
| 409 |
ncf.createDimension('dim2', 2) |
| 410 |
ncf.createDimension('dim3', 3) |
| 411 |
ncf.createDimension('dim4', 4) |
| 412 |
ncf.createDimension('dim5', 5) |
| 413 |
ncf.createDimension('dim6', 6) |
| 414 |
ncf.createDimension('dim7', 7) |
| 415 |
ncf.createDimension('dim20', 20) #for longer strings |
| 416 |
ncf.status = 'new'
|
| 417 |
ncf.history = 'Dacapo'
|
| 418 |
ncf.jacapo_version = Jacapo.__version__ |
| 419 |
ncf.close() |
| 420 |
|
| 421 |
self.ready = False |
| 422 |
self._frame = 0 |
| 423 |
|
| 424 |
def __del__(self): |
| 425 |
'''If calculator is deleted try to stop dacapo program
|
| 426 |
'''
|
| 427 |
|
| 428 |
if hasattr(self, '_dacapo'): |
| 429 |
if self._dacapo.poll()==None: |
| 430 |
self.execute_external_dynamics(stopprogram=True) |
| 431 |
#and clean up after Dacapo
|
| 432 |
if os.path.exists('stop'): |
| 433 |
os.remove('stop')
|
| 434 |
#remove slave files
|
| 435 |
txt = self.get_txt()
|
| 436 |
if txt is not None: |
| 437 |
slv = txt + '.slave*'
|
| 438 |
for slvf in glob.glob(slv): |
| 439 |
os.remove(slvf) |
| 440 |
|
| 441 |
def __str__(self): |
| 442 |
'''
|
| 443 |
pretty-print the calculator and atoms.
|
| 444 |
|
| 445 |
we read everything directly from the ncfile to prevent
|
| 446 |
triggering any calculations
|
| 447 |
'''
|
| 448 |
s = [] |
| 449 |
if self.nc is None: |
| 450 |
return 'No netcdf file attached to this calculator' |
| 451 |
if not os.path.exists(self.nc): |
| 452 |
return 'ncfile does not exist yet' |
| 453 |
|
| 454 |
nc = netCDF(self.nc, 'r') |
| 455 |
s.append(' ---------------------------------')
|
| 456 |
s.append(' Dacapo calculation from %s' % self.nc) |
| 457 |
if hasattr(nc, 'status'): |
| 458 |
s.append(' status = %s' % nc.status)
|
| 459 |
if hasattr(nc, 'version'): |
| 460 |
s.append(' version = %s' % nc.version)
|
| 461 |
if hasattr(nc, 'Jacapo_version'): |
| 462 |
s.append(' Jacapo version = %s' % nc.Jacapo_version[0]) |
| 463 |
|
| 464 |
energy = nc.variables.get('TotalEnergy', None) |
| 465 |
|
| 466 |
if energy and energy[:][-1] < 1E36: # missing values get |
| 467 |
# returned at 9.3E36
|
| 468 |
s.append(' Energy = %1.6f eV' % energy[:][-1]) |
| 469 |
else:
|
| 470 |
s.append(' Energy = None')
|
| 471 |
|
| 472 |
s.append('')
|
| 473 |
|
| 474 |
atoms = self.get_atoms()
|
| 475 |
|
| 476 |
if atoms is None: |
| 477 |
s.append(' no atoms defined')
|
| 478 |
else:
|
| 479 |
uc = atoms.get_cell() |
| 480 |
#a, b, c = uc
|
| 481 |
s.append(" Unit Cell vectors (angstroms)")
|
| 482 |
s.append(" x y z length")
|
| 483 |
|
| 484 |
for i, v in enumerate(uc): |
| 485 |
L = (np.sum(v**2))**0.5 #vector length |
| 486 |
s.append(" a%i [% 1.4f % 1.4f % 1.4f] %1.2f" % (i,
|
| 487 |
v[0],
|
| 488 |
v[1],
|
| 489 |
v[2],
|
| 490 |
L)) |
| 491 |
|
| 492 |
stress = nc.variables.get('TotalStress', None) |
| 493 |
if stress is not None: |
| 494 |
stress = np.take(stress[:].ravel(), [0, 4, 8, 5, 2, 1]) |
| 495 |
s.append(' Stress: xx, yy, zz, yz, xz, xy')
|
| 496 |
s1 = ' % 1.3f % 1.3f % 1.3f % 1.3f % 1.3f % 1.3f'
|
| 497 |
s.append(s1 % tuple(stress))
|
| 498 |
else:
|
| 499 |
s.append(' No stress calculated.')
|
| 500 |
s.append(' Volume = %1.2f A^3' % atoms.get_volume())
|
| 501 |
s.append('')
|
| 502 |
|
| 503 |
z = " Atom, sym, position (in x,y,z), tag, rmsForce and psp"
|
| 504 |
s.append(z) |
| 505 |
|
| 506 |
#this is just the ncvariable
|
| 507 |
forces = nc.variables.get('DynamicAtomForces', None) |
| 508 |
|
| 509 |
for i, atom in enumerate(atoms): |
| 510 |
sym = atom.get_symbol() |
| 511 |
pos = atom.get_position() |
| 512 |
tag = atom.get_tag() |
| 513 |
if forces is not None and (forces[:][-1][i] < 1E36).all(): |
| 514 |
f = forces[:][-1][i]
|
| 515 |
# Lars Grabow: this seems to work right for some
|
| 516 |
# reason, but I would expect this to be the right
|
| 517 |
# index order f=forces[-1][i][:]
|
| 518 |
# frame,atom,direction
|
| 519 |
rmsforce = (np.sum(f**2))**0.5 |
| 520 |
else:
|
| 521 |
rmsforce = None
|
| 522 |
|
| 523 |
st = " %2i %3.12s " % (i, sym)
|
| 524 |
st += "[% 7.3f%7.3f% 7.3f] " % tuple(pos) |
| 525 |
st += " %2s " % tag
|
| 526 |
if rmsforce is not None: |
| 527 |
st += " %4.3f " % rmsforce
|
| 528 |
else:
|
| 529 |
st += ' None '
|
| 530 |
st += " %s" % (self.get_psp(sym)) |
| 531 |
s.append(st) |
| 532 |
|
| 533 |
s.append('')
|
| 534 |
s.append(' Details:')
|
| 535 |
xc = self.get_xc()
|
| 536 |
if xc is not None: |
| 537 |
s.append(' XCfunctional = %s' % self.get_xc()) |
| 538 |
else:
|
| 539 |
s.append(' XCfunctional = Not defined')
|
| 540 |
s.append(' Planewavecutoff = %i eV' % int(self.get_pw())) |
| 541 |
dw = self.get_dw()
|
| 542 |
if dw:
|
| 543 |
s.append(' Densitywavecutoff = %i eV' % int(self.get_dw())) |
| 544 |
else:
|
| 545 |
s.append(' Densitywavecutoff = None')
|
| 546 |
ft = self.get_ft()
|
| 547 |
if ft is not None: |
| 548 |
s.append(' FermiTemperature = %f kT' % ft)
|
| 549 |
else:
|
| 550 |
s.append(' FermiTemperature = not defined')
|
| 551 |
nelectrons = self.get_valence()
|
| 552 |
if nelectrons is not None: |
| 553 |
s.append(' Number of electrons = %1.1f' % nelectrons)
|
| 554 |
else:
|
| 555 |
s.append(' Number of electrons = None')
|
| 556 |
s.append(' Number of bands = %s' % self.get_nbands()) |
| 557 |
s.append(' Kpoint grid = %s' % str(self.get_kpts_type())) |
| 558 |
s.append(' Spin-polarized = %s' % self.get_spin_polarized()) |
| 559 |
s.append(' Dipole correction = %s' % self.get_dipole()) |
| 560 |
s.append(' Symmetry = %s' % self.get_symmetry()) |
| 561 |
s.append(' Constraints = %s' % str(atoms._get_constraints())) |
| 562 |
s.append(' ---------------------------------')
|
| 563 |
nc.close() |
| 564 |
return string.join(s, '\n') |
| 565 |
|
| 566 |
#todo figure out other xc psp databases
|
| 567 |
def set_psp_database(self, xc=None): |
| 568 |
'''
|
| 569 |
get the xc-dependent psp database
|
| 570 |
|
| 571 |
:Parameters:
|
| 572 |
|
| 573 |
xc : string
|
| 574 |
one of 'PW91', 'PBE', 'revPBE', 'RPBE', 'PZ'
|
| 575 |
|
| 576 |
|
| 577 |
not all the databases are complete, and that means
|
| 578 |
some psp do not exist.
|
| 579 |
|
| 580 |
note: this function is not supported fully. only pw91 is
|
| 581 |
imported now. Changing the xc at this point results in loading
|
| 582 |
a nearly empty database, and I have not thought about how to
|
| 583 |
resolve that
|
| 584 |
'''
|
| 585 |
|
| 586 |
if xc == 'PW91' or xc is None: |
| 587 |
from pw91_psp import defaultpseudopotentials |
| 588 |
else:
|
| 589 |
log.warn('PW91 pseudopotentials are being used!')
|
| 590 |
#todo build other xc psp databases
|
| 591 |
from pw91_psp import defaultpseudopotentials |
| 592 |
|
| 593 |
self.psp = defaultpseudopotentials
|
| 594 |
|
| 595 |
def _set_frame_number(self, frame=None): |
| 596 |
'set framenumber in the netcdf file'
|
| 597 |
|
| 598 |
if frame is None: |
| 599 |
nc = netCDF(self.nc, 'r') |
| 600 |
if 'TotalEnergy' in nc.variables: |
| 601 |
frame = nc.variables['TotalEnergy'].shape[0] |
| 602 |
# make sure the last energy is reasonable. Sometime
|
| 603 |
# the field is empty if the calculation ran out of
|
| 604 |
# walltime for example. Empty values get returned as
|
| 605 |
# 9.6E36. Dacapos energies should always be negative,
|
| 606 |
# so if the energy is > 1E36, there is definitely
|
| 607 |
# something wrong and a restart is required.
|
| 608 |
if nc.variables.get('TotalEnergy', None)[-1] > 1E36: |
| 609 |
log.warn("Total energy > 1E36. NC file is incomplete. \
|
| 610 |
calc.restart required")
|
| 611 |
self.restart()
|
| 612 |
else:
|
| 613 |
frame = 1
|
| 614 |
nc.close() |
| 615 |
log.info("Current frame number is: %i" % (frame-1)) |
| 616 |
self._frame = frame-1 #netCDF starts counting with 1 |
| 617 |
|
| 618 |
def _increment_frame(self): |
| 619 |
'increment the framenumber'
|
| 620 |
|
| 621 |
log.debug('incrementing frame')
|
| 622 |
self._frame += 1 |
| 623 |
|
| 624 |
def set_pw(self, pw): |
| 625 |
'''set the planewave cutoff.
|
| 626 |
|
| 627 |
:Parameters:
|
| 628 |
|
| 629 |
pw : integer
|
| 630 |
the planewave cutoff in eV
|
| 631 |
|
| 632 |
this function checks to make sure the density wave cutoff is
|
| 633 |
greater than or equal to the planewave cutoff.'''
|
| 634 |
|
| 635 |
nc = netCDF(self.nc, 'a') |
| 636 |
if 'PlaneWaveCutoff' in nc.variables: |
| 637 |
vpw = nc.variables['PlaneWaveCutoff']
|
| 638 |
vpw.assignValue(pw) |
| 639 |
else:
|
| 640 |
vpw = nc.createVariable('PlaneWaveCutoff', 'd', ('dim1',)) |
| 641 |
vpw.assignValue(pw) |
| 642 |
|
| 643 |
if 'Density_WaveCutoff' in nc.variables: |
| 644 |
vdw = nc.variables['Density_WaveCutoff']
|
| 645 |
dw = vdw.getValue() |
| 646 |
if pw > dw:
|
| 647 |
vdw.assignValue(pw) #make them equal
|
| 648 |
else:
|
| 649 |
vdw = nc.createVariable('Density_WaveCutoff', 'd', ('dim1',)) |
| 650 |
vdw.assignValue(pw) |
| 651 |
nc.close() |
| 652 |
self.restart() #nc dimension change for number_plane_Wave dimension |
| 653 |
self.set_status('new') |
| 654 |
self.ready = False |
| 655 |
|
| 656 |
def set_dw(self, dw): |
| 657 |
'''set the density wave cutoff energy.
|
| 658 |
|
| 659 |
:Parameters:
|
| 660 |
|
| 661 |
dw : integer
|
| 662 |
the density wave cutoff
|
| 663 |
|
| 664 |
The function checks to make sure it is not less than the
|
| 665 |
planewave cutoff.
|
| 666 |
|
| 667 |
Density_WaveCutoff describes the kinetic energy neccesary to
|
| 668 |
represent a wavefunction associated with the total density,
|
| 669 |
i.e. G-vectors for which $\vert G\vert^2$ $<$
|
| 670 |
4*Density_WaveCutoff will be used to describe the total
|
| 671 |
density (including augmentation charge and partial core
|
| 672 |
density). If Density_WaveCutoff is equal to PlaneWaveCutoff
|
| 673 |
this implies that the total density is as soft as the
|
| 674 |
wavefunctions described by the kinetic energy cutoff
|
| 675 |
PlaneWaveCutoff. If a value of Density_WaveCutoff is specified
|
| 676 |
(must be larger than or equal to PlaneWaveCutoff) the program
|
| 677 |
will run using two grids, one for representing the
|
| 678 |
wavefunction density (softgrid_dim) and one representing the
|
| 679 |
total density (hardgrid_dim). If the density can be
|
| 680 |
reprensented on the same grid as the wavefunction density
|
| 681 |
Density_WaveCutoff can be chosen equal to PlaneWaveCutoff
|
| 682 |
(default).
|
| 683 |
'''
|
| 684 |
|
| 685 |
pw = self.get_pw()
|
| 686 |
if pw > dw:
|
| 687 |
log.warn('Planewave cutoff %i is greater \
|
| 688 |
than density cutoff %i' % (pw, dw))
|
| 689 |
|
| 690 |
ncf = netCDF(self.nc, 'a') |
| 691 |
if 'Density_WaveCutoff' in ncf.variables: |
| 692 |
vdw = ncf.variables['Density_WaveCutoff']
|
| 693 |
vdw.assignValue(dw) |
| 694 |
else:
|
| 695 |
vdw = ncf.createVariable('Density_WaveCutoff', 'i', ('dim1',)) |
| 696 |
vdw.assignValue(dw) |
| 697 |
ncf.close() |
| 698 |
self.restart() #nc dimension change |
| 699 |
self.set_status('new') |
| 700 |
self.ready = False |
| 701 |
|
| 702 |
def set_xc(self, xc): |
| 703 |
'''Set the self-consistent exchange-correlation functional
|
| 704 |
|
| 705 |
:Parameters:
|
| 706 |
|
| 707 |
xc : string
|
| 708 |
Must be one of 'PZ', 'VWN', 'PW91', 'PBE', 'revPBE', 'RPBE'
|
| 709 |
|
| 710 |
Selects which density functional to use for
|
| 711 |
exchange-correlation when performing electronic minimization
|
| 712 |
(the electronic energy is minimized with respect to this
|
| 713 |
selected functional) Notice that the electronic energy is also
|
| 714 |
evaluated non-selfconsistently by DACAPO for other
|
| 715 |
exchange-correlation functionals Recognized options :
|
| 716 |
|
| 717 |
* "PZ" (Perdew Zunger LDA-parametrization)
|
| 718 |
* "VWN" (Vosko Wilk Nusair LDA-parametrization)
|
| 719 |
* "PW91" (Perdew Wang 91 GGA-parametrization)
|
| 720 |
* "PBE" (Perdew Burke Ernzerhof GGA-parametrization)
|
| 721 |
* "revPBE" (revised PBE/1 GGA-parametrization)
|
| 722 |
* "RPBE" (revised PBE/2 GGA-parametrization)
|
| 723 |
|
| 724 |
option "PZ" is not allowed for spin polarized
|
| 725 |
calculation; use "VWN" instead.
|
| 726 |
'''
|
| 727 |
nc = netCDF(self.nc, 'a') |
| 728 |
v = 'ExcFunctional'
|
| 729 |
if v in nc.variables: |
| 730 |
nc.variables[v][:] = np.array('%7s' % xc, 'c') |
| 731 |
else:
|
| 732 |
vxc = nc.createVariable('ExcFunctional', 'c', ('dim7',)) |
| 733 |
vxc[:] = np.array('%7s' % xc, 'c') |
| 734 |
nc.close() |
| 735 |
self.set_status('new') |
| 736 |
self.ready = False |
| 737 |
|
| 738 |
def set_nbands(self, nbands=None): |
| 739 |
'''Set the number of bands. a few unoccupied bands are
|
| 740 |
recommended.
|
| 741 |
|
| 742 |
:Parameters:
|
| 743 |
|
| 744 |
nbands : integer
|
| 745 |
the number of bands.
|
| 746 |
|
| 747 |
if nbands = None the function returns with nothing done. At
|
| 748 |
calculate time, if there are still no bands, they will be set
|
| 749 |
by:
|
| 750 |
|
| 751 |
the number of bands is calculated as
|
| 752 |
$nbands=nvalence*0.65 + 4$
|
| 753 |
'''
|
| 754 |
if nbands is None: |
| 755 |
return
|
| 756 |
|
| 757 |
self.delete_ncattdimvar(self.nc, |
| 758 |
ncdims=['number_of_bands'],
|
| 759 |
ncvars=[]) |
| 760 |
|
| 761 |
nc = netCDF(self.nc, 'a') |
| 762 |
v = 'ElectronicBands'
|
| 763 |
if v in nc.variables: |
| 764 |
vnb = nc.variables[v] |
| 765 |
else:
|
| 766 |
vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 767 |
|
| 768 |
vnb.NumberOfBands = nbands |
| 769 |
nc.sync() |
| 770 |
nc.close() |
| 771 |
self.set_status('new') |
| 772 |
self.ready = False |
| 773 |
|
| 774 |
def set_kpts(self, kpts): |
| 775 |
'''
|
| 776 |
set the kpt grid.
|
| 777 |
|
| 778 |
Parameters:
|
| 779 |
|
| 780 |
kpts: (n1,n2,n3) or [k1,k2,k3,...] or one of these
|
| 781 |
chadi-cohen sets:
|
| 782 |
|
| 783 |
* cc6_1x1
|
| 784 |
* cc12_2x3
|
| 785 |
* cc18_sq3xsq3
|
| 786 |
* cc18_1x1
|
| 787 |
* cc54_sq3xsq3
|
| 788 |
* cc54_1x1
|
| 789 |
* cc162_sq3xsq3
|
| 790 |
* cc162_1x1
|
| 791 |
|
| 792 |
(n1,n2,n3) creates an n1 x n2 x n3 monkhorst-pack grid,
|
| 793 |
[k1,k2,k3,...] creates a kpt-grid based on the kpoints
|
| 794 |
defined in k1,k2,k3,...
|
| 795 |
|
| 796 |
There is also a possibility to have Dacapo (fortran) create
|
| 797 |
the Kpoints in chadi-cohen or monkhorst-pack form. To do this
|
| 798 |
you need to set the KpointSetup.gridtype attribute, and
|
| 799 |
KpointSetup.
|
| 800 |
|
| 801 |
KpointSetup = [3,0,0]
|
| 802 |
KpointSetup.gridtype = 'ChadiCohen'
|
| 803 |
|
| 804 |
KpointSetup(1) Chadi-Cohen k-point set
|
| 805 |
1 6 k-points 1x1
|
| 806 |
2 18-kpoints sqrt(3)*sqrt(3)
|
| 807 |
3 18-kpoints 1x1
|
| 808 |
4 54-kpoints sqrt(3)*sqrt(3)
|
| 809 |
5 54-kpoints 1x1
|
| 810 |
6 162-kpoints 1x1
|
| 811 |
7 12-kpoints 2x3
|
| 812 |
8 162-kpoints 3xsqrt 3
|
| 813 |
|
| 814 |
or
|
| 815 |
KpointSetup = [4,4,4]
|
| 816 |
KpointSetup.gridtype = 'MonkhorstPack'
|
| 817 |
we do not use this functionality.
|
| 818 |
'''
|
| 819 |
|
| 820 |
#chadi-cohen
|
| 821 |
if isinstance(kpts, str): |
| 822 |
exec('from ase.dft.kpoints import %s' % kpts)
|
| 823 |
listofkpts = eval(kpts)
|
| 824 |
gridtype = kpts #stored in ncfile
|
| 825 |
#uc = self.get_atoms().get_cell()
|
| 826 |
#listofkpts = np.dot(ccgrid,np.linalg.inv(uc.T))
|
| 827 |
|
| 828 |
#monkhorst-pack grid
|
| 829 |
if np.array(kpts).shape == (3,): |
| 830 |
from ase.dft.kpoints import monkhorst_pack |
| 831 |
N1, N2, N3 = kpts |
| 832 |
listofkpts = monkhorst_pack((N1, N2, N3)) |
| 833 |
gridtype = 'Monkhorst-Pack %s' % str(tuple(kpts)) |
| 834 |
|
| 835 |
#user-defined list is provided
|
| 836 |
if len(np.array(kpts).shape) == 2: |
| 837 |
listofkpts = kpts |
| 838 |
gridtype = 'user_defined_%i_kpts' % len(kpts) #stored in ncfile |
| 839 |
|
| 840 |
nbzkpts = len(listofkpts)
|
| 841 |
|
| 842 |
#we need to get dimensions stored temporarily so
|
| 843 |
#we can delete all dimensions and variables associated with
|
| 844 |
#kpoints before we save them back out.
|
| 845 |
nc2 = netCDF(self.nc, 'r') |
| 846 |
ncdims = nc2.dimensions |
| 847 |
nc2.close() |
| 848 |
|
| 849 |
if 'number_BZ_kpoints' in ncdims: |
| 850 |
self.delete_ncattdimvar(self.nc, |
| 851 |
ncdims=['number_plane_waves',
|
| 852 |
'number_BZ_kpoints',
|
| 853 |
'number_IBZ_kpoints'])
|
| 854 |
|
| 855 |
# now define dim and var
|
| 856 |
nc = netCDF(self.nc, 'a') |
| 857 |
nc.createDimension('number_BZ_kpoints', nbzkpts)
|
| 858 |
bv = nc.createVariable('BZKpoints', 'd', ('number_BZ_kpoints', |
| 859 |
'dim3'))
|
| 860 |
|
| 861 |
bv[:] = listofkpts |
| 862 |
bv.gridtype = gridtype |
| 863 |
nc.sync() |
| 864 |
nc.close() |
| 865 |
|
| 866 |
log.debug('kpts = %s' % str(self.get_kpts())) |
| 867 |
|
| 868 |
self.set_status('new') |
| 869 |
self.ready = False |
| 870 |
|
| 871 |
def atoms_are_equal(self, atoms): |
| 872 |
'''
|
| 873 |
comparison of atoms to self.atoms using tolerances to account
|
| 874 |
for float/double differences and float math.
|
| 875 |
'''
|
| 876 |
|
| 877 |
TOL = 1.0e-6 #angstroms |
| 878 |
|
| 879 |
a = self.atoms.arrays
|
| 880 |
b = atoms.arrays |
| 881 |
|
| 882 |
#match number of atoms in cell
|
| 883 |
lenmatch = len(atoms) == len(self.atoms) |
| 884 |
if lenmatch is not True: |
| 885 |
return False #the next two comparisons fail in this case. |
| 886 |
|
| 887 |
#match positions in cell
|
| 888 |
posmatch = (abs(a['positions'] - b['positions']) <= TOL).all() |
| 889 |
#match cell
|
| 890 |
cellmatch = (abs(self.atoms.get_cell() |
| 891 |
- atoms.get_cell()) <= TOL).all() |
| 892 |
|
| 893 |
if lenmatch and posmatch and cellmatch: |
| 894 |
return True |
| 895 |
else:
|
| 896 |
return False |
| 897 |
|
| 898 |
def set_atoms(self, atoms): |
| 899 |
'''attach an atoms to the calculator and update the ncfile
|
| 900 |
|
| 901 |
:Parameters:
|
| 902 |
|
| 903 |
atoms
|
| 904 |
ASE.Atoms instance
|
| 905 |
|
| 906 |
'''
|
| 907 |
|
| 908 |
log.debug('setting atoms to: %s' % str(atoms)) |
| 909 |
|
| 910 |
if hasattr(self, 'atoms') and self.atoms is not None: |
| 911 |
#return if the atoms are the same. no change needs to be made
|
| 912 |
if self.atoms_are_equal(atoms): |
| 913 |
log.debug('No change to atoms in set_atoms, returning')
|
| 914 |
return
|
| 915 |
|
| 916 |
# some atoms already exist. Test if new atoms are
|
| 917 |
# different from old atoms.
|
| 918 |
# this is redundant
|
| 919 |
if atoms != self.atoms: |
| 920 |
# the new atoms are different from the old ones. Start
|
| 921 |
# a new frame.
|
| 922 |
log.debug('atoms != self.atoms, incrementing')
|
| 923 |
self._increment_frame()
|
| 924 |
|
| 925 |
self.atoms = atoms.copy()
|
| 926 |
self.ready = False |
| 927 |
log.debug('self.atoms = %s' % str(self.atoms)) |
| 928 |
|
| 929 |
def set_ft(self, ft): |
| 930 |
'''set the Fermi temperature for occupation smearing
|
| 931 |
|
| 932 |
:Parameters:
|
| 933 |
|
| 934 |
ft : float
|
| 935 |
Fermi temperature in kT (eV)
|
| 936 |
|
| 937 |
Electronic temperature, corresponding to gaussian occupation
|
| 938 |
statistics. Device used to stabilize the convergence towards
|
| 939 |
the electronic ground state. Higher values stabilizes the
|
| 940 |
convergence. Values in the range 0.1-1.0 eV are recommended,
|
| 941 |
depending on the complexity of the Fermi surface (low values
|
| 942 |
for d-metals and narrow gap semiconducters, higher for free
|
| 943 |
electron-like metals).
|
| 944 |
'''
|
| 945 |
|
| 946 |
nc = netCDF(self.nc, 'a') |
| 947 |
v = 'ElectronicBands'
|
| 948 |
if v in nc.variables: |
| 949 |
vnb = nc.variables[v] |
| 950 |
else:
|
| 951 |
vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 952 |
|
| 953 |
vnb.OccupationStatistics_FermiTemperature = ft |
| 954 |
nc.sync() |
| 955 |
nc.close() |
| 956 |
self.set_status('new') |
| 957 |
self.ready = False |
| 958 |
|
| 959 |
def set_status(self, status): |
| 960 |
'''set the status flag in the netcdf file
|
| 961 |
|
| 962 |
:Parameters:
|
| 963 |
|
| 964 |
status : string
|
| 965 |
status flag, e.g. 'new', 'finished'
|
| 966 |
'''
|
| 967 |
|
| 968 |
nc = netCDF(self.nc, 'a') |
| 969 |
nc.status = status |
| 970 |
nc.sync() |
| 971 |
nc.close() |
| 972 |
log.debug('set status to %s' % status)
|
| 973 |
|
| 974 |
def get_spinpol(self): |
| 975 |
'Returns the spin polarization setting, either True or False'
|
| 976 |
|
| 977 |
nc = netCDF(self.nc, 'r') |
| 978 |
v = 'ElectronicBands'
|
| 979 |
if v in nc.variables: |
| 980 |
vnb = nc.variables[v] |
| 981 |
if hasattr(vnb, 'SpinPolarization'): |
| 982 |
spinpol = vnb.SpinPolarization |
| 983 |
else:
|
| 984 |
spinpol = 1
|
| 985 |
else:
|
| 986 |
spinpol = 1
|
| 987 |
|
| 988 |
nc.close() |
| 989 |
if spinpol == 1: |
| 990 |
return False |
| 991 |
else:
|
| 992 |
return True |
| 993 |
|
| 994 |
def set_spinpol(self, spinpol=False): |
| 995 |
'''set Spin polarization.
|
| 996 |
|
| 997 |
:Parameters:
|
| 998 |
|
| 999 |
spinpol : Boolean
|
| 1000 |
set_spinpol(True) spin-polarized.
|
| 1001 |
set_spinpol(False) no spin polarization, default
|
| 1002 |
|
| 1003 |
Specify whether to perform a spin polarized or unpolarized
|
| 1004 |
calculation.
|
| 1005 |
'''
|
| 1006 |
|
| 1007 |
nc = netCDF(self.nc, 'a') |
| 1008 |
v = 'ElectronicBands'
|
| 1009 |
if v in nc.variables: |
| 1010 |
vnb = nc.variables[v] |
| 1011 |
else:
|
| 1012 |
vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 1013 |
|
| 1014 |
if spinpol is True: |
| 1015 |
vnb.SpinPolarization = 2
|
| 1016 |
else:
|
| 1017 |
vnb.SpinPolarization = 1
|
| 1018 |
|
| 1019 |
nc.sync() |
| 1020 |
nc.close() |
| 1021 |
self.set_status('new') |
| 1022 |
self.ready = False |
| 1023 |
|
| 1024 |
def set_fixmagmom(self, fixmagmom=None): |
| 1025 |
'''set a fixed magnetic moment for a spin polarized calculation
|
| 1026 |
|
| 1027 |
:Parameters:
|
| 1028 |
|
| 1029 |
fixmagmom : float
|
| 1030 |
the magnetic moment of the cell in Bohr magnetons
|
| 1031 |
'''
|
| 1032 |
|
| 1033 |
if fixmagmom is None: |
| 1034 |
return
|
| 1035 |
|
| 1036 |
nc = netCDF(self.nc,'a') |
| 1037 |
v = 'ElectronicBands'
|
| 1038 |
if v in nc.variables: |
| 1039 |
vnb = nc.variables[v] |
| 1040 |
else:
|
| 1041 |
vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 1042 |
|
| 1043 |
vnb.SpinPolarization = 2 #You must want spin-polarized |
| 1044 |
vnb.FixedMagneticMoment = fixmagmom |
| 1045 |
nc.sync() |
| 1046 |
nc.close() |
| 1047 |
self.set_status('new') |
| 1048 |
self.ready = False |
| 1049 |
|
| 1050 |
def get_fixmagmom(self): |
| 1051 |
'returns the value of FixedMagneticMoment'
|
| 1052 |
|
| 1053 |
nc = netCDF(self.nc,'r') |
| 1054 |
if 'ElectronicBands' in nc.variables: |
| 1055 |
v = nc.variables['ElectronicBands']
|
| 1056 |
if hasattr(v,'FixedMagneticMoment'): |
| 1057 |
fixmagmom = v.FixedMagneticMoment |
| 1058 |
else:
|
| 1059 |
fixmagmom = None
|
| 1060 |
else:
|
| 1061 |
fixmagmom = None
|
| 1062 |
nc.close() |
| 1063 |
return fixmagmom
|
| 1064 |
|
| 1065 |
def set_calculate_stress(self, stress=True): |
| 1066 |
'''Turn on stress calculation
|
| 1067 |
|
| 1068 |
:Parameters:
|
| 1069 |
|
| 1070 |
stress : boolean
|
| 1071 |
set_calculate_stress(True) calculates stress
|
| 1072 |
set_calculate_stress(False) do not calculate stress
|
| 1073 |
'''
|
| 1074 |
|
| 1075 |
nc = netCDF(self.get_nc(),'a') |
| 1076 |
vs = 'NetCDFOutputControl'
|
| 1077 |
if vs in nc.variables: |
| 1078 |
v = nc.variables[vs] |
| 1079 |
else:
|
| 1080 |
v = nc.createVariable('NetCDFOutputControl', 'c', ('dim1',)) |
| 1081 |
|
| 1082 |
if stress is True: |
| 1083 |
v.PrintTotalStress = 'Yes'
|
| 1084 |
else:
|
| 1085 |
v.PrintTotalStress = 'No'
|
| 1086 |
nc.sync() |
| 1087 |
nc.close() |
| 1088 |
self.set_status('new') |
| 1089 |
self.ready = False |
| 1090 |
|
| 1091 |
def set_nc(self, nc='out.nc'): |
| 1092 |
'''
|
| 1093 |
set filename for the netcdf and text output for this calculation
|
| 1094 |
|
| 1095 |
:Parameters:
|
| 1096 |
|
| 1097 |
nc : string
|
| 1098 |
filename for netcdf file
|
| 1099 |
|
| 1100 |
if the ncfile attached to the calculator is changing, the old
|
| 1101 |
file will be copied to the new file if it doesn not exist so
|
| 1102 |
that all the calculator details are preserved. Otherwise, the
|
| 1103 |
|
| 1104 |
if the ncfile does not exist, it will get initialized.
|
| 1105 |
|
| 1106 |
the text file will have the same basename as the ncfile, but
|
| 1107 |
with a .txt extension.
|
| 1108 |
'''
|
| 1109 |
|
| 1110 |
#the first time this is called, there may be no self.nc defined
|
| 1111 |
if not hasattr(self, 'nc'): |
| 1112 |
self.nc = nc
|
| 1113 |
|
| 1114 |
#check if the name is changing and if so, copy the old ncfile
|
| 1115 |
#to the new one. This is necessary to ensure all the
|
| 1116 |
#calculator details are copied over. if the file already
|
| 1117 |
#exists we use the contents of the existing file
|
| 1118 |
if nc != self.nc and not os.path.exists(nc): |
| 1119 |
log.debug('copying %s to %s' % (self.nc, nc)) |
| 1120 |
#import shutil
|
| 1121 |
#shutil.copy(self.nc,nc)
|
| 1122 |
base = os.path.split(nc)[0]
|
| 1123 |
if not os.path.isdir(base) and base is not '': |
| 1124 |
os.makedirs(base) |
| 1125 |
status = os.system('cp %s %s' % (self.nc, nc)) |
| 1126 |
if status != 0: |
| 1127 |
raise Exception, 'Copying ncfile failed.' |
| 1128 |
self.nc = nc
|
| 1129 |
|
| 1130 |
elif os.path.exists(nc):
|
| 1131 |
self._set_frame_number()
|
| 1132 |
self.set_psp_database()
|
| 1133 |
self.atoms = self.read_only_atoms(nc) |
| 1134 |
self.nc = nc
|
| 1135 |
self.update_input_parameters()
|
| 1136 |
|
| 1137 |
#I always want the text file set based on the ncfile
|
| 1138 |
#and I never want to set this myself.
|
| 1139 |
base = os.path.splitext(self.nc)[0] |
| 1140 |
self.txt = base + '.txt' |
| 1141 |
|
| 1142 |
def set_psp(self, |
| 1143 |
sym=None,
|
| 1144 |
z=None,
|
| 1145 |
psp=None):
|
| 1146 |
'''
|
| 1147 |
set the pseudopotential file for a species or an atomic number.
|
| 1148 |
|
| 1149 |
:Parameters:
|
| 1150 |
|
| 1151 |
sym : string
|
| 1152 |
chemical symbol of the species
|
| 1153 |
|
| 1154 |
z : integer
|
| 1155 |
the atomic number of the species
|
| 1156 |
|
| 1157 |
psp : string
|
| 1158 |
filename of the pseudopotential
|
| 1159 |
|
| 1160 |
|
| 1161 |
you can only set sym or z.
|
| 1162 |
|
| 1163 |
examples::
|
| 1164 |
|
| 1165 |
set_psp('N',psp='pspfile')
|
| 1166 |
set_psp(z=6,psp='pspfile')
|
| 1167 |
'''
|
| 1168 |
log.debug(str([sym, z, psp]))
|
| 1169 |
if (sym, z, psp) == (None, None, None): |
| 1170 |
return
|
| 1171 |
|
| 1172 |
if (sym is None and z is not None): |
| 1173 |
from ase.data import chemical_symbols |
| 1174 |
sym = chemical_symbols[z] |
| 1175 |
elif (sym is not None and z is None): |
| 1176 |
pass
|
| 1177 |
else:
|
| 1178 |
raise Exception, 'You can only specify Z or sym!' |
| 1179 |
|
| 1180 |
if not hasattr(self, 'psp'): |
| 1181 |
self.set_psp_database()
|
| 1182 |
|
| 1183 |
#only make change if needed
|
| 1184 |
if sym not in self.psp: |
| 1185 |
self.psp[sym] = psp
|
| 1186 |
self.ready = False |
| 1187 |
self.set_status('new') |
| 1188 |
elif self.psp[sym] != psp: |
| 1189 |
self.psp[sym] = psp
|
| 1190 |
self.ready = False |
| 1191 |
self.set_status('new') |
| 1192 |
|
| 1193 |
if not self.ready: |
| 1194 |
#now we update the netcdf file
|
| 1195 |
ncf = netCDF(self.nc, 'a') |
| 1196 |
vn = 'AtomProperty_%s' % sym
|
| 1197 |
if vn not in ncf.variables: |
| 1198 |
p = ncf.createVariable(vn, 'c', ('dim20',)) |
| 1199 |
else:
|
| 1200 |
p = ncf.variables[vn] |
| 1201 |
|
| 1202 |
ppath = self.get_psp(sym=sym)
|
| 1203 |
p.PspotFile = ppath |
| 1204 |
ncf.close() |
| 1205 |
|
| 1206 |
def get_pseudopotentials(self): |
| 1207 |
'get pseudopotentials set for atoms attached to calculator'
|
| 1208 |
|
| 1209 |
if self.atoms is None: |
| 1210 |
return None |
| 1211 |
|
| 1212 |
psp = {}
|
| 1213 |
for atom in self.atoms: |
| 1214 |
psp[atom.symbol] = self.psp[atom.symbol]
|
| 1215 |
return psp
|
| 1216 |
|
| 1217 |
def get_symmetry(self): |
| 1218 |
'''return the type of symmetry used'''
|
| 1219 |
|
| 1220 |
nc = netCDF(self.nc, 'r') |
| 1221 |
if 'UseSymmetry' in nc.variables: |
| 1222 |
sym = string.join(nc.variables['UseSymmetry'][:],'').strip() |
| 1223 |
else:
|
| 1224 |
sym = None
|
| 1225 |
nc.close() |
| 1226 |
if sym in ['Off', None]: |
| 1227 |
return False |
| 1228 |
elif sym == 'Maximum': |
| 1229 |
return True |
| 1230 |
else:
|
| 1231 |
raise Exception, 'Type of symmetry not recognized: %s' % sym |
| 1232 |
|
| 1233 |
def set_symmetry(self, val=False): |
| 1234 |
'''set how symmetry is used to reduce k-points
|
| 1235 |
|
| 1236 |
:Parameters:
|
| 1237 |
|
| 1238 |
val : Boolean
|
| 1239 |
set_sym(True) Maximum symmetry is used
|
| 1240 |
set_sym(False) No symmetry is used
|
| 1241 |
|
| 1242 |
This variable controls the if and how DACAPO should attempt
|
| 1243 |
using symmetry in the calculation. Imposing symmetry generally
|
| 1244 |
speeds up the calculation and reduces numerical noise to some
|
| 1245 |
extent. Symmetry should always be applied to the maximum
|
| 1246 |
extent, when ions are not moved. When relaxing ions, however,
|
| 1247 |
the symmetry of the equilibrium state may be lower than the
|
| 1248 |
initial state. Such an equilibrium state with lower symmetry
|
| 1249 |
is missed, if symmetry is imposed. Molecular dynamics-like
|
| 1250 |
algorithms for ionic propagation will generally not break the
|
| 1251 |
symmetry of the initial state, but some algorithms, like the
|
| 1252 |
BFGS may break the symmetry of the initial state. Recognized
|
| 1253 |
options:
|
| 1254 |
|
| 1255 |
"Off": No symmetry will be imposed, apart from time inversion
|
| 1256 |
symmetry in recipical space. This is utilized to reduce the
|
| 1257 |
k-point sampling set for Brillouin zone integration and has no
|
| 1258 |
influence on the ionic forces/motion.
|
| 1259 |
|
| 1260 |
"Maximum": DACAPO will look for symmetry in the supplied
|
| 1261 |
atomic structure and extract the highest possible symmetry
|
| 1262 |
group. During the calculation, DACAPO will impose the found
|
| 1263 |
spatial symmetry on ionic forces and electronic structure,
|
| 1264 |
i.e. the symmetry will be conserved during the calculation.
|
| 1265 |
'''
|
| 1266 |
|
| 1267 |
if val:
|
| 1268 |
symval = 'Maximum'
|
| 1269 |
else:
|
| 1270 |
symval = 'Off'
|
| 1271 |
|
| 1272 |
ncf = netCDF(self.get_nc(), 'a') |
| 1273 |
if 'UseSymmetry' not in ncf.variables: |
| 1274 |
sym = ncf.createVariable('UseSymmetry', 'c', ('dim7',)) |
| 1275 |
else:
|
| 1276 |
sym = ncf.variables['UseSymmetry']
|
| 1277 |
|
| 1278 |
sym[:] = np.array('%7s' % symval, 'c') |
| 1279 |
ncf.sync() |
| 1280 |
ncf.close() |
| 1281 |
self.set_status('new') |
| 1282 |
self.ready = False |
| 1283 |
|
| 1284 |
def set_extracharge(self, val): |
| 1285 |
'''add extra charge to unit cell
|
| 1286 |
|
| 1287 |
:Parameters:
|
| 1288 |
|
| 1289 |
val : float
|
| 1290 |
extra electrons to add or subtract from the unit cell
|
| 1291 |
|
| 1292 |
Fixed extra charge in the unit cell (i.e. deviation from
|
| 1293 |
charge neutrality). This assumes a compensating, positive
|
| 1294 |
constant backgound charge (jellium) to forge overall charge
|
| 1295 |
neutrality.
|
| 1296 |
'''
|
| 1297 |
|
| 1298 |
nc = netCDF(self.get_nc(), 'a') |
| 1299 |
if 'ExtraCharge' in nc.variables: |
| 1300 |
v = nc.variables['ExtraCharge']
|
| 1301 |
else:
|
| 1302 |
v = nc.createVariable('ExtraCharge', 'd', ('dim1',)) |
| 1303 |
|
| 1304 |
v.assignValue(val) |
| 1305 |
nc.sync() |
| 1306 |
nc.close() |
| 1307 |
|
| 1308 |
def get_extracharge(self): |
| 1309 |
'Return the extra charge set in teh calculator'
|
| 1310 |
|
| 1311 |
nc = netCDF(self.get_nc(), 'r') |
| 1312 |
if 'ExtraCharge' in nc.variables: |
| 1313 |
v = nc.variables['ExtraCharge']
|
| 1314 |
exchg = v.getValue() |
| 1315 |
else:
|
| 1316 |
exchg = None
|
| 1317 |
nc.close() |
| 1318 |
return exchg
|
| 1319 |
|
| 1320 |
def get_extpot(self): |
| 1321 |
'return the external potential set in teh calculator'
|
| 1322 |
|
| 1323 |
nc = netCDF(self.get_nc(), 'a') |
| 1324 |
if 'ExternalPotential' in nc.variables: |
| 1325 |
v = nc.variables['ExternalPotential']
|
| 1326 |
extpot = v[:] |
| 1327 |
else:
|
| 1328 |
extpot = None
|
| 1329 |
|
| 1330 |
nc.close() |
| 1331 |
return extpot
|
| 1332 |
|
| 1333 |
def set_extpot(self, potgrid): |
| 1334 |
'''add external potential of value
|
| 1335 |
|
| 1336 |
see this link before using this
|
| 1337 |
https://listserv.fysik.dtu.dk/pipermail/campos/2003-August/000657.html
|
| 1338 |
|
| 1339 |
:Parameters:
|
| 1340 |
|
| 1341 |
potgrid : np.array with shape (nx,ny,nz)
|
| 1342 |
the shape must be the same as the fft soft grid
|
| 1343 |
the value of the potential to add
|
| 1344 |
|
| 1345 |
|
| 1346 |
you have to know both of the fft grid dimensions ahead of time!
|
| 1347 |
if you know what you are doing, you can set the fft_grid you want
|
| 1348 |
before hand with:
|
| 1349 |
calc.set_fftgrid((n1,n2,n3))
|
| 1350 |
'''
|
| 1351 |
|
| 1352 |
nc = netCDF(self.get_nc(), 'a') |
| 1353 |
if 'ExternalPotential' in nc.variables: |
| 1354 |
v = nc.variables['ExternalPotential']
|
| 1355 |
else:
|
| 1356 |
# I assume here you have the dimensions of potgrid correct
|
| 1357 |
# and that the soft and hard grids are the same.
|
| 1358 |
# if softgrid is defined, Dacapo requires hardgrid to be
|
| 1359 |
# defined too.
|
| 1360 |
s1, s2, s3 = potgrid.shape |
| 1361 |
if 'softgrid_dim1' not in nc.dimensions: |
| 1362 |
nc.createDimension('softgrid_dim1', s1)
|
| 1363 |
nc.createDimension('softgrid_dim2', s2)
|
| 1364 |
nc.createDimension('softgrid_dim3', s3)
|
| 1365 |
nc.createDimension('hardgrid_dim1', s1)
|
| 1366 |
nc.createDimension('hardgrid_dim2', s2)
|
| 1367 |
nc.createDimension('hardgrid_dim3', s3)
|
| 1368 |
|
| 1369 |
v = nc.createVariable('ExternalPotential',
|
| 1370 |
'd',
|
| 1371 |
('softgrid_dim1',
|
| 1372 |
'softgrid_dim2',
|
| 1373 |
'softgrid_dim3',))
|
| 1374 |
v[:] = potgrid |
| 1375 |
nc.sync() |
| 1376 |
nc.close() |
| 1377 |
self.set_status('new') |
| 1378 |
self.ready = False |
| 1379 |
|
| 1380 |
def set_fftgrid(self, soft=None, hard=None): |
| 1381 |
'''
|
| 1382 |
sets the dimensions of the FFT grid to be used
|
| 1383 |
|
| 1384 |
:Parameters:
|
| 1385 |
|
| 1386 |
soft : (n1,n2,n3) integers
|
| 1387 |
make a n1 x n2 x n3 grid
|
| 1388 |
|
| 1389 |
hard : (n1,n2,n3) integers
|
| 1390 |
make a n1 x n2 x n3 grid
|
| 1391 |
|
| 1392 |
|
| 1393 |
>>> calc.set_fftgrid(soft=[42,44,46])
|
| 1394 |
sets the soft and hard grid dimensions to 42,44,46
|
| 1395 |
|
| 1396 |
>>> calc.set_fftgrid(soft=[42,44,46],hard=[80,84,88])
|
| 1397 |
sets the soft grid dimensions to 42,44,46 and the hard
|
| 1398 |
grid dimensions to 80,84,88
|
| 1399 |
|
| 1400 |
These are the fast FFt grid numbers listed in fftdimensions.F
|
| 1401 |
|
| 1402 |
data list_of_fft /2, 4, 6, 8, 10, 12, 14, 16, 18, 20, &
|
| 1403 |
22,24, 28, 30,32, 36, 40, 42, 44, 48, &
|
| 1404 |
56,60, 64, 66, 70, 72, 80, 84, 88, 90, &
|
| 1405 |
96,108,110,112,120,126,128,132,140,144,154, &
|
| 1406 |
160,168,176,180,192,198,200, &
|
| 1407 |
216,240,264,270,280,288,324,352,360,378,384,400,432, &
|
| 1408 |
450,480,540,576,640/
|
| 1409 |
|
| 1410 |
otherwise you will get some errors from mis-dimensioned variables.
|
| 1411 |
|
| 1412 |
this is usually automatically set by Dacapo.
|
| 1413 |
'''
|
| 1414 |
|
| 1415 |
if soft is not None: |
| 1416 |
self.delete_ncattdimvar(self.nc, |
| 1417 |
ncdims=['softgrid_dim1',
|
| 1418 |
'softgrid_dim2',
|
| 1419 |
'softgrid_dim3'
|
| 1420 |
], |
| 1421 |
ncvars=[]) |
| 1422 |
|
| 1423 |
|
| 1424 |
nc = netCDF(self.get_nc(), 'a') |
| 1425 |
nc.createDimension('softgrid_dim1', soft[0]) |
| 1426 |
nc.createDimension('softgrid_dim2', soft[1]) |
| 1427 |
nc.createDimension('softgrid_dim3', soft[2]) |
| 1428 |
nc.sync() |
| 1429 |
nc.close() |
| 1430 |
|
| 1431 |
if hard is None: |
| 1432 |
hard = soft |
| 1433 |
|
| 1434 |
if hard is not None: |
| 1435 |
self.delete_ncattdimvar(self.nc, |
| 1436 |
ncdims=['hardgrid_dim1',
|
| 1437 |
'hardgrid_dim2',
|
| 1438 |
'hardgrid_dim3'
|
| 1439 |
], |
| 1440 |
ncvars=[]) |
| 1441 |
nc = netCDF(self.get_nc(),'a') |
| 1442 |
nc.createDimension('hardgrid_dim1', hard[0]) |
| 1443 |
nc.createDimension('hardgrid_dim2', hard[1]) |
| 1444 |
nc.createDimension('hardgrid_dim3', hard[2]) |
| 1445 |
nc.sync() |
| 1446 |
nc.close() |
| 1447 |
|
| 1448 |
self.set_status('new') |
| 1449 |
self.ready = False |
| 1450 |
|
| 1451 |
def get_ascii_debug(self): |
| 1452 |
'Return the debug settings in Dacapo'
|
| 1453 |
|
| 1454 |
nc = netCDF(self.get_nc(), 'r') |
| 1455 |
if 'PrintDebugInfo' in nc.variables: |
| 1456 |
v = nc.variables['PrintDebugInfo']
|
| 1457 |
debug = string.join(v[:], '')
|
| 1458 |
else:
|
| 1459 |
debug = None
|
| 1460 |
nc.close() |
| 1461 |
return debug
|
| 1462 |
|
| 1463 |
def set_ascii_debug(self, level): |
| 1464 |
'''set the debug level for Dacapo
|
| 1465 |
|
| 1466 |
:Parameters:
|
| 1467 |
|
| 1468 |
level : string
|
| 1469 |
one of 'Off', 'MediumLevel', 'HighLevel'
|
| 1470 |
'''
|
| 1471 |
|
| 1472 |
nc = netCDF(self.get_nc(), 'a') |
| 1473 |
if 'PrintDebugInfo' in nc.variables: |
| 1474 |
v = nc.variables['PrintDebugInfo']
|
| 1475 |
else:
|
| 1476 |
if 'dim20' not in nc.dimensions: |
| 1477 |
nc.createDimension('dim20', 20) |
| 1478 |
v = nc.createVariable('PrintDebugInfo', 'c', ('dim20',)) |
| 1479 |
|
| 1480 |
v[:] = np.array('%20s' % level, dtype='c') |
| 1481 |
nc.sync() |
| 1482 |
nc.close() |
| 1483 |
self.set_status('new') |
| 1484 |
self.ready = False |
| 1485 |
|
| 1486 |
def get_ncoutput(self): |
| 1487 |
'returns the control variables for the ncfile'
|
| 1488 |
|
| 1489 |
nc = netCDF(self.get_nc(), 'a') |
| 1490 |
if 'NetCDFOutputControl' in nc.variables: |
| 1491 |
v = nc.variables['NetCDFOutputControl']
|
| 1492 |
ncoutput = {}
|
| 1493 |
if hasattr(v, 'PrintWaveFunction'): |
| 1494 |
ncoutput['wf'] = v.PrintWaveFunction
|
| 1495 |
if hasattr(v, 'PrintChargeDensity'): |
| 1496 |
ncoutput['cd'] = v.PrintChargeDensity
|
| 1497 |
if hasattr(v, 'PrintEffPotential'): |
| 1498 |
ncoutput['efp'] = v.PrintEffPotential
|
| 1499 |
if hasattr(v, 'PrintElsPotential'): |
| 1500 |
ncoutput['esp'] = v.PrintElsPotential
|
| 1501 |
else:
|
| 1502 |
ncoutput = None
|
| 1503 |
nc.close() |
| 1504 |
return ncoutput
|
| 1505 |
|
| 1506 |
def set_ncoutput(self, |
| 1507 |
wf=None,
|
| 1508 |
cd=None,
|
| 1509 |
efp=None,
|
| 1510 |
esp=None):
|
| 1511 |
'''set the output of large variables in the netcdf output file
|
| 1512 |
|
| 1513 |
:Parameters:
|
| 1514 |
|
| 1515 |
wf : string
|
| 1516 |
controls output of wavefunction. values can
|
| 1517 |
be 'Yes' or 'No'
|
| 1518 |
|
| 1519 |
cd : string
|
| 1520 |
controls output of charge density. values can
|
| 1521 |
be 'Yes' or 'No'
|
| 1522 |
|
| 1523 |
efp : string
|
| 1524 |
controls output of effective potential. values can
|
| 1525 |
be 'Yes' or 'No'
|
| 1526 |
|
| 1527 |
esp : string
|
| 1528 |
controls output of electrostatic potential. values can
|
| 1529 |
be 'Yes' or 'No'
|
| 1530 |
'''
|
| 1531 |
nc = netCDF(self.get_nc(), 'a') |
| 1532 |
if 'NetCDFOutputControl' in nc.variables: |
| 1533 |
v = nc.variables['NetCDFOutputControl']
|
| 1534 |
else:
|
| 1535 |
v = nc.createVariable('NetCDFOutputControl', 'c', ()) |
| 1536 |
|
| 1537 |
if wf is not None: |
| 1538 |
v.PrintWaveFunction = wf |
| 1539 |
if cd is not None: |
| 1540 |
v.PrintChargeDensity = cd |
| 1541 |
if efp is not None: |
| 1542 |
v.PrintEffPotential = efp |
| 1543 |
if esp is not None: |
| 1544 |
v.PrintElsPotential = esp |
| 1545 |
|
| 1546 |
nc.sync() |
| 1547 |
nc.close() |
| 1548 |
self.set_status('new') |
| 1549 |
self.ready = False |
| 1550 |
|
| 1551 |
def get_ados(self, **kwargs): |
| 1552 |
'''
|
| 1553 |
attempt at maintaining backward compatibility with get_ados
|
| 1554 |
returning data
|
| 1555 |
|
| 1556 |
Now when we call calc.get_ados() it will return settings,
|
| 1557 |
|
| 1558 |
and calc.get_ados(atoms=[],...) should return data
|
| 1559 |
|
| 1560 |
'''
|
| 1561 |
|
| 1562 |
if len(kwargs) != 0: |
| 1563 |
return self.get_ados_data(**kwargs) |
| 1564 |
|
| 1565 |
nc = netCDF(self.get_nc(),'r') |
| 1566 |
if 'PrintAtomProjectedDOS' in nc.variables: |
| 1567 |
v = nc.variables['PrintAtomProjectedDOS']
|
| 1568 |
ados = {}
|
| 1569 |
if hasattr(v, 'EnergyWindow'): |
| 1570 |
ados['energywindow'] = v.EnergyWindow
|
| 1571 |
if hasattr(v, 'EnergyWidth'): |
| 1572 |
ados['energywidth'] = v.EnergyWidth
|
| 1573 |
if hasattr(v, 'NumberEnergyPoints'): |
| 1574 |
ados['npoints'] = v.NumberEnergyPoints
|
| 1575 |
if hasattr(v, 'CutoffRadius'): |
| 1576 |
ados['cutoff'] = v.CutoffRadius
|
| 1577 |
else:
|
| 1578 |
ados = None
|
| 1579 |
|
| 1580 |
nc.close() |
| 1581 |
return ados
|
| 1582 |
|
| 1583 |
def set_ados(self, |
| 1584 |
energywindow=(-15,5), |
| 1585 |
energywidth=0.2,
|
| 1586 |
npoints=250,
|
| 1587 |
cutoff=1.0):
|
| 1588 |
'''
|
| 1589 |
setup calculation of atom-projected density of states
|
| 1590 |
|
| 1591 |
:Parameters:
|
| 1592 |
|
| 1593 |
energywindow : (float, float)
|
| 1594 |
sets (emin,emax) in eV referenced to the Fermi level
|
| 1595 |
|
| 1596 |
energywidth : float
|
| 1597 |
the gaussian used in smearing
|
| 1598 |
|
| 1599 |
npoints : integer
|
| 1600 |
the number of points to sample the DOS at
|
| 1601 |
|
| 1602 |
cutoff : float
|
| 1603 |
the cutoff radius in angstroms for the integration.
|
| 1604 |
'''
|
| 1605 |
|
| 1606 |
nc = netCDF(self.get_nc(), 'a') |
| 1607 |
if 'PrintAtomProjectedDOS' in nc.variables: |
| 1608 |
v = nc.variables['PrintAtomProjectedDOS']
|
| 1609 |
else:
|
| 1610 |
v = nc.createVariable('PrintAtomProjectedDOS', 'c', ()) |
| 1611 |
|
| 1612 |
v.EnergyWindow = energywindow |
| 1613 |
v.EnergyWidth = energywidth |
| 1614 |
v.NumberEnergyPoints = npoints |
| 1615 |
v.CutoffRadius = cutoff |
| 1616 |
|
| 1617 |
nc.sync() |
| 1618 |
nc.close() |
| 1619 |
self.set_status('new') |
| 1620 |
self.ready = False |
| 1621 |
|
| 1622 |
def get_mdos(self): |
| 1623 |
'return multicentered projected dos parameters'
|
| 1624 |
nc = netCDF(self.get_nc(),'r') |
| 1625 |
|
| 1626 |
mdos = {}
|
| 1627 |
|
| 1628 |
if 'MultiCenterProjectedDOS' in nc.variables: |
| 1629 |
v = nc.variables['MultiCenterProjectedDOS']
|
| 1630 |
mdos['energywindow'] = v.EnergyWindow
|
| 1631 |
mdos['energywidth'] = v.EnergyWidth
|
| 1632 |
mdos['numberenergypoints'] = v.NumberEnergyPoints
|
| 1633 |
mdos['cutoffradius'] = v.CutoffRadius
|
| 1634 |
mdos['mcenters'] = eval(v.mcenters) |
| 1635 |
|
| 1636 |
nc.close() |
| 1637 |
|
| 1638 |
return mdos
|
| 1639 |
|
| 1640 |
def get_mdos_data(self, |
| 1641 |
spin=0,
|
| 1642 |
cutoffradius='infinite'):
|
| 1643 |
'''returns data from multicentered projection
|
| 1644 |
|
| 1645 |
|
| 1646 |
returns (mdos, rotmat)
|
| 1647 |
|
| 1648 |
the rotation matrices are retrieved from the text file. I am
|
| 1649 |
not sure what you would do with these, but there was a note
|
| 1650 |
about them in the old documentation so I put the code to
|
| 1651 |
retrieve them here. the syntax for the return value is:
|
| 1652 |
rotmat[atom#][label] returns the rotation matrix for the
|
| 1653 |
center on the atom# for label. I do not not know what the
|
| 1654 |
label refers to.
|
| 1655 |
'''
|
| 1656 |
|
| 1657 |
if self.calculation_required(): |
| 1658 |
self.calculate()
|
| 1659 |
|
| 1660 |
nc = netCDF(self.get_nc(),'r') |
| 1661 |
icut = 1 #short |
| 1662 |
if cutoffradius == "infinite": |
| 1663 |
icut = 0
|
| 1664 |
|
| 1665 |
#var = nc.variables['MultiCenterProjectedDOS']
|
| 1666 |
integrated = nc.variables['MultiCenterProjectedDOS_IntegratedDOS'][:]
|
| 1667 |
tz = 'MultiCenterProjectedDOS_EnergyResolvedDOS'
|
| 1668 |
energyresolved = nc.variables[tz][:] |
| 1669 |
energygrid = nc.variables['MultiCenterProjectedDOS_EnergyGrid'][:]
|
| 1670 |
|
| 1671 |
number_of_multicenters = integrated.shape[0]
|
| 1672 |
#number_of_cutoff = integrated.shape[1]
|
| 1673 |
#number_of_spin = integrated.shape[2]
|
| 1674 |
|
| 1675 |
multicenterprojections = [] |
| 1676 |
for multicenter in range(number_of_multicenters): |
| 1677 |
#orbitals = var[multicenter]
|
| 1678 |
energyresolveddata = energyresolved[multicenter, icut, spin, :] |
| 1679 |
#integrateddata = integrated[multicenter, icut, spin]
|
| 1680 |
multicenterprojections.append([energygrid, energyresolveddata]) |
| 1681 |
|
| 1682 |
log.info('Found %d multicenters' % len(multicenterprojections)) |
| 1683 |
nc.close() |
| 1684 |
|
| 1685 |
#now parse the text file for the rotation matrices
|
| 1686 |
rot_mat_lines = [] |
| 1687 |
txt = self.get_txt()
|
| 1688 |
if os.path.exists(txt):
|
| 1689 |
f = open(txt,'r') |
| 1690 |
for line in f: |
| 1691 |
if 'MUL: Rmatrix' in line: |
| 1692 |
rot_mat_lines.append(line) |
| 1693 |
f.close() |
| 1694 |
|
| 1695 |
rotmat = [] |
| 1696 |
for line in rot_mat_lines: |
| 1697 |
fields = line.split() |
| 1698 |
novl = int(fields[2]) |
| 1699 |
ncen = int(fields[3]) |
| 1700 |
row = [float(x) for x in fields[4:]] |
| 1701 |
|
| 1702 |
try:
|
| 1703 |
rotmat[novl-1][ncen-1].append(row) |
| 1704 |
except IndexError: |
| 1705 |
try:
|
| 1706 |
rotmat[novl-1].append([])
|
| 1707 |
rotmat[novl-1][ncen-1].append(row) |
| 1708 |
except IndexError: |
| 1709 |
rotmat.append([]) |
| 1710 |
rotmat[novl-1].append([])
|
| 1711 |
rotmat[novl-1][ncen-1].append(row) |
| 1712 |
else:
|
| 1713 |
rotmat = None
|
| 1714 |
|
| 1715 |
return (multicenterprojections, rotmat)
|
| 1716 |
|
| 1717 |
def set_mdos(self, |
| 1718 |
mcenters=None,
|
| 1719 |
energywindow=(-15,5), |
| 1720 |
energywidth=0.2,
|
| 1721 |
numberenergypoints=250,
|
| 1722 |
cutoffradius=1.0):
|
| 1723 |
'''Setup multicentered projected DOS.
|
| 1724 |
|
| 1725 |
mcenters
|
| 1726 |
a list of tuples containing (atom#,l,m,weight)
|
| 1727 |
(0,0,0,1.0) specifies (atom 0, l=0, m=0, weight=1.0) an s orbital
|
| 1728 |
on atom 0
|
| 1729 |
|
| 1730 |
(1,1,1,1.0) specifies (atom 1, l=1, m=1, weight=1.0) a p orbital
|
| 1731 |
with m = +1 on atom 0
|
| 1732 |
|
| 1733 |
l=0 s-orbital
|
| 1734 |
l=1 p-orbital
|
| 1735 |
l=2 d-orbital
|
| 1736 |
|
| 1737 |
m in range of ( -l ... 0 ... +l )
|
| 1738 |
|
| 1739 |
The direction cosines for which the spherical harmonics are
|
| 1740 |
set up are using the next different atom in the list
|
| 1741 |
(cyclic) as direction pointer, so the z-direction is chosen
|
| 1742 |
along the direction to this next atom. At the moment the
|
| 1743 |
rotation matrices is only given in the text file, you can
|
| 1744 |
use grep'MUL: Rmatrix' out_o2.txt to get this information.
|
| 1745 |
|
| 1746 |
adapated from old MultiCenterProjectedDOS.py
|
| 1747 |
'''
|
| 1748 |
if mcenters is None: |
| 1749 |
return
|
| 1750 |
|
| 1751 |
nc = netCDF(self.get_nc(), 'a') |
| 1752 |
|
| 1753 |
_listofmcenters_ = mcenters |
| 1754 |
|
| 1755 |
# get number of multi centers
|
| 1756 |
ncenters = len(_listofmcenters_)
|
| 1757 |
# get max number of orbitals any center
|
| 1758 |
max_orbitals = max(map(len, _listofmcenters_)) |
| 1759 |
|
| 1760 |
mmatrix = np.zeros([ncenters, max_orbitals, 4], np.float)
|
| 1761 |
ncenter = 0
|
| 1762 |
for multicenter in _listofmcenters_: |
| 1763 |
norbital = 0
|
| 1764 |
for orbital in multicenter: |
| 1765 |
mmatrix[ncenter, norbital] = orbital |
| 1766 |
norbital = norbital + 1
|
| 1767 |
|
| 1768 |
# signal that this multicenter contains less than
|
| 1769 |
# max_orbital orbitals
|
| 1770 |
if len(multicenter) < max_orbitals: |
| 1771 |
mmatrix[ncenter, len(multicenter):max_orbitals] = (-1.0, 0, |
| 1772 |
0, 0) |
| 1773 |
|
| 1774 |
ncenter = ncenter + 1
|
| 1775 |
|
| 1776 |
nc.createDimension('max_orbitals', max_orbitals)
|
| 1777 |
nc.createDimension('number_of_multicenters', ncenters)
|
| 1778 |
|
| 1779 |
if 'MultiCenterProjectedDOS' in nc.variables: |
| 1780 |
v = nc.variables['MultiCenterProjectedDOS']
|
| 1781 |
else:
|
| 1782 |
v = nc.createVariable('MultiCenterProjectedDOS',
|
| 1783 |
'd',
|
| 1784 |
('number_of_multicenters',
|
| 1785 |
'max_orbitals',
|
| 1786 |
'dim4'))
|
| 1787 |
|
| 1788 |
v.EnergyWindow = energywindow |
| 1789 |
v.EnergyWidth = energywidth |
| 1790 |
v.NumberEnergyPoints = numberenergypoints |
| 1791 |
v.CutoffRadius = cutoffradius |
| 1792 |
|
| 1793 |
#this is kind of hacky, but it is needed for get_mdos so you
|
| 1794 |
#can tell if the input is changed.
|
| 1795 |
v.mcenters = str(mcenters)
|
| 1796 |
|
| 1797 |
v[:] = mmatrix |
| 1798 |
|
| 1799 |
nc.sync() |
| 1800 |
nc.close() |
| 1801 |
|
| 1802 |
def set_debug(self, debug): |
| 1803 |
'''
|
| 1804 |
set debug level for python logging
|
| 1805 |
|
| 1806 |
debug should be an integer from 0-100 or one of the logging
|
| 1807 |
constants like logging.DEBUG, logging.WARN, etc...
|
| 1808 |
|
| 1809 |
'''
|
| 1810 |
|
| 1811 |
self.debug = debug
|
| 1812 |
log.setLevel(debug) |
| 1813 |
|
| 1814 |
def get_debug(self): |
| 1815 |
'Return the python logging level'
|
| 1816 |
|
| 1817 |
return self.debug |
| 1818 |
|
| 1819 |
def get_decoupling(self): |
| 1820 |
'return the electrostatic decoupling parameters'
|
| 1821 |
|
| 1822 |
nc = netCDF(self.get_nc(), 'r') |
| 1823 |
if 'Decoupling' in nc.variables: |
| 1824 |
v = nc.variables['Decoupling']
|
| 1825 |
decoupling = {}
|
| 1826 |
if hasattr(v,'NumberOfGaussians'): |
| 1827 |
decoupling['ngaussians'] = v.NumberOfGaussians
|
| 1828 |
if hasattr(v,'ECutoff'): |
| 1829 |
decoupling['ecutoff'] = v.ECutoff
|
| 1830 |
if hasattr(v,'WidthOfGaussian'): |
| 1831 |
decoupling['gausswidth'] = v.WidthOfGaussian
|
| 1832 |
else:
|
| 1833 |
decoupling = None
|
| 1834 |
nc.close() |
| 1835 |
return decoupling
|
| 1836 |
|
| 1837 |
def set_decoupling(self, |
| 1838 |
ngaussians=3,
|
| 1839 |
ecutoff=100,
|
| 1840 |
gausswidth=0.35):
|
| 1841 |
'''
|
| 1842 |
Decoupling activates the three dimensional electrostatic
|
| 1843 |
decoupling. Based on paper by Peter E. Bloechl: JCP 103
|
| 1844 |
page7422 (1995).
|
| 1845 |
|
| 1846 |
:Parameters:
|
| 1847 |
|
| 1848 |
ngaussians : int
|
| 1849 |
The number of gaussian functions per atom
|
| 1850 |
used for constructing the model charge of the system
|
| 1851 |
|
| 1852 |
ecutoff : int
|
| 1853 |
The cut off energy (eV) of system charge density in
|
| 1854 |
g-space used when mapping constructing the model change of
|
| 1855 |
the system, i.e. only charge density components below
|
| 1856 |
ECutoff enters when constructing the model change.
|
| 1857 |
|
| 1858 |
gausswidth : float
|
| 1859 |
The width of the Gaussians defined by
|
| 1860 |
$widthofgaussian*1.5^(n-1)$ $n$=(1 to numberofgaussians)
|
| 1861 |
|
| 1862 |
'''
|
| 1863 |
|
| 1864 |
nc = netCDF(self.get_nc(), 'a') |
| 1865 |
if 'Decoupling' in nc.variables: |
| 1866 |
v = nc.variables['Decoupling']
|
| 1867 |
else:
|
| 1868 |
v = nc.createVariable('Decoupling', 'c', ()) |
| 1869 |
|
| 1870 |
v.NumberOfGaussians = ngaussians |
| 1871 |
v.ECutoff = ecutoff |
| 1872 |
v.WidthOfGaussian = gausswidth |
| 1873 |
|
| 1874 |
nc.sync() |
| 1875 |
nc.close() |
| 1876 |
self.set_status('new') |
| 1877 |
self.ready = False |
| 1878 |
|
| 1879 |
def set_external_dipole(self, |
| 1880 |
value, |
| 1881 |
position=None):
|
| 1882 |
'''
|
| 1883 |
Externally imposed dipole potential. This option overwrites
|
| 1884 |
DipoleCorrection if set.
|
| 1885 |
|
| 1886 |
:Parameters:
|
| 1887 |
|
| 1888 |
value : float
|
| 1889 |
units of volts
|
| 1890 |
|
| 1891 |
position : float
|
| 1892 |
scaled coordinates along third unit cell direction.
|
| 1893 |
if None, the compensation dipole layer plane in the
|
| 1894 |
vacuum position farthest from any other atoms on both
|
| 1895 |
sides of the slab. Do not set to 0.0.
|
| 1896 |
'''
|
| 1897 |
|
| 1898 |
var = 'ExternalDipolePotential'
|
| 1899 |
nc = netCDF(self.get_nc(), 'a') |
| 1900 |
if var in nc.variables: |
| 1901 |
v = nc.variables[var] |
| 1902 |
else:
|
| 1903 |
v = nc.createVariable('ExternalDipolePotential', 'd', ()) |
| 1904 |
|
| 1905 |
v.assignValue(value) |
| 1906 |
if position is not None: |
| 1907 |
v.DipoleLayerPosition = position |
| 1908 |
|
| 1909 |
nc.sync() |
| 1910 |
nc.close() |
| 1911 |
self.set_status('new') |
| 1912 |
self.ready = False |
| 1913 |
|
| 1914 |
def get_external_dipole(self): |
| 1915 |
'return the External dipole settings'
|
| 1916 |
|
| 1917 |
var = 'ExternalDipolePotential'
|
| 1918 |
nc = netCDF(self.get_nc(),'r') |
| 1919 |
if var in nc.variables: |
| 1920 |
v = nc.variables[var] |
| 1921 |
value = v.getValue() |
| 1922 |
if hasattr(v, 'DipoleLayerPosition'): |
| 1923 |
position = v.DipoleLayerPosition |
| 1924 |
else:
|
| 1925 |
position = None
|
| 1926 |
|
| 1927 |
ed = {'value':value, 'position':position}
|
| 1928 |
else:
|
| 1929 |
ed = None
|
| 1930 |
nc.close() |
| 1931 |
return ed
|
| 1932 |
|
| 1933 |
def set_dipole(self, |
| 1934 |
status=True,
|
| 1935 |
mixpar=0.2,
|
| 1936 |
initval=0.0,
|
| 1937 |
adddipfield=0.0,
|
| 1938 |
position=None):
|
| 1939 |
'''turn on and set dipole correction scheme
|
| 1940 |
|
| 1941 |
:Parameters:
|
| 1942 |
|
| 1943 |
status : Boolean
|
| 1944 |
True turns dipole on. False turns Dipole off
|
| 1945 |
|
| 1946 |
mixpar : float
|
| 1947 |
Mixing Parameter for the the dipole correction field
|
| 1948 |
during the electronic minimization process. If instabilities
|
| 1949 |
occur during electronic minimization, this value may be
|
| 1950 |
decreased.
|
| 1951 |
|
| 1952 |
initval : float
|
| 1953 |
initial value to start at
|
| 1954 |
|
| 1955 |
adddipfield : float
|
| 1956 |
additional dipole field to add
|
| 1957 |
units : V/ang
|
| 1958 |
External additive, constant electrostatic field along
|
| 1959 |
third unit cell vector, corresponding to an external
|
| 1960 |
dipole layer. The field discontinuity follows the position
|
| 1961 |
of the dynamical dipole correction, i.e. if
|
| 1962 |
DipoleCorrection:DipoleLayerPosition is set, the field
|
| 1963 |
discontinuity is at this value, otherwise it is at the
|
| 1964 |
vacuum position farthest from any other atoms on both
|
| 1965 |
sides of the slab.
|
| 1966 |
|
| 1967 |
position : float
|
| 1968 |
scaled coordinates along third unit cell direction.
|
| 1969 |
If this attribute is set, DACAPO will position the
|
| 1970 |
compensation dipole layer plane in at the provided value.
|
| 1971 |
If this attribute is not set, DACAPO will put the compensation
|
| 1972 |
dipole layer plane in the vacuum position farthest from any
|
| 1973 |
other atoms on both sides of the slab. Do not set this to
|
| 1974 |
0.0
|
| 1975 |
|
| 1976 |
|
| 1977 |
calling set_dipole() sets all default values.
|
| 1978 |
|
| 1979 |
'''
|
| 1980 |
if status == False: |
| 1981 |
self.delete_ncattdimvar(self.nc, ncvars=['DipoleCorrection']) |
| 1982 |
return
|
| 1983 |
|
| 1984 |
ncf = netCDF(self.get_nc(), 'a') |
| 1985 |
if 'DipoleCorrection' not in ncf.variables: |
| 1986 |
dip = ncf.createVariable('DipoleCorrection', 'c', ()) |
| 1987 |
else:
|
| 1988 |
dip = ncf.variables['DipoleCorrection']
|
| 1989 |
dip.MixingParameter = mixpar |
| 1990 |
dip.InitialValue = initval |
| 1991 |
dip.AdditiveDipoleField = adddipfield |
| 1992 |
|
| 1993 |
if position is not None: |
| 1994 |
dip.DipoleLayerPosition = position |
| 1995 |
|
| 1996 |
ncf.sync() |
| 1997 |
ncf.close() |
| 1998 |
self.set_status('new') |
| 1999 |
self.ready = False |
| 2000 |
|
| 2001 |
def set_stay_alive(self, value): |
| 2002 |
'set the stay alive setting'
|
| 2003 |
|
| 2004 |
self.delete_ncattdimvar(self.nc, |
| 2005 |
ncvars=['Dynamics'])
|
| 2006 |
|
| 2007 |
if value in [True, False]: |
| 2008 |
self.stay_alive = value
|
| 2009 |
#self._dacapo_is_running = False
|
| 2010 |
else:
|
| 2011 |
log.debug("stay_alive must be boolean. Value was not changed.")
|
| 2012 |
|
| 2013 |
def get_stay_alive(self): |
| 2014 |
'return the stay alive settings'
|
| 2015 |
|
| 2016 |
return self.stay_alive |
| 2017 |
|
| 2018 |
def get_fftgrid(self): |
| 2019 |
'return soft and hard fft grids'
|
| 2020 |
|
| 2021 |
nc = netCDF(self.nc, 'r') |
| 2022 |
soft = [] |
| 2023 |
hard = [] |
| 2024 |
for d in [1, 2, 3]: |
| 2025 |
sd = 'softgrid_dim%i' % d
|
| 2026 |
hd = 'hardgrid_dim%i' % d
|
| 2027 |
if sd in nc.dimensions: |
| 2028 |
soft.append(nc.dimensions[sd]) |
| 2029 |
hard.append(nc.dimensions[hd]) |
| 2030 |
nc.close() |
| 2031 |
return ({'soft':soft, |
| 2032 |
'hard':hard})
|
| 2033 |
|
| 2034 |
def get_kpts_type(self): |
| 2035 |
'return the kpt grid type'
|
| 2036 |
|
| 2037 |
nc = netCDF(self.nc, 'r') |
| 2038 |
|
| 2039 |
if 'BZKpoints' in nc.variables: |
| 2040 |
bv = nc.variables['BZKpoints']
|
| 2041 |
if hasattr(bv, 'gridtype'): |
| 2042 |
kpts_type = bv.gridtype #string saved in jacapo
|
| 2043 |
else:
|
| 2044 |
#no grid attribute, this ncfile was created pre-jacapo
|
| 2045 |
kpts_type = 'pre-Jacapo: %i kpts' % len(bv[:]) |
| 2046 |
else:
|
| 2047 |
kpts_type = 'BZKpoints not defined. [[0,0,0]] used by default.'
|
| 2048 |
|
| 2049 |
nc.close() |
| 2050 |
return kpts_type
|
| 2051 |
|
| 2052 |
def get_kpts(self): |
| 2053 |
'return the BZ kpts'
|
| 2054 |
nc = netCDF(self.nc, 'r') |
| 2055 |
|
| 2056 |
if 'BZKpoints' in nc.variables: |
| 2057 |
bv = nc.variables['BZKpoints']
|
| 2058 |
kpts = bv[:] |
| 2059 |
else:
|
| 2060 |
kpts = ([0, 0, 0]) #default Gamma point used in Dacapo when |
| 2061 |
#BZKpoints not defined
|
| 2062 |
|
| 2063 |
nc.close() |
| 2064 |
return kpts
|
| 2065 |
|
| 2066 |
def get_nbands(self): |
| 2067 |
'return the number of bands used in the calculation'
|
| 2068 |
nc = netCDF(self.nc, 'r') |
| 2069 |
|
| 2070 |
if 'ElectronicBands' in nc.variables: |
| 2071 |
v = nc.variables['ElectronicBands']
|
| 2072 |
if hasattr(v, 'NumberOfBands'): |
| 2073 |
nbands = v.NumberOfBands[0]
|
| 2074 |
else:
|
| 2075 |
nbands = None
|
| 2076 |
else:
|
| 2077 |
nbands = None
|
| 2078 |
|
| 2079 |
nc.close() |
| 2080 |
return nbands
|
| 2081 |
|
| 2082 |
def get_ft(self): |
| 2083 |
'return the FermiTemperature used in the calculation'
|
| 2084 |
nc = netCDF(self.nc, 'r') |
| 2085 |
|
| 2086 |
if 'ElectronicBands' in nc.variables: |
| 2087 |
v = nc.variables['ElectronicBands']
|
| 2088 |
if hasattr(v, 'OccupationStatistics_FermiTemperature'): |
| 2089 |
ft = v.OccupationStatistics_FermiTemperature |
| 2090 |
else:
|
| 2091 |
ft = None
|
| 2092 |
else:
|
| 2093 |
ft = None
|
| 2094 |
nc.close() |
| 2095 |
return ft
|
| 2096 |
|
| 2097 |
def get_dipole(self): |
| 2098 |
'return dictionary of parameters if the DipoleCorrection was used'
|
| 2099 |
|
| 2100 |
nc = netCDF(self.get_nc(), 'r') |
| 2101 |
pars = {}
|
| 2102 |
if 'DipoleCorrection' in nc.variables: |
| 2103 |
v = nc.variables['DipoleCorrection']
|
| 2104 |
pars['status'] = True |
| 2105 |
if hasattr(v, 'MixingParameter'): |
| 2106 |
pars['mixpar'] = v.MixingParameter
|
| 2107 |
if hasattr(v, 'InitialValue'): |
| 2108 |
pars['initval'] = v.InitialValue
|
| 2109 |
if hasattr(v, 'AdditiveDipoleField'): |
| 2110 |
pars['adddipfield'] = v.AdditiveDipoleField
|
| 2111 |
if hasattr(v, 'DipoleLayerPosition'): |
| 2112 |
pars['position'] = v.DipoleLayerPosition
|
| 2113 |
|
| 2114 |
else:
|
| 2115 |
pars = False
|
| 2116 |
nc.close() |
| 2117 |
return pars
|
| 2118 |
|
| 2119 |
def get_pw(self): |
| 2120 |
'return the planewave cutoff used'
|
| 2121 |
|
| 2122 |
ncf = netCDF(self.nc, 'r') |
| 2123 |
if 'PlaneWaveCutoff' in ncf.variables: |
| 2124 |
pw = ncf.variables['PlaneWaveCutoff'].getValue()
|
| 2125 |
else:
|
| 2126 |
pw = None
|
| 2127 |
ncf.close() |
| 2128 |
|
| 2129 |
if isinstance(pw, int) or isinstance(pw, float): |
| 2130 |
return pw
|
| 2131 |
elif pw is None: |
| 2132 |
return None |
| 2133 |
else:
|
| 2134 |
return pw[0] |
| 2135 |
|
| 2136 |
def get_dw(self): |
| 2137 |
'return the density wave cutoff'
|
| 2138 |
|
| 2139 |
ncf = netCDF(self.nc, 'r') |
| 2140 |
if 'Density_WaveCutoff' in ncf.variables: |
| 2141 |
dw = ncf.variables['Density_WaveCutoff'].getValue()
|
| 2142 |
else:
|
| 2143 |
dw = None
|
| 2144 |
ncf.close() |
| 2145 |
|
| 2146 |
#some old calculations apparently store ints, while newer ones
|
| 2147 |
#are lists
|
| 2148 |
if isinstance(dw, int) or isinstance(dw, float): |
| 2149 |
return dw
|
| 2150 |
else:
|
| 2151 |
if dw is None: |
| 2152 |
return None |
| 2153 |
else:
|
| 2154 |
return dw[0] |
| 2155 |
|
| 2156 |
def get_xc(self): |
| 2157 |
'''return the self-consistent exchange-correlation functional used
|
| 2158 |
|
| 2159 |
returns a string'''
|
| 2160 |
|
| 2161 |
nc = netCDF(self.nc, 'r') |
| 2162 |
v = 'ExcFunctional'
|
| 2163 |
if v in nc.variables: |
| 2164 |
xc = nc.variables[v][:].tostring().strip() |
| 2165 |
else:
|
| 2166 |
xc = None
|
| 2167 |
|
| 2168 |
nc.close() |
| 2169 |
return xc
|
| 2170 |
|
| 2171 |
def get_potential_energy(self, |
| 2172 |
atoms=None,
|
| 2173 |
force_consistent=False):
|
| 2174 |
'''
|
| 2175 |
return the potential energy.
|
| 2176 |
'''
|
| 2177 |
|
| 2178 |
if self.calculation_required(atoms): |
| 2179 |
log.debug('calculation required for energy')
|
| 2180 |
self.calculate()
|
| 2181 |
else:
|
| 2182 |
log.debug('no calculation required for energy')
|
| 2183 |
|
| 2184 |
nc = netCDF(self.get_nc(), 'r') |
| 2185 |
try:
|
| 2186 |
if force_consistent:
|
| 2187 |
e = nc.variables['TotalFreeEnergy'][-1] |
| 2188 |
else:
|
| 2189 |
e = nc.variables['TotalEnergy'][-1] |
| 2190 |
nc.close() |
| 2191 |
return e
|
| 2192 |
except (TypeError, KeyError): |
| 2193 |
raise RuntimeError('Error in calculating the total energy\n' + |
| 2194 |
'Check ascii out file for error messages')
|
| 2195 |
|
| 2196 |
def get_forces(self, atoms=None): |
| 2197 |
"""Calculate atomic forces"""
|
| 2198 |
|
| 2199 |
if atoms is None: |
| 2200 |
atoms = self.atoms
|
| 2201 |
if self.calculation_required(atoms): |
| 2202 |
self.calculate()
|
| 2203 |
nc = netCDF(self.get_nc(), 'r') |
| 2204 |
forces = nc.variables['DynamicAtomForces'][-1] |
| 2205 |
nc.close() |
| 2206 |
return forces
|
| 2207 |
|
| 2208 |
def get_atoms(self): |
| 2209 |
'return the atoms attached to a calculator()'
|
| 2210 |
|
| 2211 |
if hasattr(self, 'atoms'): |
| 2212 |
if self.atoms is None: |
| 2213 |
return None |
| 2214 |
atoms = self.atoms.copy()
|
| 2215 |
#it is not obvious the copy of atoms should have teh same
|
| 2216 |
#calculator
|
| 2217 |
atoms.set_calculator(self)
|
| 2218 |
else:
|
| 2219 |
atoms = None
|
| 2220 |
return atoms
|
| 2221 |
|
| 2222 |
def get_nc(self): |
| 2223 |
'return the ncfile used for output'
|
| 2224 |
|
| 2225 |
return self.nc |
| 2226 |
|
| 2227 |
def get_txt(self): |
| 2228 |
'return the txt file used for output'
|
| 2229 |
|
| 2230 |
if hasattr(self,'txt'): |
| 2231 |
return self.txt |
| 2232 |
else:
|
| 2233 |
return None |
| 2234 |
|
| 2235 |
def get_psp(self, sym=None, z=None): |
| 2236 |
'''get the pseudopotential filename from the psp database
|
| 2237 |
|
| 2238 |
:Parameters:
|
| 2239 |
|
| 2240 |
sym : string
|
| 2241 |
the chemical symbol of the species
|
| 2242 |
|
| 2243 |
z : integer
|
| 2244 |
the atomic number of the species
|
| 2245 |
|
| 2246 |
|
| 2247 |
you can only specify sym or z. Returns the pseudopotential
|
| 2248 |
filename, not the full path.
|
| 2249 |
'''
|
| 2250 |
|
| 2251 |
if (sym is None and z is not None): |
| 2252 |
from ase.data import chemical_symbols |
| 2253 |
sym = chemical_symbols[z] |
| 2254 |
elif (sym is not None and z is None): |
| 2255 |
pass
|
| 2256 |
else:
|
| 2257 |
raise Exception, 'You can only specify Z or sym!' |
| 2258 |
psp = self.psp[sym]
|
| 2259 |
return psp
|
| 2260 |
|
| 2261 |
def get_spin_polarized(self): |
| 2262 |
'Return True if calculate is spin-polarized or False if not'
|
| 2263 |
|
| 2264 |
#self.calculate() #causes recursion error with get_magnetic_moments
|
| 2265 |
nc = netCDF(self.nc, 'r') |
| 2266 |
if 'ElectronicBands' in nc.variables: |
| 2267 |
v = nc.variables['ElectronicBands']
|
| 2268 |
if hasattr(v, 'SpinPolarization'): |
| 2269 |
if v.SpinPolarization == 1: |
| 2270 |
spinpol = False
|
| 2271 |
elif v.SpinPolarization == 2: |
| 2272 |
spinpol = True
|
| 2273 |
else:
|
| 2274 |
spinpol = False
|
| 2275 |
else:
|
| 2276 |
spinpol = 'Not defined'
|
| 2277 |
|
| 2278 |
nc.close() |
| 2279 |
return spinpol
|
| 2280 |
|
| 2281 |
def get_magnetic_moments(self, atoms=None): |
| 2282 |
'''return magnetic moments on each atom after the calculation is
|
| 2283 |
run'''
|
| 2284 |
|
| 2285 |
if self.calculation_required(atoms): |
| 2286 |
self.calculate()
|
| 2287 |
nc = netCDF(self.nc, 'r') |
| 2288 |
if 'InitialAtomicMagneticMoment' in nc.variables: |
| 2289 |
mom = nc.variables['InitialAtomicMagneticMoment'][:]
|
| 2290 |
else:
|
| 2291 |
mom = [0.0]*len(self.atoms) |
| 2292 |
|
| 2293 |
nc.close() |
| 2294 |
return mom
|
| 2295 |
|
| 2296 |
def get_status(self): |
| 2297 |
'''get status of calculation from ncfile. usually one of:
|
| 2298 |
'new',
|
| 2299 |
'aborted'
|
| 2300 |
'running'
|
| 2301 |
'finished'
|
| 2302 |
None
|
| 2303 |
'''
|
| 2304 |
|
| 2305 |
nc = netCDF(self.nc, 'r') |
| 2306 |
if hasattr(nc, 'status'): |
| 2307 |
status = nc.status |
| 2308 |
else:
|
| 2309 |
status = None
|
| 2310 |
nc.close() |
| 2311 |
return status
|
| 2312 |
|
| 2313 |
def get_calculate_stress(self): |
| 2314 |
'return whether stress is calculated or not'
|
| 2315 |
|
| 2316 |
nc = netCDF(self.get_nc(), 'r') |
| 2317 |
if 'TotalStress' in nc.variables: |
| 2318 |
calcstress = True
|
| 2319 |
else:
|
| 2320 |
calcstress = False
|
| 2321 |
nc.close() |
| 2322 |
return calcstress
|
| 2323 |
|
| 2324 |
def get_stress(self, atoms=None): |
| 2325 |
'''get stress on the atoms.
|
| 2326 |
|
| 2327 |
you should have set up the calculation
|
| 2328 |
to calculate stress first.
|
| 2329 |
|
| 2330 |
returns [sxx, syy, szz, syz, sxz, sxy]'''
|
| 2331 |
|
| 2332 |
if self.calculation_required(atoms): |
| 2333 |
self.calculate()
|
| 2334 |
|
| 2335 |
nc = netCDF(self.get_nc(), 'r') |
| 2336 |
if 'TotalStress' in nc.variables: |
| 2337 |
stress = nc.variables['TotalStress'][:]
|
| 2338 |
#ase expects the 6-element form
|
| 2339 |
stress = np.take(stress.ravel(), [0, 4, 8, 5, 2, 1]) |
| 2340 |
else:
|
| 2341 |
#stress will not be here if you did not set it up by
|
| 2342 |
#calling set_stress() or in the __init__
|
| 2343 |
stress = None
|
| 2344 |
|
| 2345 |
nc.close() |
| 2346 |
|
| 2347 |
return stress
|
| 2348 |
|
| 2349 |
def get_psp_valence(self, psp): |
| 2350 |
'''
|
| 2351 |
get the psp valence charge on an atom from the pspfile.
|
| 2352 |
'''
|
| 2353 |
|
| 2354 |
from struct import unpack |
| 2355 |
dacapopath = os.environ.get('DACAPOPATH')
|
| 2356 |
|
| 2357 |
if os.path.exists(psp):
|
| 2358 |
#the pspfile may be in the current directory
|
| 2359 |
#or defined by an absolute path
|
| 2360 |
fullpsp = psp |
| 2361 |
else:
|
| 2362 |
#or, it is in the default psp path
|
| 2363 |
fullpsp = os.path.join(dacapopath, psp) |
| 2364 |
|
| 2365 |
if os.path.exists(fullpsp.strip()):
|
| 2366 |
f = open(fullpsp)
|
| 2367 |
# read past version numbers and text information
|
| 2368 |
buf = f.read(64)
|
| 2369 |
# read number valence electrons
|
| 2370 |
buf = f.read(8)
|
| 2371 |
fmt = ">d"
|
| 2372 |
nvalence = unpack(fmt, buf)[0]
|
| 2373 |
f.close() |
| 2374 |
|
| 2375 |
else:
|
| 2376 |
raise Exception, "%s does not exist" % fullpsp |
| 2377 |
|
| 2378 |
return nvalence
|
| 2379 |
|
| 2380 |
def get_psp_nuclear_charge(self, psp): |
| 2381 |
'''
|
| 2382 |
get the nuclear charge of the atom from teh psp-file.
|
| 2383 |
|
| 2384 |
This is not the same as the atomic number, nor is it
|
| 2385 |
necessarily the negative of the number of valence electrons,
|
| 2386 |
since a psp may be an ion. this function is needed to compute
|
| 2387 |
centers of ion charge for the dipole moment calculation.
|
| 2388 |
|
| 2389 |
We read in the valence ion configuration from the psp file and
|
| 2390 |
add up the charges in each shell.
|
| 2391 |
'''
|
| 2392 |
|
| 2393 |
from struct import unpack |
| 2394 |
dacapopath = os.environ.get('DACAPOPATH')
|
| 2395 |
|
| 2396 |
if os.path.exists(psp):
|
| 2397 |
#the pspfile may be in the current directory
|
| 2398 |
#or defined by an absolute path
|
| 2399 |
fullpsp = psp |
| 2400 |
|
| 2401 |
else:
|
| 2402 |
#or, it is in the default psp path
|
| 2403 |
fullpsp = os.path.join(dacapopath, psp) |
| 2404 |
|
| 2405 |
if os.path.exists(fullpsp.strip()):
|
| 2406 |
f = open(fullpsp)
|
| 2407 |
unpack('>i', f.read(4))[0] |
| 2408 |
for i in range(3): |
| 2409 |
f.read(4)
|
| 2410 |
for i in range(3): |
| 2411 |
f.read(4)
|
| 2412 |
f.read(8)
|
| 2413 |
f.read(20)
|
| 2414 |
f.read(8)
|
| 2415 |
f.read(8)
|
| 2416 |
f.read(8)
|
| 2417 |
nvalps = unpack('>i', f.read(4))[0] |
| 2418 |
f.read(4)
|
| 2419 |
f.read(8)
|
| 2420 |
f.read(8)
|
| 2421 |
wwnlps = [] |
| 2422 |
for i in range(nvalps): |
| 2423 |
f.read(4)
|
| 2424 |
wwnlps.append(unpack('>d', f.read(8))[0]) |
| 2425 |
f.read(8)
|
| 2426 |
f.close() |
| 2427 |
|
| 2428 |
else:
|
| 2429 |
raise Exception, "%s does not exist" % fullpsp |
| 2430 |
|
| 2431 |
return np.array(wwnlps).sum()
|
| 2432 |
|
| 2433 |
def get_valence(self, atoms=None): |
| 2434 |
'''return the total number of valence electrons for the
|
| 2435 |
atoms. valence electrons are read directly from the
|
| 2436 |
pseudopotentials.
|
| 2437 |
|
| 2438 |
the psp filenames are stored in the ncfile. They may be just
|
| 2439 |
the name of the file, in which case the psp may exist in the
|
| 2440 |
same directory as the ncfile, or in $DACAPOPATH, or the psp
|
| 2441 |
may be defined by an absolute or relative path. This function
|
| 2442 |
deals with all these possibilities.
|
| 2443 |
'''
|
| 2444 |
|
| 2445 |
from struct import unpack |
| 2446 |
|
| 2447 |
#do not use get_atoms() or recursion occurs
|
| 2448 |
if atoms is None: |
| 2449 |
if hasattr(self, 'atoms'): |
| 2450 |
atoms = self.atoms
|
| 2451 |
else:
|
| 2452 |
return None |
| 2453 |
|
| 2454 |
dacapopath = os.environ.get('DACAPOPATH')
|
| 2455 |
totval = 0.0
|
| 2456 |
for sym in atoms.get_chemical_symbols(): |
| 2457 |
psp = self.get_psp(sym)
|
| 2458 |
|
| 2459 |
if os.path.exists(psp):
|
| 2460 |
#the pspfile may be in the current directory
|
| 2461 |
#or defined by an absolute path
|
| 2462 |
fullpsp = psp |
| 2463 |
|
| 2464 |
#let's also see if we can construct an absolute path to a
|
| 2465 |
#local or relative path psp.
|
| 2466 |
abs_path_to_nc = os.path.abspath(self.get_nc())
|
| 2467 |
base = os.path.split(abs_path_to_nc)[0]
|
| 2468 |
possible_path_to_psp = os.path.join(base, psp) |
| 2469 |
if os.path.exists(possible_path_to_psp):
|
| 2470 |
fullpsp = possible_path_to_psp |
| 2471 |
|
| 2472 |
else:
|
| 2473 |
#or, it is in the default psp path
|
| 2474 |
fullpsp = os.path.join(dacapopath, psp) |
| 2475 |
if os.path.exists(fullpsp.strip()):
|
| 2476 |
f = open(fullpsp)
|
| 2477 |
# read past version numbers and text information
|
| 2478 |
buf = f.read(64)
|
| 2479 |
# read number valence electrons
|
| 2480 |
buf = f.read(8)
|
| 2481 |
fmt = ">d"
|
| 2482 |
nvalence = unpack(fmt, buf)[0]
|
| 2483 |
f.close() |
| 2484 |
totval += float(nvalence)
|
| 2485 |
else:
|
| 2486 |
raise Exception, "%s does not exist" % fullpsp |
| 2487 |
|
| 2488 |
return totval
|
| 2489 |
|
| 2490 |
def calculation_required(self, atoms=None, quantities=None): |
| 2491 |
'''
|
| 2492 |
determines if a calculation is needed.
|
| 2493 |
|
| 2494 |
return True if a calculation is needed to get up to date data.
|
| 2495 |
return False if no calculation is needed.
|
| 2496 |
|
| 2497 |
quantities is here because of the ase interface.
|
| 2498 |
'''
|
| 2499 |
|
| 2500 |
# first, compare if the atoms is the same as the stored atoms
|
| 2501 |
# if anything has changed, we need to run a calculation
|
| 2502 |
log.debug('running calculation_required')
|
| 2503 |
|
| 2504 |
if self.nc is None: |
| 2505 |
raise Exception, 'No output ncfile specified!' |
| 2506 |
|
| 2507 |
if atoms is not None: |
| 2508 |
if not self.atoms_are_equal(atoms): |
| 2509 |
log.debug('found that atoms != self.atoms')
|
| 2510 |
tol = 1.0e-6 #tolerance that the unit cell is the same |
| 2511 |
new = atoms.get_cell() |
| 2512 |
old = self.atoms.get_cell()
|
| 2513 |
#float comparison of equality
|
| 2514 |
if not np.all(abs(old-new) < tol): |
| 2515 |
#this often changes the number of planewaves
|
| 2516 |
#which requires a complete restart
|
| 2517 |
log.debug('restart required! because cell changed')
|
| 2518 |
self.restart()
|
| 2519 |
else:
|
| 2520 |
log.debug('Unitcells apparently the same')
|
| 2521 |
|
| 2522 |
self.set_atoms(atoms) #we have to update the atoms in any case |
| 2523 |
return True |
| 2524 |
|
| 2525 |
#if we make it past the atoms check, we look in the
|
| 2526 |
#nc file. if parameters have been changed the status
|
| 2527 |
#will tell us if a calculation is needed
|
| 2528 |
|
| 2529 |
#past this point, atoms was None or equal, so there is nothing to
|
| 2530 |
#update in the calculator
|
| 2531 |
|
| 2532 |
log.debug('atoms tested equal')
|
| 2533 |
if os.path.exists(self.nc): |
| 2534 |
nc = netCDF(self.nc, 'r') |
| 2535 |
if hasattr(nc, 'status'): |
| 2536 |
if nc.status == 'finished' and self.ready: |
| 2537 |
nc.close() |
| 2538 |
return False |
| 2539 |
elif nc.status == 'running': |
| 2540 |
nc.close() |
| 2541 |
raise DacapoRunning('Dacapo is Running') |
| 2542 |
elif nc.status == 'aborted': |
| 2543 |
nc.close() |
| 2544 |
raise DacapoAborted('Dacapo aborted. see txt file!') |
| 2545 |
else:
|
| 2546 |
log.debug('ncfile exists, but is not ready')
|
| 2547 |
nc.close() |
| 2548 |
return True |
| 2549 |
else:
|
| 2550 |
#legacy calculations do not have a status flag in them.
|
| 2551 |
#let us guess that if the TotalEnergy is there
|
| 2552 |
#no calculation needs to be run?
|
| 2553 |
if 'TotalEnergy' in nc.variables: |
| 2554 |
runflag = False
|
| 2555 |
else:
|
| 2556 |
runflag = True
|
| 2557 |
nc.close() |
| 2558 |
log.debug('Legacy calculation')
|
| 2559 |
return runflag #if no status run calculation |
| 2560 |
nc.close() |
| 2561 |
|
| 2562 |
#default, a calculation is required
|
| 2563 |
return True |
| 2564 |
|
| 2565 |
def get_scratch(self): |
| 2566 |
'''finds an appropriate scratch directory for the calculation'''
|
| 2567 |
|
| 2568 |
import getpass |
| 2569 |
username = getpass.getuser() |
| 2570 |
|
| 2571 |
scratch_dirs = [] |
| 2572 |
if os.environ.has_key('SCRATCH'): |
| 2573 |
scratch_dirs.append(os.environ['SCRATCH'])
|
| 2574 |
if os.environ.has_key('SCR'): |
| 2575 |
scratch_dirs.append(os.environ['SCR'])
|
| 2576 |
scratch_dirs.append('/scratch/'+username)
|
| 2577 |
scratch_dirs.append('/scratch/')
|
| 2578 |
scratch_dirs.append(os.curdir) |
| 2579 |
for scratch_dir in scratch_dirs: |
| 2580 |
if os.access(scratch_dir, os.W_OK):
|
| 2581 |
return scratch_dir
|
| 2582 |
raise IOError, "No suitable scratch directory and no write access \ |
| 2583 |
to current dir."
|
| 2584 |
|
| 2585 |
def calculate(self): |
| 2586 |
'''run a calculation.
|
| 2587 |
|
| 2588 |
you have to be a little careful with code in here. Use the
|
| 2589 |
calculation_required function to tell if a calculation is
|
| 2590 |
required. It is assumed here that if you call this, you mean
|
| 2591 |
it.'''
|
| 2592 |
|
| 2593 |
#provide a way to make no calculation get run
|
| 2594 |
if os.environ.get('DACAPO_DRYRUN', None) is not None: |
| 2595 |
raise Exception, '$DACAPO_DRYRUN detected, and a calculation \ |
| 2596 |
attempted'
|
| 2597 |
|
| 2598 |
if not self.ready: |
| 2599 |
log.debug('Calculator is not ready.')
|
| 2600 |
if not os.path.exists(self.get_nc()): |
| 2601 |
self.initnc()
|
| 2602 |
|
| 2603 |
log.debug('writing atoms out')
|
| 2604 |
log.debug(self.atoms)
|
| 2605 |
|
| 2606 |
self.write_nc() #write atoms to ncfile |
| 2607 |
|
| 2608 |
log.debug('writing input out')
|
| 2609 |
self.write_input() #make sure input is uptodate |
| 2610 |
|
| 2611 |
|
| 2612 |
#check that the bands get set
|
| 2613 |
if self.get_nbands() is None: |
| 2614 |
nelectrons = self.get_valence()
|
| 2615 |
nbands = int(nelectrons * 0.65 + 4) |
| 2616 |
self.set_nbands(nbands)
|
| 2617 |
|
| 2618 |
log.debug('running a calculation')
|
| 2619 |
|
| 2620 |
nc = self.get_nc()
|
| 2621 |
txt = self.get_txt()
|
| 2622 |
scratch = self.get_scratch()
|
| 2623 |
|
| 2624 |
if self.stay_alive: |
| 2625 |
self.execute_external_dynamics(nc, txt)
|
| 2626 |
self.ready = True |
| 2627 |
self.set_status('finished') |
| 2628 |
else:
|
| 2629 |
cmd = 'dacapo.run %(innc)s -out %(txt)s -scratch %(scratch)s'
|
| 2630 |
cmd = cmd % {'innc':nc,
|
| 2631 |
'txt':txt,
|
| 2632 |
'scratch':scratch}
|
| 2633 |
|
| 2634 |
log.debug(cmd) |
| 2635 |
# using subprocess instead of commands subprocess is more
|
| 2636 |
# flexible and works better for stay_alive
|
| 2637 |
self._dacapo = sp.Popen(cmd,
|
| 2638 |
stdout=sp.PIPE, |
| 2639 |
stderr=sp.PIPE, |
| 2640 |
shell=True)
|
| 2641 |
status = self._dacapo.wait()
|
| 2642 |
[stdout, stderr] = self._dacapo.communicate()
|
| 2643 |
output = stdout+stderr |
| 2644 |
|
| 2645 |
if status is 0: #that means it ended fine! |
| 2646 |
self.ready = True |
| 2647 |
self.set_status('finished') |
| 2648 |
else:
|
| 2649 |
log.debug('Status was not 0')
|
| 2650 |
log.debug(output) |
| 2651 |
self.ready = False |
| 2652 |
# directory cleanup has been moved to self.__del__()
|
| 2653 |
del self._dacapo |
| 2654 |
|
| 2655 |
#Sometimes dacapo dies or is killed abnormally, and in this
|
| 2656 |
#case an exception should be raised to prevent a geometry
|
| 2657 |
#optimization from continuing for example. The best way to
|
| 2658 |
#detect this right now is actually to check the end of the
|
| 2659 |
#text file to make sure it ends with the right line. The
|
| 2660 |
#line differs if the job was run in parallel or in serial.
|
| 2661 |
f = open(txt, 'r') |
| 2662 |
lines = f.readlines() |
| 2663 |
f.close() |
| 2664 |
|
| 2665 |
if 'PAR: msexit halting Master' in lines[-1]: |
| 2666 |
pass #standard parallel end |
| 2667 |
elif ('TIM' in lines[-2] |
| 2668 |
and 'clexit: exiting the program' in lines[-1]): |
| 2669 |
pass #standard serial end |
| 2670 |
else:
|
| 2671 |
# text file does not end as expected, print the last
|
| 2672 |
# 10 lines and raise exception
|
| 2673 |
log.debug(string.join(lines[-10:-1], '')) |
| 2674 |
s = 'Dacapo output txtfile (%s) did not end normally.'
|
| 2675 |
raise DacapoAbnormalTermination(s % txt)
|
| 2676 |
|
| 2677 |
def execute_external_dynamics(self, |
| 2678 |
nc=None,
|
| 2679 |
txt=None,
|
| 2680 |
stoppfile='stop',
|
| 2681 |
stopprogram=None):
|
| 2682 |
'''
|
| 2683 |
Implementation of the stay alive functionality with socket
|
| 2684 |
communication between dacapo and python. Known limitations:
|
| 2685 |
It is not possible to start 2 independent Dacapo calculators
|
| 2686 |
from the same python process, since the python PID is used as
|
| 2687 |
identifier for the script[PID].py file.
|
| 2688 |
'''
|
| 2689 |
|
| 2690 |
from socket import socket, AF_INET, SOCK_STREAM, timeout |
| 2691 |
import tempfile |
| 2692 |
|
| 2693 |
if hasattr(self, "_dacapo"): |
| 2694 |
msg = "Starting External Dynamics while Dacapo is runnning: %s"
|
| 2695 |
msg = msg % str(self._dacapo.poll()) |
| 2696 |
log.debug(msg) |
| 2697 |
else:
|
| 2698 |
log.debug("No dacapo instance has been started yet")
|
| 2699 |
log.debug("Stopprogram: %s" % stopprogram)
|
| 2700 |
|
| 2701 |
if not nc: |
| 2702 |
nc = self.get_nc()
|
| 2703 |
if not txt: |
| 2704 |
txt = self.get_txt()
|
| 2705 |
tempfile.tempdir = os.curdir |
| 2706 |
|
| 2707 |
if stopprogram:
|
| 2708 |
# write stop file
|
| 2709 |
stfile = open(stoppfile, 'w') |
| 2710 |
stfile.write('1 \n')
|
| 2711 |
stfile.close() |
| 2712 |
|
| 2713 |
# signal to dacapo that positions are ready
|
| 2714 |
# let dacapo continue, it is up to the python mainloop
|
| 2715 |
# to allow dacapo enough time to finish properly.
|
| 2716 |
self._client.send('ok too proceed') |
| 2717 |
|
| 2718 |
# Wait for dacapo to acknowledge that netcdf file has
|
| 2719 |
# been updated, and analysis part of the code has been
|
| 2720 |
# terminated. Dacapo sends a signal at the end of call
|
| 2721 |
# clexit().
|
| 2722 |
log.info("waiting for dacapo to exit...")
|
| 2723 |
self.s.settimeout(1200.0) # if dacapo exits with an |
| 2724 |
# error, self.s.accept()
|
| 2725 |
# should time out,
|
| 2726 |
# but we need to give it
|
| 2727 |
# enough time to write the
|
| 2728 |
# wave function to the nc
|
| 2729 |
# file.
|
| 2730 |
try:
|
| 2731 |
self._client, self._addr = self.s.accept() # Last |
| 2732 |
# mumble
|
| 2733 |
# before
|
| 2734 |
# Dacapo
|
| 2735 |
# dies.
|
| 2736 |
os.system("sleep 5") # 5 seconds of silence |
| 2737 |
# mourning
|
| 2738 |
# dacapo.
|
| 2739 |
except timeout:
|
| 2740 |
print '''Socket connection timed out.''' |
| 2741 |
print '''This usually means Dacapo crashed.''' |
| 2742 |
|
| 2743 |
# close the socket s
|
| 2744 |
self.s.close()
|
| 2745 |
self._client.close()
|
| 2746 |
|
| 2747 |
# remove the script???? file
|
| 2748 |
ncfile = netCDF(nc, 'r')
|
| 2749 |
vdyn = ncfile.variables['Dynamics']
|
| 2750 |
os.system('rm -f '+vdyn.ExternalIonMotion_script)
|
| 2751 |
ncfile.close() |
| 2752 |
os.system('rm -f '+stoppfile)
|
| 2753 |
|
| 2754 |
if self._dacapo.poll()==None: # dacapo is still not dead! |
| 2755 |
# but this should do it!
|
| 2756 |
sp.Popen("kill -9 "+str(self._dacapo.pid), shell=True) |
| 2757 |
#if Dacapo dies for example because of too few
|
| 2758 |
#bands, subprocess never returns an exitcode.
|
| 2759 |
#very strange, but at least the program is
|
| 2760 |
#terminated. print self._dacapo.returncode
|
| 2761 |
del self._dacapo |
| 2762 |
return
|
| 2763 |
|
| 2764 |
if hasattr(self, '_dacapo') and self._dacapo.poll()==None: |
| 2765 |
# returns None if dacapo is running self._dacapo_is_running:
|
| 2766 |
|
| 2767 |
# calculation_required already updated the positions in
|
| 2768 |
# the nc file
|
| 2769 |
self._client.send('ok too proceed') |
| 2770 |
|
| 2771 |
else:
|
| 2772 |
|
| 2773 |
# get process pid that will be used as communication
|
| 2774 |
# channel
|
| 2775 |
pid = os.getpid() |
| 2776 |
|
| 2777 |
# setup communication channel to dacapo
|
| 2778 |
from sys import version |
| 2779 |
from string import split |
| 2780 |
effpid = (pid)%(2**16-1025)+1025 # This translate pid |
| 2781 |
# [0;99999] to a number
|
| 2782 |
# in [1025;65535] (the
|
| 2783 |
# allowed socket
|
| 2784 |
# numbers)
|
| 2785 |
|
| 2786 |
self.s = socket(AF_INET, SOCK_STREAM)
|
| 2787 |
foundafreesocket = 0
|
| 2788 |
while not foundafreesocket: |
| 2789 |
try:
|
| 2790 |
if split(version)[0] > "2": # new interface |
| 2791 |
self.s.bind(("", effpid)) |
| 2792 |
else: # old interface |
| 2793 |
self.s.bind("", effpid) |
| 2794 |
foundafreesocket = 1
|
| 2795 |
except:
|
| 2796 |
effpid = effpid + 1
|
| 2797 |
|
| 2798 |
# write script file that will be used by dacapo
|
| 2799 |
scriptname = 'script%s.py' % str(pid) |
| 2800 |
scriptfile = open(scriptname, 'w') |
| 2801 |
scriptfile.write( |
| 2802 |
"""#!/usr/bin/env python
|
| 2803 |
from socket import *
|
| 2804 |
from sys import version
|
| 2805 |
from string import split
|
| 2806 |
s = socket(AF_INET,SOCK_STREAM)
|
| 2807 |
# tell python that dacapo has finished
|
| 2808 |
if split(version)[0] > "2": # new interface
|
| 2809 |
s.connect(("",%(effpid)s))
|
| 2810 |
else: # old interface
|
| 2811 |
s.connect("",%(effpid)s)
|
| 2812 |
# wait for python main loop
|
| 2813 |
s.recv(14)
|
| 2814 |
""" % {'effpid':str(effpid)}) |
| 2815 |
scriptfile.close() |
| 2816 |
os.system('chmod +x ' + scriptname)
|
| 2817 |
|
| 2818 |
# setup dynamics as external and set the script name
|
| 2819 |
ncfile = netCDF(nc, 'a')
|
| 2820 |
if 'Dynamics' not in ncfile.variables: |
| 2821 |
vdyn = ncfile.createVariable('Dynamics', 'c', ()) |
| 2822 |
else:
|
| 2823 |
vdyn = ncfile.variables['Dynamics']
|
| 2824 |
vdyn.Type = "ExternalIonMotion"
|
| 2825 |
vdyn.ExternalIonMotion_script = './'+ scriptname
|
| 2826 |
ncfile.close() |
| 2827 |
|
| 2828 |
# dacapo is not running start dacapo non blocking
|
| 2829 |
scratch_in_nc = tempfile.mktemp() |
| 2830 |
os.system('mv '+nc+' '+scratch_in_nc) |
| 2831 |
os.system('rm -f '+stoppfile)
|
| 2832 |
scratch = self.get_scratch()
|
| 2833 |
cmd = 'dacapo.run'
|
| 2834 |
cmd += ' %(innc)s %(outnc)s -out %(txt)s -scratch %(scratch)s'
|
| 2835 |
cmd = cmd % {'innc':scratch_in_nc,
|
| 2836 |
'outnc':nc,
|
| 2837 |
'txt':txt,
|
| 2838 |
'scratch':scratch}
|
| 2839 |
|
| 2840 |
log.debug(cmd) |
| 2841 |
self._dacapo = sp.Popen(cmd,
|
| 2842 |
stdout=sp.PIPE, |
| 2843 |
stderr=sp.PIPE, |
| 2844 |
shell=True)
|
| 2845 |
|
| 2846 |
self.s.listen(1) |
| 2847 |
|
| 2848 |
# wait for dacapo
|
| 2849 |
self._client, self._addr = self.s.accept() |
| 2850 |
|
| 2851 |
def write_nc(self, nc=None, atoms=None): |
| 2852 |
'''
|
| 2853 |
write out atoms to a netcdffile.
|
| 2854 |
|
| 2855 |
This does not write out the calculation parameters!
|
| 2856 |
|
| 2857 |
:Parameters:
|
| 2858 |
|
| 2859 |
nc : string
|
| 2860 |
ncfilename to write to. this file will get clobbered
|
| 2861 |
if it already exists.
|
| 2862 |
|
| 2863 |
atoms : ASE.Atoms
|
| 2864 |
atoms to write. if None use the attached atoms
|
| 2865 |
if no atoms are attached only the calculator is
|
| 2866 |
written out.
|
| 2867 |
|
| 2868 |
the ncfile is always opened in 'a' mode.
|
| 2869 |
|
| 2870 |
note: it is good practice to use the atoms argument to make
|
| 2871 |
sure that the geometry you mean gets written! Otherwise, the
|
| 2872 |
atoms in the calculator is used, which may be different than
|
| 2873 |
the external copy of the atoms.
|
| 2874 |
|
| 2875 |
'''
|
| 2876 |
|
| 2877 |
log.debug('writing atoms to ncfile')
|
| 2878 |
#no filename was provided to function, use the current ncfile
|
| 2879 |
if nc is None: |
| 2880 |
nc = self.get_nc()
|
| 2881 |
|
| 2882 |
if nc != self.nc: |
| 2883 |
#this means we are writing a new file, and we should copy
|
| 2884 |
#the old file to it first. this makes sure the old
|
| 2885 |
#calculator settings are preserved
|
| 2886 |
new = nc |
| 2887 |
old = self.nc
|
| 2888 |
log.debug('Copying old ncfile to new ncfile')
|
| 2889 |
log.debug('cp %s %s' % (old, new))
|
| 2890 |
os.system('cp %s %s' % (old, new))
|
| 2891 |
|
| 2892 |
if atoms is None: |
| 2893 |
atoms = self.get_atoms()
|
| 2894 |
|
| 2895 |
log.debug('self.atoms = %s' % str(self.atoms)) |
| 2896 |
log.debug('atoms = %s' % str(atoms)) |
| 2897 |
|
| 2898 |
if atoms is not None: #there may still be no atoms attached |
| 2899 |
log.debug('about to write to %s' % nc)
|
| 2900 |
ncf = netCDF(nc, 'a')
|
| 2901 |
|
| 2902 |
if 'number_of_dynamic_atoms' not in ncf.dimensions: |
| 2903 |
ncf.createDimension('number_of_dynamic_atoms',
|
| 2904 |
len(atoms))
|
| 2905 |
else:
|
| 2906 |
# number of atoms is already a dimension, but we might
|
| 2907 |
# be setting new atoms here
|
| 2908 |
# check for same atom symbols (implicitly includes
|
| 2909 |
# a length check)
|
| 2910 |
symbols = np.array(['%2s' % s for s in |
| 2911 |
atoms.get_chemical_symbols()], dtype='c')
|
| 2912 |
ncsym = ncf.variables['DynamicAtomSpecies'][:]
|
| 2913 |
if (symbols.size != ncsym.size) or (np.any(ncsym != symbols)): |
| 2914 |
# the number of atoms or their order has changed.
|
| 2915 |
# Treat this as a new calculation and reset
|
| 2916 |
# number_of_ionic_steps and
|
| 2917 |
# number_of_dynamic_atoms.
|
| 2918 |
ncf.close() #nc file must be closed for
|
| 2919 |
#delete_ncattdimvar to work correctly
|
| 2920 |
self.delete_ncattdimvar(nc, ncattrs=[],
|
| 2921 |
ncdims=['number_of_dynamic_atoms',
|
| 2922 |
'number_ionic_steps'])
|
| 2923 |
ncf = netCDF(nc, 'a')
|
| 2924 |
ncf.createDimension('number_of_dynamic_atoms',
|
| 2925 |
len(atoms))
|
| 2926 |
ncf.createDimension('number_ionic_steps', None) |
| 2927 |
self._set_frame_number(0) |
| 2928 |
ncf.close() #nc file must be closed for restart to
|
| 2929 |
#work correctly
|
| 2930 |
self.restart()
|
| 2931 |
ncf = netCDF(nc, 'a')
|
| 2932 |
|
| 2933 |
#now, create variables
|
| 2934 |
if 'DynamicAtomSpecies' not in ncf.variables: |
| 2935 |
sym = ncf.createVariable('DynamicAtomSpecies',
|
| 2936 |
'c',
|
| 2937 |
('number_of_dynamic_atoms',
|
| 2938 |
'dim2',))
|
| 2939 |
else:
|
| 2940 |
sym = ncf.variables['DynamicAtomSpecies']
|
| 2941 |
|
| 2942 |
#note explicit array casting was required here
|
| 2943 |
symbols = atoms.get_chemical_symbols() |
| 2944 |
sym[:] = np.array(['%2s' % s for s in symbols], dtype='c') |
| 2945 |
|
| 2946 |
if 'DynamicAtomPositions' not in ncf.variables: |
| 2947 |
pos = ncf.createVariable('DynamicAtomPositions',
|
| 2948 |
'd',
|
| 2949 |
('number_ionic_steps',
|
| 2950 |
'number_of_dynamic_atoms',
|
| 2951 |
'dim3'))
|
| 2952 |
else:
|
| 2953 |
pos = ncf.variables['DynamicAtomPositions']
|
| 2954 |
|
| 2955 |
spos = atoms.get_scaled_positions() |
| 2956 |
if pos.typecode() == 'f': |
| 2957 |
spos = np.array(spos, dtype=np.float32) |
| 2958 |
pos[self._frame, :] = spos
|
| 2959 |
|
| 2960 |
if 'UnitCell' not in ncf.variables: |
| 2961 |
uc = ncf.createVariable('UnitCell', 'd', |
| 2962 |
('number_ionic_steps',
|
| 2963 |
'dim3', 'dim3')) |
| 2964 |
else:
|
| 2965 |
uc = ncf.variables['UnitCell']
|
| 2966 |
|
| 2967 |
cell = atoms.get_cell() |
| 2968 |
if uc.typecode() == 'f': |
| 2969 |
cell = np.array(cell, dtype=np.float32) |
| 2970 |
|
| 2971 |
uc[self._frame, :] = cell
|
| 2972 |
|
| 2973 |
if 'AtomTags' not in ncf.variables: |
| 2974 |
tags = ncf.createVariable('AtomTags', 'i', |
| 2975 |
('number_of_dynamic_atoms',))
|
| 2976 |
else:
|
| 2977 |
tags = ncf.variables['AtomTags']
|
| 2978 |
|
| 2979 |
tags[:] = np.array(atoms.get_tags(), np.int32) |
| 2980 |
|
| 2981 |
if 'InitialAtomicMagneticMoment' not in ncf.variables: |
| 2982 |
mom = ncf.createVariable('InitialAtomicMagneticMoment',
|
| 2983 |
'd',
|
| 2984 |
('number_of_dynamic_atoms',))
|
| 2985 |
else:
|
| 2986 |
mom = ncf.variables['InitialAtomicMagneticMoment']
|
| 2987 |
|
| 2988 |
#explain why we have to use get_initial_magnetic_moments()
|
| 2989 |
moms = atoms.get_initial_magnetic_moments() |
| 2990 |
if mom.typecode() == 'f': |
| 2991 |
moms = np.array(moms, dtype=np.float32) |
| 2992 |
mom[:] = moms |
| 2993 |
|
| 2994 |
#finally the atom pseudopotentials
|
| 2995 |
for sym in atoms.get_chemical_symbols(): |
| 2996 |
vn = 'AtomProperty_%s' % sym
|
| 2997 |
if vn not in ncf.variables: |
| 2998 |
p = ncf.createVariable(vn, 'c', ('dim20',)) |
| 2999 |
else:
|
| 3000 |
p = ncf.variables[vn] |
| 3001 |
|
| 3002 |
ppath = self.get_psp(sym=sym)
|
| 3003 |
p.PspotFile = ppath |
| 3004 |
|
| 3005 |
ncf.sync() |
| 3006 |
ncf.close() |
| 3007 |
|
| 3008 |
#store constraints if they exist
|
| 3009 |
constraints = atoms._get_constraints() |
| 3010 |
if constraints != []:
|
| 3011 |
nc = netCDF(self.get_nc(), 'a') |
| 3012 |
if 'constraints' not in nc.variables: |
| 3013 |
if 'dim1' not in nc.dimensions: |
| 3014 |
nc.createDimension('dim1', 1) |
| 3015 |
c = nc.createVariable('constraints', 'c', ('dim1',)) |
| 3016 |
else:
|
| 3017 |
c = nc.variables['constraints']
|
| 3018 |
#we store the pickle string as an attribute of a
|
| 3019 |
#netcdf variable because that way we do not have to
|
| 3020 |
#know how long the string is. with a character
|
| 3021 |
#variable you have to specify the dimension of the
|
| 3022 |
#string ahead of time.
|
| 3023 |
c.data = pickle.dumps(constraints) |
| 3024 |
nc.close() |
| 3025 |
else:
|
| 3026 |
# getting here means there where no constraints on the
|
| 3027 |
# atoms just written we should check if there are any
|
| 3028 |
# old constraints left in the ncfile
|
| 3029 |
# from a previous atoms, and delete them if so
|
| 3030 |
delete_constraints = False
|
| 3031 |
nc = netCDF(self.get_nc())
|
| 3032 |
if 'constraints' in nc.variables: |
| 3033 |
delete_constraints = True
|
| 3034 |
nc.close() |
| 3035 |
|
| 3036 |
if delete_constraints:
|
| 3037 |
log.debug('deleting old constraints')
|
| 3038 |
self.delete_ncattdimvar(self.nc, |
| 3039 |
ncvars=['constraints'])
|
| 3040 |
|
| 3041 |
def read_atoms(filename): |
| 3042 |
'''read atoms and calculator from an existing netcdf file.
|
| 3043 |
|
| 3044 |
:Parameters:
|
| 3045 |
|
| 3046 |
filename : string
|
| 3047 |
name of file to read from.
|
| 3048 |
|
| 3049 |
static method
|
| 3050 |
|
| 3051 |
example::
|
| 3052 |
|
| 3053 |
>>> atoms = Jacapo.read_atoms(ncfile)
|
| 3054 |
>>> calc = atoms.get_calculator()
|
| 3055 |
|
| 3056 |
this method is here for legacy purposes. I used to use it alot.
|
| 3057 |
'''
|
| 3058 |
|
| 3059 |
calc = Jacapo(filename) |
| 3060 |
atoms = calc.get_atoms() |
| 3061 |
return atoms
|
| 3062 |
|
| 3063 |
read_atoms = staticmethod(read_atoms)
|
| 3064 |
|
| 3065 |
def read_only_atoms(self, ncfile): |
| 3066 |
'''read only the atoms from an existing netcdf file. Used to
|
| 3067 |
initialize a calculator from a ncfilename.
|
| 3068 |
|
| 3069 |
:Parameters:
|
| 3070 |
|
| 3071 |
ncfile : string
|
| 3072 |
name of file to read from.
|
| 3073 |
|
| 3074 |
return ASE.Atoms with no calculator attached or None if no
|
| 3075 |
atoms found
|
| 3076 |
'''
|
| 3077 |
|
| 3078 |
from ase import Atoms |
| 3079 |
|
| 3080 |
nc = netCDF(ncfile, 'r')
|
| 3081 |
#some ncfiles do not have atoms in them
|
| 3082 |
if 'UnitCell' not in nc.variables: |
| 3083 |
log.debug('no unit cell found in ncfile')
|
| 3084 |
nc.close() |
| 3085 |
return None |
| 3086 |
|
| 3087 |
cell = nc.variables['UnitCell'][:][-1] |
| 3088 |
sym = nc.variables['DynamicAtomSpecies'][:]
|
| 3089 |
symbols = [x.tostring().strip() for x in sym] |
| 3090 |
spos = nc.variables['DynamicAtomPositions'][:][-1] |
| 3091 |
|
| 3092 |
pos = np.dot(spos, cell) |
| 3093 |
|
| 3094 |
atoms = Atoms(symbols=symbols, |
| 3095 |
positions=pos, |
| 3096 |
cell=cell) |
| 3097 |
|
| 3098 |
if 'AtomTags' in nc.variables: |
| 3099 |
tags = nc.variables['AtomTags'][:]
|
| 3100 |
atoms.set_tags(tags) |
| 3101 |
|
| 3102 |
if 'InitialAtomicMagneticMoment' in nc.variables: |
| 3103 |
mom = nc.variables['InitialAtomicMagneticMoment'][:]
|
| 3104 |
atoms.set_initial_magnetic_moments(mom) |
| 3105 |
|
| 3106 |
#update psp database
|
| 3107 |
for sym in symbols: |
| 3108 |
vn = 'AtomProperty_%s' % sym
|
| 3109 |
if vn in nc.variables: |
| 3110 |
var = nc.variables[vn] |
| 3111 |
pspfile = var.PspotFile |
| 3112 |
self.psp[sym] = pspfile
|
| 3113 |
|
| 3114 |
#get constraints if they exist
|
| 3115 |
c = nc.variables.get('constraints', None) |
| 3116 |
if c is not None: |
| 3117 |
constraints = pickle.loads(c.data) |
| 3118 |
atoms.set_constraint(constraints) |
| 3119 |
|
| 3120 |
nc.close() |
| 3121 |
|
| 3122 |
return atoms
|
| 3123 |
|
| 3124 |
def delete_ncattdimvar(self, ncf, ncattrs=None, ncdims=None, ncvars=None): |
| 3125 |
'''
|
| 3126 |
helper function to delete attributes,
|
| 3127 |
dimensions and variables in a netcdffile
|
| 3128 |
|
| 3129 |
this functionality is not implemented for some reason in
|
| 3130 |
netcdf, so the only way to do this is to copy all the
|
| 3131 |
attributes, dimensions, and variables to a new file, excluding
|
| 3132 |
the ones you want to delete and then rename the new file.
|
| 3133 |
|
| 3134 |
if you delete a dimension, all variables with that dimension
|
| 3135 |
are also deleted.
|
| 3136 |
'''
|
| 3137 |
|
| 3138 |
if ncattrs is None: |
| 3139 |
ncattrs = [] |
| 3140 |
if ncdims is None: |
| 3141 |
ncdims = [] |
| 3142 |
if ncvars is None: |
| 3143 |
ncvars = [] |
| 3144 |
|
| 3145 |
log.debug('beginning: going to delete dims: %s' % str(ncdims)) |
| 3146 |
log.debug('beginning: going to delete vars: %s' % str(ncvars)) |
| 3147 |
|
| 3148 |
oldnc = netCDF(ncf, 'r')
|
| 3149 |
|
| 3150 |
#h,tempnc = tempfile.mkstemp(dir='.',suffix='.nc')
|
| 3151 |
tempnc = ncf+'.temp'
|
| 3152 |
|
| 3153 |
newnc = netCDF(tempnc, 'w')
|
| 3154 |
|
| 3155 |
for attr in dir(oldnc): |
| 3156 |
if attr in ['close', 'createDimension', |
| 3157 |
'createVariable', 'flush', 'sync']: |
| 3158 |
continue
|
| 3159 |
if attr in ncattrs: |
| 3160 |
continue #do not copy this attribute |
| 3161 |
setattr(newnc, attr, getattr(oldnc, attr)) |
| 3162 |
|
| 3163 |
#copy dimensions
|
| 3164 |
for dim in oldnc.dimensions: |
| 3165 |
if dim in ncdims: |
| 3166 |
log.debug('deleting %s of %s' % (dim, str(ncdims))) |
| 3167 |
continue #do not copy this dimension |
| 3168 |
size = oldnc.dimensions[dim] |
| 3169 |
|
| 3170 |
newnc.createDimension(dim, size) |
| 3171 |
|
| 3172 |
# we need to delete all variables that depended on a deleted dimension
|
| 3173 |
for v in oldnc.variables: |
| 3174 |
dims1 = oldnc.variables[v].dimensions |
| 3175 |
for dim in ncdims: |
| 3176 |
if dim in dims1: |
| 3177 |
s = 'deleting "%s" because it depends on dim "%s"'
|
| 3178 |
log.debug(s %(v, dim)) |
| 3179 |
ncvars.append(v) |
| 3180 |
|
| 3181 |
#copy variables, except the ones to delete
|
| 3182 |
for v in oldnc.variables: |
| 3183 |
if v in ncvars: |
| 3184 |
log.debug('vars to delete: %s ' % ncvars)
|
| 3185 |
log.debug('deleting ncvar: %s' % v)
|
| 3186 |
continue #we do not copy this v over |
| 3187 |
|
| 3188 |
ncvar = oldnc.variables[v] |
| 3189 |
tcode = ncvar.typecode() |
| 3190 |
#char typecodes do not come out right apparently
|
| 3191 |
if tcode == " ": |
| 3192 |
tcode = 'c'
|
| 3193 |
|
| 3194 |
ncvar2 = newnc.createVariable(v, tcode, ncvar.dimensions) |
| 3195 |
try:
|
| 3196 |
ncvar2[:] = ncvar[:] |
| 3197 |
except TypeError: |
| 3198 |
#this exception occurs for scalar variables
|
| 3199 |
#use getValue and assignValue instead
|
| 3200 |
ncvar2.assignValue(ncvar.getValue()) |
| 3201 |
|
| 3202 |
#and variable attributes
|
| 3203 |
#print dir(ncvar)
|
| 3204 |
for att in dir(ncvar): |
| 3205 |
if att in ['assignValue', 'getValue', 'typecode']: |
| 3206 |
continue
|
| 3207 |
setattr(ncvar2, att, getattr(ncvar, att)) |
| 3208 |
|
| 3209 |
oldnc.close() |
| 3210 |
newnc.close() |
| 3211 |
|
| 3212 |
s = 'looking for .nfs files before copying: %s'
|
| 3213 |
log.debug(s % glob.glob('.nfs*'))
|
| 3214 |
|
| 3215 |
#ack!!! this makes .nfsxxx files!!!
|
| 3216 |
#os.close(h) #this avoids the stupid .nfsxxx file
|
| 3217 |
#import shutil
|
| 3218 |
#shutil.move(tempnc,ncf)
|
| 3219 |
|
| 3220 |
#this seems to avoid making the .nfs files
|
| 3221 |
os.system('cp %s %s' % (tempnc, ncf))
|
| 3222 |
os.system('rm %s' % tempnc)
|
| 3223 |
|
| 3224 |
s = 'looking for .nfs files after copying: %s'
|
| 3225 |
log.debug(s % glob.glob('.nfs*'))
|
| 3226 |
|
| 3227 |
def restart(self): |
| 3228 |
'''
|
| 3229 |
Restart the calculator by deleting nc dimensions that will
|
| 3230 |
be rewritten on the next calculation. This is sometimes required
|
| 3231 |
when certain dimensions change related to unitcell size changes
|
| 3232 |
planewave/densitywave cutoffs and kpt changes. These can cause
|
| 3233 |
fortran netcdf errors if the data does not match the pre-defined
|
| 3234 |
dimension sizes.
|
| 3235 |
|
| 3236 |
also delete all the output from previous calculation.
|
| 3237 |
'''
|
| 3238 |
|
| 3239 |
log.debug('restarting!')
|
| 3240 |
|
| 3241 |
ncdims = ['number_plane_waves',
|
| 3242 |
'number_IBZ_kpoints',
|
| 3243 |
'softgrid_dim1',
|
| 3244 |
'softgrid_dim2',
|
| 3245 |
'softgrid_dim3',
|
| 3246 |
'hardgrid_dim1',
|
| 3247 |
'hardgrid_dim2',
|
| 3248 |
'hardgrid_dim3',
|
| 3249 |
'max_projectors_per_atom',
|
| 3250 |
'atomdos_energygrid_size',
|
| 3251 |
'atomdos_angular_channels',
|
| 3252 |
'atomdos_radial_orbs']
|
| 3253 |
|
| 3254 |
ncvars = ['TotalEnergy',
|
| 3255 |
'TotalFreeEnergy',
|
| 3256 |
'EvaluateTotalEnergy',
|
| 3257 |
'DynamicAtomForces',
|
| 3258 |
'FermiLevel',
|
| 3259 |
'EnsembleXCEnergies',
|
| 3260 |
'AtomProjectedDOS_IntegratedDOS',
|
| 3261 |
'AtomProjectedDOS_OrdinalMap',
|
| 3262 |
'NumberPlaneWavesKpoint',
|
| 3263 |
'AtomProjectedDOS_EnergyResolvedDOS',
|
| 3264 |
'AtomProjectedDOS_EnergyGrid',
|
| 3265 |
'EvaluateCorrelationEnergy',
|
| 3266 |
'DynamicAtomVelocities',
|
| 3267 |
'KpointWeight',
|
| 3268 |
'EvaluateExchangeEnergy',
|
| 3269 |
'EffectivePotential',
|
| 3270 |
'TotalStress',
|
| 3271 |
'ChargeDensity',
|
| 3272 |
'WaveFunction',
|
| 3273 |
'WaveFunctionFFTindex',
|
| 3274 |
'NumberOfNLProjectors',
|
| 3275 |
'NLProjectorPsi',
|
| 3276 |
'TypeNLProjector1',
|
| 3277 |
'NumberofNLProjectors',
|
| 3278 |
'PartialCoreDensity',
|
| 3279 |
'ChargeDensity',
|
| 3280 |
'ElectrostaticPotential',
|
| 3281 |
'StructureFactor',
|
| 3282 |
'EigenValues',
|
| 3283 |
'OccupationNumbers']
|
| 3284 |
|
| 3285 |
self.delete_ncattdimvar(self.nc, |
| 3286 |
ncattrs=[], |
| 3287 |
ncdims=ncdims, |
| 3288 |
ncvars=ncvars) |
| 3289 |
|
| 3290 |
self.set_status('new') |
| 3291 |
self.ready = False |
| 3292 |
|
| 3293 |
def get_convergence(self): |
| 3294 |
'return convergence settings for Dacapo'
|
| 3295 |
|
| 3296 |
nc = netCDF(self.get_nc(), 'r') |
| 3297 |
vname = 'ConvergenceControl'
|
| 3298 |
if vname in nc.variables: |
| 3299 |
v = nc.variables[vname] |
| 3300 |
convergence = {}
|
| 3301 |
if hasattr(v, 'AbsoluteEnergyConvergence'): |
| 3302 |
convergence['energy'] = v.AbsoluteEnergyConvergence[0] |
| 3303 |
if hasattr(v, 'DensityConvergence'): |
| 3304 |
convergence['density'] = v.DensityConvergence[0] |
| 3305 |
if hasattr(v, 'OccupationConvergence'): |
| 3306 |
convergence['occupation'] = v.OccupationConvergence[0] |
| 3307 |
if hasattr(v, 'MaxNumberOfSteps'): |
| 3308 |
convergence['maxsteps'] = v.MaxNumberOfSteps[0] |
| 3309 |
if hasattr(v, 'CPUTimeLimit'): |
| 3310 |
convergence['cputime'] = v.CPUTimeLimit[0] |
| 3311 |
else:
|
| 3312 |
convergence = None
|
| 3313 |
|
| 3314 |
nc.close() |
| 3315 |
return convergence
|
| 3316 |
|
| 3317 |
def set_convergence(self, |
| 3318 |
energy=0.00001,
|
| 3319 |
density=0.0001,
|
| 3320 |
occupation=0.001,
|
| 3321 |
maxsteps=None,
|
| 3322 |
maxtime=None
|
| 3323 |
): |
| 3324 |
'''set convergence criteria for stopping the dacapo calculator.
|
| 3325 |
|
| 3326 |
:Parameters:
|
| 3327 |
|
| 3328 |
energy : float
|
| 3329 |
set total energy change (eV) required for stopping
|
| 3330 |
|
| 3331 |
density : float
|
| 3332 |
set density change required for stopping
|
| 3333 |
|
| 3334 |
occupation : float
|
| 3335 |
set occupation change required for stopping
|
| 3336 |
|
| 3337 |
maxsteps : integer
|
| 3338 |
specify maximum number of steps to take
|
| 3339 |
|
| 3340 |
maxtime : integer
|
| 3341 |
specify maximum number of hours to run.
|
| 3342 |
|
| 3343 |
Autopilot not supported here.
|
| 3344 |
'''
|
| 3345 |
|
| 3346 |
nc = netCDF(self.get_nc(), 'a') |
| 3347 |
vname = 'ConvergenceControl'
|
| 3348 |
if vname in nc.variables: |
| 3349 |
v = nc.variables[vname] |
| 3350 |
else:
|
| 3351 |
v = nc.createVariable(vname, 'c', ('dim1',)) |
| 3352 |
|
| 3353 |
if energy is not None: |
| 3354 |
v.AbsoluteEnergyConvergence = energy |
| 3355 |
if density is not None: |
| 3356 |
v.DensityConvergence = density |
| 3357 |
if occupation is not None: |
| 3358 |
v.OccupationConvergence = occupation |
| 3359 |
if maxsteps is not None: |
| 3360 |
v.MaxNumberOfSteps = maxsteps |
| 3361 |
if maxtime is not None: |
| 3362 |
v.CPUTimeLimit = maxtime |
| 3363 |
|
| 3364 |
nc.sync() |
| 3365 |
nc.close() |
| 3366 |
|
| 3367 |
def get_charge_mixing(self): |
| 3368 |
'return charge mixing parameters'
|
| 3369 |
|
| 3370 |
nc = netCDF(self.get_nc(), 'r') |
| 3371 |
vname = 'ChargeMixing'
|
| 3372 |
if vname in nc.variables: |
| 3373 |
v = nc.variables[vname] |
| 3374 |
charge_mixing = {}
|
| 3375 |
if hasattr(v, 'Method'): |
| 3376 |
charge_mixing['method'] = v.Method
|
| 3377 |
if hasattr(v, 'UpdateCharge'): |
| 3378 |
charge_mixing['updatecharge'] = v.UpdateCharge
|
| 3379 |
if hasattr(v, 'Pulay_MixingHistory'): |
| 3380 |
charge_mixing['mixinghistory'] = v.Pulay_MixingHistory[0] |
| 3381 |
if hasattr(v, 'Pulay_DensityMixingCoeff'): |
| 3382 |
charge_mixing['mixingcoeff'] = v.Pulay_DensityMixingCoeff[0] |
| 3383 |
if hasattr(v, 'Pulay_KerkerPrecondition'): |
| 3384 |
charge_mixing['precondition'] = v.Pulay_KerkerPrecondition
|
| 3385 |
else:
|
| 3386 |
charge_mixing = None
|
| 3387 |
|
| 3388 |
nc.close() |
| 3389 |
return charge_mixing
|
| 3390 |
|
| 3391 |
def set_charge_mixing(self, |
| 3392 |
method='Pulay',
|
| 3393 |
mixinghistory=10,
|
| 3394 |
mixingcoeff=0.1,
|
| 3395 |
precondition='No',
|
| 3396 |
updatecharge='Yes'):
|
| 3397 |
'''set density mixing method and parameters
|
| 3398 |
|
| 3399 |
:Parameters:
|
| 3400 |
|
| 3401 |
method : string
|
| 3402 |
'Pulay' for Pulay mixing. only one supported now
|
| 3403 |
|
| 3404 |
mixinghistory : integer
|
| 3405 |
number of iterations to mix
|
| 3406 |
Number of charge residual vectors stored for generating
|
| 3407 |
the Pulay estimate on the self-consistent charge density,
|
| 3408 |
see Sec. 4.2 in Kresse/Furthmuller:
|
| 3409 |
Comp. Mat. Sci. 6 (1996) p34ff
|
| 3410 |
|
| 3411 |
mixingcoeff : float
|
| 3412 |
Mixing coefficient for Pulay charge mixing, corresponding
|
| 3413 |
to A in G$^1$ in Sec. 4.2 in Kresse/Furthmuller:
|
| 3414 |
Comp. Mat. Sci. 6 (1996) p34ff
|
| 3415 |
|
| 3416 |
precondition : string
|
| 3417 |
'Yes' or 'No'
|
| 3418 |
|
| 3419 |
* "Yes" : Kerker preconditiong is used,
|
| 3420 |
i.e. q$_0$ is different from zero, see eq. 82
|
| 3421 |
in Kresse/Furthmuller: Comp. Mat. Sci. 6 (1996).
|
| 3422 |
The value of q$_0$ is fix to give a damping of 20
|
| 3423 |
of the lowest q vector.
|
| 3424 |
|
| 3425 |
* "No" : q$_0$ is zero and mixing is linear (default).
|
| 3426 |
|
| 3427 |
updatecharge : string
|
| 3428 |
'Yes' or 'No'
|
| 3429 |
|
| 3430 |
* "Yes" : Perform charge mixing according to
|
| 3431 |
ChargeMixing:Method setting
|
| 3432 |
|
| 3433 |
* "No" : Freeze charge to initial value.
|
| 3434 |
This setting is useful when evaluating the Harris-Foulkes
|
| 3435 |
density functional
|
| 3436 |
|
| 3437 |
'''
|
| 3438 |
|
| 3439 |
if method == 'Pulay': |
| 3440 |
nc = netCDF(self.get_nc(), 'a') |
| 3441 |
vname = 'ChargeMixing'
|
| 3442 |
if vname in nc.variables: |
| 3443 |
v = nc.variables[vname] |
| 3444 |
else:
|
| 3445 |
v = nc.createVariable(vname, 'c', ('dim1',)) |
| 3446 |
|
| 3447 |
v.Method = 'Pulay'
|
| 3448 |
v.UpdateCharge = updatecharge |
| 3449 |
v.Pulay_MixingHistory = mixinghistory |
| 3450 |
v.Pulay_DensityMixingCoeff = mixingcoeff |
| 3451 |
v.Pulay_KerkerPrecondition = precondition |
| 3452 |
|
| 3453 |
nc.sync() |
| 3454 |
nc.close() |
| 3455 |
|
| 3456 |
self.ready = False |
| 3457 |
|
| 3458 |
def set_electronic_minimization(self, |
| 3459 |
method='eigsolve',
|
| 3460 |
diagsperband=2):
|
| 3461 |
'''set the eigensolver method
|
| 3462 |
|
| 3463 |
Selector for which subroutine to use for electronic
|
| 3464 |
minimization
|
| 3465 |
|
| 3466 |
Recognized options : "resmin", "eigsolve" and "rmm-diis".
|
| 3467 |
|
| 3468 |
* "resmin" : Power method (Lennart Bengtson), can only handle
|
| 3469 |
k-point parallization.
|
| 3470 |
|
| 3471 |
* "eigsolve : Block Davidson algorithm
|
| 3472 |
(Claus Bendtsen et al).
|
| 3473 |
|
| 3474 |
* "rmm-diis : Residual minimization
|
| 3475 |
method (RMM), using DIIS (direct inversion in the iterate
|
| 3476 |
subspace) The implementaion follows closely the algorithm
|
| 3477 |
outlined in Kresse and Furthmuller, Comp. Mat. Sci, III.G/III.H
|
| 3478 |
|
| 3479 |
:Parameters:
|
| 3480 |
|
| 3481 |
method : string
|
| 3482 |
should be 'resmin', 'eigsolve' or 'rmm-diis'
|
| 3483 |
|
| 3484 |
diagsperband : int
|
| 3485 |
The number of diagonalizations per band for
|
| 3486 |
electronic minimization algorithms (maps onto internal
|
| 3487 |
variable ndiapb). Applies for both
|
| 3488 |
ElectronicMinimization:Method = "resmin" and "eigsolve".
|
| 3489 |
default value = 2
|
| 3490 |
'''
|
| 3491 |
|
| 3492 |
nc = netCDF(self.get_nc(), 'a') |
| 3493 |
|
| 3494 |
vname = 'ElectronicMinimization'
|
| 3495 |
if vname in nc.variables: |
| 3496 |
v = nc.variables[vname] |
| 3497 |
else:
|
| 3498 |
log.debug('Creating ElectronicMinimization')
|
| 3499 |
v = nc.createVariable(vname, 'c', ('dim1',)) |
| 3500 |
|
| 3501 |
log.debug('setting method for ElectronicMinimization: % s' % method)
|
| 3502 |
v.Method = method |
| 3503 |
log.debug('setting DiagonalizationsBand for ElectronicMinimization')
|
| 3504 |
if diagsperband is not None: |
| 3505 |
v.DiagonalizationsPerBand = diagsperband |
| 3506 |
|
| 3507 |
log.debug('synchronizing ncfile')
|
| 3508 |
nc.sync() |
| 3509 |
|
| 3510 |
nc.close() |
| 3511 |
|
| 3512 |
def get_electronic_minimization(self): |
| 3513 |
'''get method and diagonalizations per band for electronic
|
| 3514 |
minimization algorithms'''
|
| 3515 |
|
| 3516 |
log.debug('getting electronic minimization parameters')
|
| 3517 |
|
| 3518 |
nc = netCDF(self.get_nc(), 'a') |
| 3519 |
vname = 'ElectronicMinimization'
|
| 3520 |
if vname in nc.variables: |
| 3521 |
v = nc.variables[vname] |
| 3522 |
method = v.Method |
| 3523 |
if hasattr(v, 'DiagonalizationsPerBand'): |
| 3524 |
diagsperband = v.DiagonalizationsPerBand[0]
|
| 3525 |
else:
|
| 3526 |
diagsperband = None
|
| 3527 |
else:
|
| 3528 |
method = None
|
| 3529 |
diagsperband = None
|
| 3530 |
nc.close() |
| 3531 |
return {'method':method, |
| 3532 |
'diagsperband':diagsperband}
|
| 3533 |
|
| 3534 |
def get_occupationstatistics(self): |
| 3535 |
'return occupation statistics method'
|
| 3536 |
|
| 3537 |
nc = netCDF(self.get_nc(), 'r') |
| 3538 |
if 'ElectronicBands' in nc.variables: |
| 3539 |
v = nc.variables['ElectronicBands']
|
| 3540 |
if hasattr(v, 'OccupationStatistics'): |
| 3541 |
occstat = v.OccupationStatistics |
| 3542 |
else:
|
| 3543 |
occstat = None
|
| 3544 |
else:
|
| 3545 |
occstat = None
|
| 3546 |
nc.close() |
| 3547 |
return occstat
|
| 3548 |
|
| 3549 |
def set_occupationstatistics(self, method): |
| 3550 |
'''
|
| 3551 |
set the method used for smearing the occupations.
|
| 3552 |
|
| 3553 |
:Parameters:
|
| 3554 |
|
| 3555 |
method : string
|
| 3556 |
one of 'FermiDirac' or 'MethfesselPaxton'
|
| 3557 |
Currently, the Methfessel-Paxton scheme (PRB 40, 3616 (1989).)
|
| 3558 |
is implemented to 1th order (which is recommemded by most authors).
|
| 3559 |
'FermiDirac' is the default
|
| 3560 |
'''
|
| 3561 |
|
| 3562 |
nc = netCDF(self.get_nc(), 'a') |
| 3563 |
if 'ElectronicBands' in nc.variables: |
| 3564 |
v = nc.variables['ElectronicBands']
|
| 3565 |
v.OccupationStatistics = method |
| 3566 |
|
| 3567 |
nc.sync() |
| 3568 |
nc.close() |
| 3569 |
|
| 3570 |
def get_fermi_level(self): |
| 3571 |
'return Fermi level'
|
| 3572 |
|
| 3573 |
if self.calculation_required(): |
| 3574 |
self.calculate()
|
| 3575 |
nc = netCDF(self.get_nc(), 'r') |
| 3576 |
ef = nc.variables['FermiLevel'][-1] |
| 3577 |
nc.close() |
| 3578 |
return ef
|
| 3579 |
|
| 3580 |
def get_occupation_numbers(self, kpt=0, spin=0): |
| 3581 |
'''return occupancies of eigenstates for a kpt and spin
|
| 3582 |
|
| 3583 |
:Parameters:
|
| 3584 |
|
| 3585 |
kpt : integer
|
| 3586 |
index of the IBZ kpoint you want the occupation of
|
| 3587 |
|
| 3588 |
spin : integer
|
| 3589 |
0 or 1
|
| 3590 |
'''
|
| 3591 |
|
| 3592 |
if self.calculation_required(): |
| 3593 |
self.calculate()
|
| 3594 |
nc = netCDF(self.get_nc(), 'r') |
| 3595 |
occ = nc.variables['OccupationNumbers'][:][-1][kpt, spin] |
| 3596 |
nc.close() |
| 3597 |
return occ
|
| 3598 |
|
| 3599 |
def get_xc_energies(self, *functional): |
| 3600 |
"""
|
| 3601 |
Get energies for different functionals self-consistent and
|
| 3602 |
non-self-consistent.
|
| 3603 |
|
| 3604 |
:Parameters:
|
| 3605 |
|
| 3606 |
functional : strings
|
| 3607 |
some set of 'PZ','VWN','PW91','PBE','revPBE', 'RPBE'
|
| 3608 |
|
| 3609 |
This function returns the self-consistent energy and/or
|
| 3610 |
energies associated with various functionals.
|
| 3611 |
The functionals are currently PZ,VWN,PW91,PBE,revPBE, RPBE.
|
| 3612 |
The different energies may be useful for calculating improved
|
| 3613 |
adsorption energies as in B. Hammer, L.B. Hansen and
|
| 3614 |
J.K. Norskov, Phys. Rev. B 59,7413.
|
| 3615 |
Examples:
|
| 3616 |
get_xcenergies() #returns all the energies
|
| 3617 |
get_xcenergies('PBE') # returns the PBE total energy
|
| 3618 |
get_xcenergies('PW91','PBE','revPBE') # returns a
|
| 3619 |
# list of energies in the order asked for
|
| 3620 |
"""
|
| 3621 |
|
| 3622 |
if self.calculation_required(): |
| 3623 |
self.calculate()
|
| 3624 |
|
| 3625 |
nc = netCDF(self.get_nc(), 'r') |
| 3626 |
|
| 3627 |
funcenergies = nc.variables['EvaluateTotalEnergy'][:][-1] |
| 3628 |
xcfuncs = nc.variables['EvalFunctionalOfDensity_XC'][:]
|
| 3629 |
|
| 3630 |
nc.close() |
| 3631 |
|
| 3632 |
xcfuncs = [xc.tostring().strip() for xc in xcfuncs] |
| 3633 |
edict = dict(zip(xcfuncs, funcenergies)) |
| 3634 |
|
| 3635 |
if len(functional) == 0: |
| 3636 |
#get all energies by default
|
| 3637 |
functional = xcfuncs |
| 3638 |
|
| 3639 |
return [edict[xc] for xc in functional] |
| 3640 |
|
| 3641 |
# break of compatibility
|
| 3642 |
def get_ados_data(self, |
| 3643 |
atoms, |
| 3644 |
orbitals, |
| 3645 |
cutoff, |
| 3646 |
spin): |
| 3647 |
'''get atom projected data
|
| 3648 |
|
| 3649 |
:Parameters:
|
| 3650 |
|
| 3651 |
atoms
|
| 3652 |
list of atom indices (integers)
|
| 3653 |
|
| 3654 |
orbitals
|
| 3655 |
list of strings
|
| 3656 |
['s','p','d'],
|
| 3657 |
['px','py','pz']
|
| 3658 |
['d_zz', 'dxx-yy', 'd_xy', 'd_xz', 'd_yz']
|
| 3659 |
|
| 3660 |
cutoff : string
|
| 3661 |
cutoff radius you want the results for 'short' or 'infinite'
|
| 3662 |
|
| 3663 |
spin
|
| 3664 |
: list of integers
|
| 3665 |
spin you want the results for
|
| 3666 |
[0] or [1] or [0,1] for both
|
| 3667 |
|
| 3668 |
returns (egrid, ados)
|
| 3669 |
egrid has the fermi level at 0 eV
|
| 3670 |
'''
|
| 3671 |
|
| 3672 |
if self.calculation_required(): |
| 3673 |
self.calculate()
|
| 3674 |
nc = netCDF(self.get_nc(), 'r') |
| 3675 |
omapvar = nc.variables['AtomProjectedDOS_OrdinalMap']
|
| 3676 |
omap = omapvar[:] #indices
|
| 3677 |
c = omapvar.AngularChannels |
| 3678 |
channels = [x.strip() for x in c.split(',')] #channel names |
| 3679 |
#this has dimensions(nprojections, nspins, npoints)
|
| 3680 |
ados = nc.variables['AtomProjectedDOS_EnergyResolvedDOS'][:]
|
| 3681 |
#this is the energy grid for all the atoms
|
| 3682 |
egrid = nc.variables['AtomProjectedDOS_EnergyGrid'][:]
|
| 3683 |
nc.close() |
| 3684 |
|
| 3685 |
#it is apparently not necessary to normalize the egrid to
|
| 3686 |
#the Fermi level. the data is already for ef = 0.
|
| 3687 |
|
| 3688 |
#get list of orbitals, replace 'p' and 'd' in needed
|
| 3689 |
orbs = [] |
| 3690 |
for o in orbitals: |
| 3691 |
if o == 'p': |
| 3692 |
orbs += ['p_x', 'p_y', 'p_z'] |
| 3693 |
elif o == 'd': |
| 3694 |
orbs += ['d_zz', 'dxx-yy', 'd_xy', 'd_xz', 'd_yz'] |
| 3695 |
else:
|
| 3696 |
orbs += [o] |
| 3697 |
|
| 3698 |
orbinds = [channels.index(x) for x in orbs] |
| 3699 |
|
| 3700 |
cutdict = {'infinite':0,
|
| 3701 |
'short':1} |
| 3702 |
|
| 3703 |
icut = cutdict[cutoff] |
| 3704 |
|
| 3705 |
ydata = np.zeros(len(egrid), np.float)
|
| 3706 |
|
| 3707 |
for atomind in atoms: |
| 3708 |
for oi in orbinds: |
| 3709 |
ind = omap[atomind, icut, oi] |
| 3710 |
|
| 3711 |
for si in spin: |
| 3712 |
ydata += ados[ind, si] |
| 3713 |
|
| 3714 |
return (egrid, ydata)
|
| 3715 |
|
| 3716 |
def get_all_eigenvalues(self, spin=0): |
| 3717 |
'''return all the eigenvalues at all the kpoints for a spin.
|
| 3718 |
|
| 3719 |
:Parameters:
|
| 3720 |
|
| 3721 |
spin : integer
|
| 3722 |
which spin the eigenvalues are for'''
|
| 3723 |
|
| 3724 |
if self.calculation_required(): |
| 3725 |
self.calculate()
|
| 3726 |
nc = netCDF(self.get_nc(), 'r') |
| 3727 |
ev = nc.variables['EigenValues'][:][-1][:, spin] |
| 3728 |
nc.close() |
| 3729 |
return ev
|
| 3730 |
|
| 3731 |
def get_eigenvalues(self, kpt=0, spin=0): |
| 3732 |
'''return the eigenvalues for a kpt and spin
|
| 3733 |
|
| 3734 |
:Parameters:
|
| 3735 |
|
| 3736 |
kpt : integer
|
| 3737 |
index of the IBZ kpoint
|
| 3738 |
|
| 3739 |
spin : integer
|
| 3740 |
which spin the eigenvalues are for'''
|
| 3741 |
|
| 3742 |
if self.calculation_required(): |
| 3743 |
self.calculate()
|
| 3744 |
nc = netCDF(self.get_nc(), 'r') |
| 3745 |
ev = nc.variables['EigenValues'][:][-1][kpt, spin] |
| 3746 |
nc.close() |
| 3747 |
return ev
|
| 3748 |
|
| 3749 |
def get_k_point_weights(self): |
| 3750 |
'return the weights on the IBZ kpoints'
|
| 3751 |
|
| 3752 |
if self.calculation_required(): |
| 3753 |
self.calculate()
|
| 3754 |
nc = netCDF(self.get_nc(), 'r') |
| 3755 |
kw = nc.variables['KpointWeight'][:]
|
| 3756 |
nc.close() |
| 3757 |
return kw
|
| 3758 |
|
| 3759 |
def get_magnetic_moment(self): |
| 3760 |
'calculates the magnetic moment (Bohr-magnetons) of the supercell'
|
| 3761 |
|
| 3762 |
if not self.get_spin_polarized(): |
| 3763 |
return None |
| 3764 |
|
| 3765 |
if self.calculation_required(): |
| 3766 |
self.calculate()
|
| 3767 |
|
| 3768 |
nibzk = len(self.get_ibz_kpoints()) |
| 3769 |
ibzkw = self.get_k_point_weights()
|
| 3770 |
spinup, spindn = 0.0, 0.0 |
| 3771 |
|
| 3772 |
for k in range(nibzk): |
| 3773 |
|
| 3774 |
spinup += self.get_occupation_numbers(k, 0).sum()*ibzkw[k] |
| 3775 |
spindn += self.get_occupation_numbers(k, 1).sum()*ibzkw[k] |
| 3776 |
|
| 3777 |
return (spinup - spindn)
|
| 3778 |
|
| 3779 |
def get_number_of_spins(self): |
| 3780 |
'if spin-polarized returns 2, if not returns 1'
|
| 3781 |
|
| 3782 |
if self.calculation_required(): |
| 3783 |
self.calculate()
|
| 3784 |
nc = netCDF(self.get_nc(), 'r') |
| 3785 |
spv = nc.variables['ElectronicBands']
|
| 3786 |
nc.close() |
| 3787 |
|
| 3788 |
if hasattr(spv, 'SpinPolarization'): |
| 3789 |
return spv.SpinPolarization
|
| 3790 |
else:
|
| 3791 |
return 1 |
| 3792 |
|
| 3793 |
def get_ibz_kpoints(self): |
| 3794 |
'return list of kpoints in the irreducible brillouin zone'
|
| 3795 |
|
| 3796 |
if self.calculation_required(): |
| 3797 |
self.calculate()
|
| 3798 |
nc = netCDF(self.get_nc(), 'r') |
| 3799 |
ibz = nc.variables['IBZKpoints'][:]
|
| 3800 |
nc.close() |
| 3801 |
return ibz
|
| 3802 |
|
| 3803 |
get_ibz_k_points = get_ibz_kpoints |
| 3804 |
|
| 3805 |
def get_bz_k_points(self): |
| 3806 |
'return list of kpoints in the Brillouin zone'
|
| 3807 |
|
| 3808 |
nc = netCDF(self.get_nc(), 'r') |
| 3809 |
if 'BZKpoints' in nc.variables: |
| 3810 |
bz = nc.variables['BZKpoints'][:]
|
| 3811 |
else:
|
| 3812 |
bz = None
|
| 3813 |
nc.close() |
| 3814 |
return bz
|
| 3815 |
|
| 3816 |
def get_effective_potential(self, spin=1): |
| 3817 |
'''
|
| 3818 |
returns the realspace local effective potential for the spin.
|
| 3819 |
the units of the potential are eV
|
| 3820 |
|
| 3821 |
:Parameters:
|
| 3822 |
|
| 3823 |
spin : integer
|
| 3824 |
specify which spin you want, 0 or 1
|
| 3825 |
|
| 3826 |
'''
|
| 3827 |
|
| 3828 |
if self.calculation_required(): |
| 3829 |
self.calculate()
|
| 3830 |
|
| 3831 |
nc = netCDF(self.get_nc(), 'r') |
| 3832 |
efp = np.transpose(nc.variables['EffectivePotential'][:][spin])
|
| 3833 |
nc.close() |
| 3834 |
fftgrids = self.get_fftgrid()
|
| 3835 |
hardgrid = fftgrids['hard']
|
| 3836 |
x, y, z = self.get_ucgrid(hardgrid)
|
| 3837 |
return (x, y, z, efp)
|
| 3838 |
|
| 3839 |
def get_electrostatic_potential(self, spin=0): |
| 3840 |
'''get electrostatic potential
|
| 3841 |
|
| 3842 |
Netcdf documentation::
|
| 3843 |
|
| 3844 |
double ElectrostaticPotential(number_of_spin,
|
| 3845 |
hardgrid_dim3,
|
| 3846 |
hardgrid_dim2,
|
| 3847 |
hardgrid_dim1) ;
|
| 3848 |
ElectrostaticPotential:
|
| 3849 |
Description = "realspace local effective potential" ;
|
| 3850 |
unit = "eV" ;
|
| 3851 |
|
| 3852 |
'''
|
| 3853 |
|
| 3854 |
if self.calculation_required(): |
| 3855 |
self.calculate()
|
| 3856 |
|
| 3857 |
nc = netCDF(self.get_nc(), 'r') |
| 3858 |
esp = np.transpose(nc.variables['ElectrostaticPotential'][:][spin])
|
| 3859 |
nc.close() |
| 3860 |
fftgrids = self.get_fftgrid()
|
| 3861 |
|
| 3862 |
x, y, z = self.get_ucgrid(fftgrids['hard']) |
| 3863 |
|
| 3864 |
return (x, y, z, esp)
|
| 3865 |
|
| 3866 |
def get_charge_density(self, spin=0): |
| 3867 |
'''
|
| 3868 |
return x,y,z,charge density data
|
| 3869 |
|
| 3870 |
x,y,z are grids sampling the unit cell
|
| 3871 |
cd is the charge density data
|
| 3872 |
|
| 3873 |
netcdf documentation::
|
| 3874 |
|
| 3875 |
ChargeDensity(number_of_spin,
|
| 3876 |
hardgrid_dim3,
|
| 3877 |
hardgrid_dim2,
|
| 3878 |
hardgrid_dim1)
|
| 3879 |
ChargeDensity:Description = "realspace charge density" ;
|
| 3880 |
ChargeDensity:unit = "-e/A^3" ;
|
| 3881 |
|
| 3882 |
'''
|
| 3883 |
|
| 3884 |
if self.calculation_required(): |
| 3885 |
self.calculate()
|
| 3886 |
|
| 3887 |
nc = netCDF(self.get_nc(), 'r') |
| 3888 |
|
| 3889 |
cd = np.transpose(nc.variables['ChargeDensity'][:][spin])
|
| 3890 |
|
| 3891 |
#I am not completely sure why this has to be done
|
| 3892 |
#it does give units of electrons/ang**3
|
| 3893 |
vol = self.get_atoms().get_volume()
|
| 3894 |
cd /= vol |
| 3895 |
nc.close() |
| 3896 |
grids = self.get_fftgrid()
|
| 3897 |
|
| 3898 |
x, y, z = self.get_ucgrid(grids['hard']) |
| 3899 |
return x, y, z, cd
|
| 3900 |
|
| 3901 |
def get_ucgrid(self, dims): |
| 3902 |
'''Return X,Y,Z grids for uniform sampling of the unit cell
|
| 3903 |
|
| 3904 |
dims = (n0,n1,n2)
|
| 3905 |
|
| 3906 |
n0 points along unitcell vector 0
|
| 3907 |
n1 points along unitcell vector 1
|
| 3908 |
n2 points along unitcell vector 2
|
| 3909 |
'''
|
| 3910 |
|
| 3911 |
n0, n1, n2 = dims |
| 3912 |
|
| 3913 |
s0 = 1.0/n0
|
| 3914 |
s1 = 1.0/n1
|
| 3915 |
s2 = 1.0/n2
|
| 3916 |
|
| 3917 |
X, Y, Z = np.mgrid[0.0:1.0:s0, |
| 3918 |
0.0:1.0:s1, |
| 3919 |
0.0:1.0:s2] |
| 3920 |
|
| 3921 |
C = np.column_stack([X.ravel(), |
| 3922 |
Y.ravel(), |
| 3923 |
Z.ravel()]) |
| 3924 |
|
| 3925 |
atoms = self.get_atoms()
|
| 3926 |
uc = atoms.get_cell() |
| 3927 |
real = np.dot(C, uc) |
| 3928 |
|
| 3929 |
#now convert arrays back to unitcell shape
|
| 3930 |
RX = np.reshape(real[:, 0], (n0, n1, n2))
|
| 3931 |
RY = np.reshape(real[:, 1], (n0, n1, n2))
|
| 3932 |
RZ = np.reshape(real[:, 2], (n0, n1, n2))
|
| 3933 |
return (RX, RY, RZ)
|
| 3934 |
|
| 3935 |
def get_number_of_grid_points(self): |
| 3936 |
'return soft fft grid'
|
| 3937 |
|
| 3938 |
# needed by ase.dft.wannier
|
| 3939 |
fftgrids = self.get_fftgrid()
|
| 3940 |
return np.array(fftgrids['soft']) |
| 3941 |
|
| 3942 |
def get_wannier_localization_matrix(self, nbands, dirG, kpoint, |
| 3943 |
nextkpoint, G_I, spin): |
| 3944 |
'return wannier localization matrix'
|
| 3945 |
|
| 3946 |
if self.calculation_required(): |
| 3947 |
self.calculate()
|
| 3948 |
|
| 3949 |
if not hasattr(self, 'wannier'): |
| 3950 |
from utils.wannier import Wannier |
| 3951 |
self.wannier = Wannier(self) |
| 3952 |
self.wannier.set_bands(nbands)
|
| 3953 |
self.wannier.set_spin(spin)
|
| 3954 |
locmat = self.wannier.get_zi_bloch_matrix(dirG,
|
| 3955 |
kpoint, |
| 3956 |
nextkpoint, |
| 3957 |
G_I) |
| 3958 |
return locmat
|
| 3959 |
|
| 3960 |
def initial_wannier(self, |
| 3961 |
initialwannier, |
| 3962 |
kpointgrid, |
| 3963 |
fixedstates, |
| 3964 |
edf, |
| 3965 |
spin): |
| 3966 |
'return initial wannier'
|
| 3967 |
|
| 3968 |
if self.calculation_required(): |
| 3969 |
self.calculate()
|
| 3970 |
|
| 3971 |
if not hasattr(self, 'wannier'): |
| 3972 |
from utils.wannier import Wannier |
| 3973 |
self.wannier = Wannier(self) |
| 3974 |
|
| 3975 |
self.wannier.set_data(initialwannier)
|
| 3976 |
self.wannier.set_k_point_grid(kpointgrid)
|
| 3977 |
self.wannier.set_spin(spin)
|
| 3978 |
|
| 3979 |
waves = [[self.get_reciprocal_bloch_function(band=band,
|
| 3980 |
kpt=kpt, |
| 3981 |
spin=spin) |
| 3982 |
for band in range(self.get_nbands())] |
| 3983 |
for kpt in range(len(self.get_ibz_k_points()))] |
| 3984 |
|
| 3985 |
self.wannier.setup_m_matrix(waves, self.get_bz_k_points()) |
| 3986 |
|
| 3987 |
#lfn is too keep line length below 78 characters
|
| 3988 |
lfn = self.wannier.get_list_of_coefficients_and_rotation_matrices
|
| 3989 |
c, U = lfn((self.get_nbands(), fixedstates, edf))
|
| 3990 |
|
| 3991 |
U = np.array(U) |
| 3992 |
for k in range(len(c)): |
| 3993 |
c[k] = np.array(c[k]) |
| 3994 |
return c, U
|
| 3995 |
|
| 3996 |
def get_dipole_moment(self,atoms=None): |
| 3997 |
'''
|
| 3998 |
return dipole moment of unit cell
|
| 3999 |
|
| 4000 |
Defined by the vector connecting the center of electron charge
|
| 4001 |
density to the center of nuclear charge density.
|
| 4002 |
|
| 4003 |
Units = eV*angstrom
|
| 4004 |
|
| 4005 |
1 Debye = 0.208194 eV*angstrom
|
| 4006 |
|
| 4007 |
'''
|
| 4008 |
if self.calculation_required(): |
| 4009 |
self.calculate()
|
| 4010 |
|
| 4011 |
if atoms is None: |
| 4012 |
atoms = self.get_atoms()
|
| 4013 |
|
| 4014 |
#center of electron charge density
|
| 4015 |
x, y, z, cd = self.get_charge_density()
|
| 4016 |
|
| 4017 |
n1, n2, n3 = cd.shape |
| 4018 |
nelements = n1*n2*n3 |
| 4019 |
voxel_volume = atoms.get_volume()/nelements |
| 4020 |
total_electron_charge = -cd.sum()*voxel_volume |
| 4021 |
|
| 4022 |
|
| 4023 |
electron_density_center = np.array([(cd*x).sum(), |
| 4024 |
(cd*y).sum(), |
| 4025 |
(cd*z).sum()]) |
| 4026 |
electron_density_center *= voxel_volume |
| 4027 |
electron_density_center /= total_electron_charge |
| 4028 |
|
| 4029 |
electron_dipole_moment = electron_density_center*total_electron_charge |
| 4030 |
electron_dipole_moment *= -1.0 #we need the - here so the two |
| 4031 |
#negatives don't cancel
|
| 4032 |
# now the ion charge center
|
| 4033 |
psps = self.get_pseudopotentials()
|
| 4034 |
ion_charge_center = np.array([0.0, 0.0, 0.0]) |
| 4035 |
total_ion_charge = 0.0
|
| 4036 |
for atom in atoms: |
| 4037 |
Z = self.get_psp_nuclear_charge(psps[atom.symbol])
|
| 4038 |
total_ion_charge += Z |
| 4039 |
pos = atom.get_position() |
| 4040 |
ion_charge_center += Z*pos |
| 4041 |
|
| 4042 |
ion_charge_center /= total_ion_charge |
| 4043 |
ion_dipole_moment = ion_charge_center*total_ion_charge |
| 4044 |
|
| 4045 |
dipole_vector = (ion_dipole_moment + electron_dipole_moment) |
| 4046 |
return dipole_vector
|
| 4047 |
|
| 4048 |
|
| 4049 |
def get_reciprocal_bloch_function(self, band=0, kpt=0, spin=0): |
| 4050 |
'''return the reciprocal bloch function. Need for Jacapo
|
| 4051 |
Wannier class.'''
|
| 4052 |
|
| 4053 |
if self.calculation_required(): |
| 4054 |
self.calculate()
|
| 4055 |
|
| 4056 |
nc = netCDF(self.get_nc(), 'r') |
| 4057 |
|
| 4058 |
# read reciprocal bloch function
|
| 4059 |
npw = nc.variables['NumberPlaneWavesKpoint'][:]
|
| 4060 |
bf = nc.variables['WaveFunction'][kpt, spin, band]
|
| 4061 |
wflist = np.zeros(npw[kpt], np.complex) |
| 4062 |
wflist.real = bf[0:npw[kpt], 1] |
| 4063 |
wflist.imag = bf[0:npw[kpt], 0] |
| 4064 |
|
| 4065 |
nc.close() |
| 4066 |
|
| 4067 |
return wflist
|
| 4068 |
|
| 4069 |
def get_reciprocal_fft_index(self, kpt=0): |
| 4070 |
'''return the Wave Function FFT Index'''
|
| 4071 |
|
| 4072 |
nc = netCDF(self.get_nc(), 'r') |
| 4073 |
recind = nc.variables['WaveFunctionFFTindex'][kpt, :, :]
|
| 4074 |
nc.close() |
| 4075 |
return recind
|
| 4076 |
|
| 4077 |
def get_ensemble_coefficients(self): |
| 4078 |
'returns exchange correlation ensemble coefficients'
|
| 4079 |
|
| 4080 |
# adapted from ASE/dacapo.py
|
| 4081 |
# def GetEnsembleCoefficients(self):
|
| 4082 |
# self.Calculate()
|
| 4083 |
# E = self.GetPotentialEnergy()
|
| 4084 |
# xc = self.GetNetCDFEntry('EnsembleXCEnergies')
|
| 4085 |
# Exc = xc[0]
|
| 4086 |
# exc_c = self.GetNetCDFEntry('EvaluateCorrelationEnergy')
|
| 4087 |
# exc_e = self.GetNetCDFEntry('EvaluateExchangeEnergy')
|
| 4088 |
# exc = exc_c + exc_e
|
| 4089 |
# if self.GetXCFunctional() == 'RPBE':
|
| 4090 |
# Exc = exc[-1][-1]
|
| 4091 |
#
|
| 4092 |
# E0 = xc[1] # Fx = 0
|
| 4093 |
#
|
| 4094 |
# diff0 = xc[2] # - Exc
|
| 4095 |
# diff1 = xc[3] # - Exc
|
| 4096 |
# diff2 = xc[4] # - Exc
|
| 4097 |
# coefs = (E + E0 - Exc,diff0-E0 ,diff1-E0,diff2-E0)
|
| 4098 |
# print 'ensemble: (%.9f, %.9f, %.9f, %.9f)'% coefs
|
| 4099 |
# return num.array(coefs)
|
| 4100 |
if self.calculation_required(): |
| 4101 |
self.calculate()
|
| 4102 |
|
| 4103 |
E = self.get_potential_energy()
|
| 4104 |
nc = netCDF(self.get_nc(), 'r') |
| 4105 |
if 'EnsembleXCEnergies' in nc.variables: |
| 4106 |
v = nc.variables['EnsembleXCEnergies']
|
| 4107 |
xc = v[:] |
| 4108 |
|
| 4109 |
EXC = xc[0]
|
| 4110 |
|
| 4111 |
if 'EvaluateCorrelationEnergy' in nc.variables: |
| 4112 |
v = nc.variables['EvaluateCorrelationEnergy']
|
| 4113 |
exc_c = v[:] |
| 4114 |
|
| 4115 |
if 'EvaluateExchangeEnergy' in nc.variables: |
| 4116 |
v = nc.variables['EvaluateExchangeEnergy']
|
| 4117 |
exc_e = v[:] |
| 4118 |
|
| 4119 |
exc = exc_c + exc_e |
| 4120 |
|
| 4121 |
if self.get_xc == 'RPBE': |
| 4122 |
EXC = exc[-1][-1] |
| 4123 |
|
| 4124 |
E0 = xc[1] # Fx = 0 |
| 4125 |
|
| 4126 |
diff0 = xc[2] # - Exc |
| 4127 |
diff1 = xc[3] # - Exc |
| 4128 |
diff2 = xc[4] # - Exc |
| 4129 |
coefs = (E + E0 - EXC, diff0-E0, diff1-E0, diff2-E0) |
| 4130 |
log.info('ensemble: (%.9f, %.9f, %.9f, %.9f)'% coefs)
|
| 4131 |
return np.array(coefs)
|
| 4132 |
|
| 4133 |
def get_pseudo_wave_function(self, band=0, kpt=0, spin=0, pad=True): |
| 4134 |
|
| 4135 |
'''return the pseudo wavefunction'''
|
| 4136 |
|
| 4137 |
# pad=True does nothing here.
|
| 4138 |
if self.calculation_required(): |
| 4139 |
self.calculate()
|
| 4140 |
|
| 4141 |
ibz = self.get_ibz_kpoints()
|
| 4142 |
|
| 4143 |
#get the reciprocal bloch function
|
| 4144 |
wflist = self.get_reciprocal_bloch_function(band=band,
|
| 4145 |
kpt=kpt, |
| 4146 |
spin=spin) |
| 4147 |
# wflist == Reciprocal Bloch Function
|
| 4148 |
|
| 4149 |
recind = self. get_reciprocal_fft_index(kpt)
|
| 4150 |
grids = self.get_fftgrid()
|
| 4151 |
softgrid = grids['soft']
|
| 4152 |
|
| 4153 |
# GetReciprocalBlochFunctionGrid
|
| 4154 |
wfrec = np.zeros((softgrid), np.complex) |
| 4155 |
|
| 4156 |
for i in xrange(len(wflist)): |
| 4157 |
wfrec[recind[0, i]-1, |
| 4158 |
recind[1, i]-1, |
| 4159 |
recind[2, i]-1] = wflist[i] |
| 4160 |
|
| 4161 |
# calculate Bloch Function
|
| 4162 |
wf = wfrec.copy() |
| 4163 |
dim = wf.shape |
| 4164 |
for i in range(len(dim)): |
| 4165 |
wf = np.fft.fft(wf, dim[i], axis=i) |
| 4166 |
|
| 4167 |
#now the phase function to get the bloch phase
|
| 4168 |
basis = self.get_atoms().get_cell()
|
| 4169 |
kpoint = np.dot(ibz[kpt], basis) #coordinates of relevant
|
| 4170 |
#kpoint in cartesian
|
| 4171 |
#coordinates
|
| 4172 |
def phasefunction(coor): |
| 4173 |
'return phasefunction'
|
| 4174 |
pf = np.exp(1.0j*np.dot(kpoint, coor))
|
| 4175 |
return pf
|
| 4176 |
|
| 4177 |
# Calculating the Bloch phase at the origin (0,0,0) of the grid
|
| 4178 |
origin = np.array([0., 0., 0.]) |
| 4179 |
blochphase = phasefunction(origin) |
| 4180 |
spatialshape = wf.shape[-len(basis):]
|
| 4181 |
gridunitvectors = np.array(map(lambda unitvector, |
| 4182 |
shape:unitvector/shape, |
| 4183 |
basis, |
| 4184 |
spatialshape)) |
| 4185 |
|
| 4186 |
for dim in range(len(spatialshape)): |
| 4187 |
# Multiplying with the phase at the origin
|
| 4188 |
deltaphase = phasefunction(gridunitvectors[dim]) |
| 4189 |
# and calculating phase difference between each point
|
| 4190 |
newphase = np.fromfunction(lambda i, phase=deltaphase:phase**i,
|
| 4191 |
(spatialshape[dim],)) |
| 4192 |
blochphase = np.multiply.outer(blochphase, newphase) |
| 4193 |
|
| 4194 |
return blochphase*wf
|
| 4195 |
|
| 4196 |
def get_wave_function(self, band=0, kpt=0, spin=0): |
| 4197 |
'''return the wave function. This is the pseudo wave function
|
| 4198 |
divided by volume.'''
|
| 4199 |
|
| 4200 |
pwf = self.get_pseudo_wave_function(band=band,
|
| 4201 |
kpt=kpt, |
| 4202 |
spin=spin, |
| 4203 |
pad=True)
|
| 4204 |
vol = self.get_atoms().get_volume()
|
| 4205 |
fftgrids = self.get_fftgrid()
|
| 4206 |
softgrid = fftgrids['soft']
|
| 4207 |
|
| 4208 |
x, y, z = self.get_ucgrid((softgrid))
|
| 4209 |
|
| 4210 |
return x, y, z, pwf/np.sqrt(vol)
|
| 4211 |
|
| 4212 |
def strip(self): |
| 4213 |
'''remove all large memory nc variables not needed for
|
| 4214 |
anything I use very often.
|
| 4215 |
'''
|
| 4216 |
self.delete_ncattdimvar(self.nc, |
| 4217 |
ncdims=['max_projectors_per_atom'],
|
| 4218 |
ncvars=['WaveFunction',
|
| 4219 |
'WaveFunctionFFTindex',
|
| 4220 |
'NumberOfNLProjectors',
|
| 4221 |
'NLProjectorPsi',
|
| 4222 |
'TypeNLProjector1',
|
| 4223 |
'NumberofNLProjectors',
|
| 4224 |
'PartialCoreDensity',
|
| 4225 |
'ChargeDensity',
|
| 4226 |
'ElectrostaticPotential',
|
| 4227 |
'StructureFactor'])
|
| 4228 |
|
| 4229 |
# shortcut function names
|
| 4230 |
Jacapo.get_cd = Jacapo.get_charge_density |
| 4231 |
Jacapo.get_wf = Jacapo.get_wave_function |
| 4232 |
Jacapo.get_esp = Jacapo.get_electrostatic_potential |
| 4233 |
Jacapo.get_occ = Jacapo.get_occupation_numbers |
| 4234 |
Jacapo.get_ef = Jacapo.get_fermi_level |
| 4235 |
Jacapo.get_number_of_bands = Jacapo.get_nbands |
| 4236 |
Jacapo.set_pseudopotentials = Jacapo.set_psp |