root / ase / calculators / jacapo / jacapo.py @ 7
Historique | Voir | Annoter | Télécharger (140,74 ko)
| 1 | 1 | tkerber | '''
|
|---|---|---|---|
| 2 | 1 | tkerber | python module for ASE2-free and Numeric-free dacapo
|
| 3 | 1 | tkerber |
|
| 4 | 1 | tkerber | U{John Kitchin<mailto:jkitchin@andrew.cmu.edu>} December 25, 2008
|
| 5 | 1 | tkerber |
|
| 6 | 1 | tkerber | This module supports numpy directly.
|
| 7 | 1 | tkerber |
|
| 8 | 1 | tkerber | * ScientificPython2.8 is required
|
| 9 | 1 | tkerber |
|
| 10 | 1 | tkerber | - this is the first version to use numpy by default.
|
| 11 | 1 | tkerber |
|
| 12 | 1 | tkerber | see https://wiki.fysik.dtu.dk/stuff/nc/ for dacapo netcdf variable
|
| 13 | 1 | tkerber | documentation
|
| 14 | 1 | tkerber | '''
|
| 15 | 1 | tkerber | |
| 16 | 1 | tkerber | __docformat__ = 'restructuredtext'
|
| 17 | 1 | tkerber | |
| 18 | 1 | tkerber | import exceptions, glob, os, pickle, string |
| 19 | 1 | tkerber | from Scientific.IO.NetCDF import NetCDFFile as netCDF |
| 20 | 1 | tkerber | import numpy as np |
| 21 | 1 | tkerber | import subprocess as sp |
| 22 | 1 | tkerber | |
| 23 | 1 | tkerber | import validate |
| 24 | 1 | tkerber | import changed |
| 25 | 1 | tkerber | |
| 26 | 1 | tkerber | import logging |
| 27 | 1 | tkerber | log = logging.getLogger('Jacapo')
|
| 28 | 1 | tkerber | |
| 29 | 1 | tkerber | handler = logging.StreamHandler() |
| 30 | 1 | tkerber | formatter = logging.Formatter('''\
|
| 31 | 1 | tkerber | %(levelname)-10s function: %(funcName)s lineno: %(lineno)-4d \
|
| 32 | 1 | tkerber | %(message)s''')
|
| 33 | 1 | tkerber | handler.setFormatter(formatter) |
| 34 | 1 | tkerber | log.addHandler(handler) |
| 35 | 1 | tkerber | |
| 36 | 1 | tkerber | |
| 37 | 1 | tkerber | class DacapoRunning(exceptions.Exception): |
| 38 | 1 | tkerber | """Raised when ncfile.status = 'running'"""
|
| 39 | 1 | tkerber | pass
|
| 40 | 1 | tkerber | |
| 41 | 1 | tkerber | class DacapoAborted(exceptions.Exception): |
| 42 | 1 | tkerber | """Raised when ncfile.status = 'aborted'"""
|
| 43 | 1 | tkerber | pass
|
| 44 | 1 | tkerber | |
| 45 | 1 | tkerber | class DacapoInput(exceptions.Exception): |
| 46 | 1 | tkerber | ''' raised for bad input variables'''
|
| 47 | 1 | tkerber | pass
|
| 48 | 1 | tkerber | |
| 49 | 1 | tkerber | class DacapoAbnormalTermination(exceptions.Exception): |
| 50 | 1 | tkerber | """Raised when text file does not end correctly"""
|
| 51 | 1 | tkerber | pass
|
| 52 | 1 | tkerber | |
| 53 | 1 | tkerber | def read(ncfile): |
| 54 | 1 | tkerber | '''return atoms and calculator from ncfile
|
| 55 | 1 | tkerber |
|
| 56 | 1 | tkerber | >>> atoms, calc = read('co.nc')
|
| 57 | 1 | tkerber | '''
|
| 58 | 1 | tkerber | calc = Jacapo(ncfile) |
| 59 | 1 | tkerber | atoms = calc.get_atoms() #this returns a copy
|
| 60 | 1 | tkerber | return (atoms, calc)
|
| 61 | 1 | tkerber | |
| 62 | 1 | tkerber | class Jacapo: |
| 63 | 1 | tkerber | '''
|
| 64 | 1 | tkerber | Python interface to the Fortran DACAPO code
|
| 65 | 1 | tkerber | '''
|
| 66 | 1 | tkerber | |
| 67 | 1 | tkerber | __name__ = 'Jacapo'
|
| 68 | 1 | tkerber | __version__ = 0.4
|
| 69 | 1 | tkerber | |
| 70 | 1 | tkerber | #dictionary of valid input variables and default settings
|
| 71 | 1 | tkerber | default_input = {'atoms':None,
|
| 72 | 1 | tkerber | 'pw':350, |
| 73 | 1 | tkerber | 'dw':350, |
| 74 | 1 | tkerber | 'xc':'PW91', |
| 75 | 1 | tkerber | 'nbands':None, |
| 76 | 1 | tkerber | 'ft':0.1, |
| 77 | 1 | tkerber | 'kpts':(1,1,1), |
| 78 | 1 | tkerber | 'spinpol':False, |
| 79 | 1 | tkerber | 'fixmagmom':None, |
| 80 | 1 | tkerber | 'symmetry':False, |
| 81 | 1 | tkerber | 'calculate_stress':False, |
| 82 | 1 | tkerber | 'dipole':{'status':False, |
| 83 | 1 | tkerber | 'mixpar':0.2, |
| 84 | 1 | tkerber | 'initval':0.0, |
| 85 | 1 | tkerber | 'adddipfield':0.0, |
| 86 | 1 | tkerber | 'position':None}, |
| 87 | 1 | tkerber | 'status':'new', |
| 88 | 1 | tkerber | 'pseudopotentials':None, |
| 89 | 1 | tkerber | 'extracharge':None, |
| 90 | 1 | tkerber | 'extpot':None, |
| 91 | 1 | tkerber | 'fftgrid':None, |
| 92 | 1 | tkerber | 'ascii_debug':'Off', |
| 93 | 1 | tkerber | 'ncoutput':{'wf':'Yes', |
| 94 | 1 | tkerber | 'cd':'Yes', |
| 95 | 1 | tkerber | 'efp':'Yes', |
| 96 | 1 | tkerber | 'esp':'Yes'}, |
| 97 | 1 | tkerber | 'ados':None, |
| 98 | 1 | tkerber | 'decoupling':None, |
| 99 | 1 | tkerber | 'external_dipole':None, |
| 100 | 1 | tkerber | 'convergence':{'energy':0.00001, |
| 101 | 1 | tkerber | 'density':0.0001, |
| 102 | 1 | tkerber | 'occupation':0.001, |
| 103 | 1 | tkerber | 'maxsteps':None, |
| 104 | 1 | tkerber | 'maxtime':None}, |
| 105 | 1 | tkerber | 'charge_mixing':{'method':'Pulay', |
| 106 | 1 | tkerber | 'mixinghistory':10, |
| 107 | 1 | tkerber | 'mixingcoeff':0.1, |
| 108 | 1 | tkerber | 'precondition':'No', |
| 109 | 1 | tkerber | 'updatecharge':'Yes'}, |
| 110 | 1 | tkerber | 'electronic_minimization':{'method':'eigsolve', |
| 111 | 1 | tkerber | 'diagsperband':2}, |
| 112 | 1 | tkerber | 'occupationstatistics':'FermiDirac', |
| 113 | 1 | tkerber | 'fftgrid':{'soft':None, |
| 114 | 1 | tkerber | 'hard':None}, |
| 115 | 1 | tkerber | 'mdos':None, |
| 116 | 1 | tkerber | 'psp':None |
| 117 | 1 | tkerber | } |
| 118 | 1 | tkerber | |
| 119 | 1 | tkerber | def __init__(self, |
| 120 | 1 | tkerber | nc='out.nc',
|
| 121 | 1 | tkerber | outnc=None,
|
| 122 | 1 | tkerber | debug=logging.WARN, |
| 123 | 1 | tkerber | stay_alive=False,
|
| 124 | 1 | tkerber | **kwargs): |
| 125 | 1 | tkerber | '''
|
| 126 | 1 | tkerber | Initialize the Jacapo calculator
|
| 127 | 1 | tkerber |
|
| 128 | 1 | tkerber | :Parameters:
|
| 129 | 1 | tkerber |
|
| 130 | 1 | tkerber | nc : string
|
| 131 | 1 | tkerber | output netcdf file, or input file if nc already exists
|
| 132 | 1 | tkerber |
|
| 133 | 1 | tkerber | outnc : string
|
| 134 | 1 | tkerber | output file. by default equal to nc
|
| 135 | 1 | tkerber |
|
| 136 | 1 | tkerber | debug : integer
|
| 137 | 1 | tkerber | logging debug level.
|
| 138 | 1 | tkerber |
|
| 139 | 1 | tkerber | Valid kwargs:
|
| 140 | 1 | tkerber |
|
| 141 | 1 | tkerber | atoms : ASE.Atoms instance
|
| 142 | 1 | tkerber | atoms is an ase.Atoms object that will be attached
|
| 143 | 1 | tkerber | to this calculator.
|
| 144 | 1 | tkerber |
|
| 145 | 1 | tkerber | pw : integer
|
| 146 | 1 | tkerber | sets planewave cutoff
|
| 147 | 1 | tkerber |
|
| 148 | 1 | tkerber | dw : integer
|
| 149 | 1 | tkerber | sets density cutoff
|
| 150 | 1 | tkerber |
|
| 151 | 1 | tkerber | kpts : iterable
|
| 152 | 1 | tkerber | set chadi-cohen, monkhorst-pack kpt grid,
|
| 153 | 1 | tkerber | e.g. kpts = (2,2,1) or explicit list of kpts
|
| 154 | 1 | tkerber |
|
| 155 | 1 | tkerber | spinpol : Boolean
|
| 156 | 1 | tkerber | sets whether spin-polarization is used or not.
|
| 157 | 1 | tkerber |
|
| 158 | 1 | tkerber | fixmagmom : float
|
| 159 | 1 | tkerber | set the magnetic moment of the unit cell. only used
|
| 160 | 1 | tkerber | in spin polarize calculations
|
| 161 | 1 | tkerber |
|
| 162 | 1 | tkerber | ft : float
|
| 163 | 1 | tkerber | set the Fermi temperature used in occupation smearing
|
| 164 | 1 | tkerber |
|
| 165 | 1 | tkerber | xc : string
|
| 166 | 1 | tkerber | set the exchange-correlation functional.
|
| 167 | 1 | tkerber | one of ['PZ','VWN','PW91','PBE','RPBE','revPBE'],
|
| 168 | 1 | tkerber |
|
| 169 | 1 | tkerber | dipole
|
| 170 | 1 | tkerber | boolean
|
| 171 | 1 | tkerber | turn the dipole correction on (True) or off (False)
|
| 172 | 1 | tkerber |
|
| 173 | 1 | tkerber | or:
|
| 174 | 1 | tkerber | dictionary of parameters to fine-tune behavior
|
| 175 | 1 | tkerber | {'status':False,
|
| 176 | 1 | tkerber | 'mixpar':0.2,
|
| 177 | 1 | tkerber | 'initval':0.0,
|
| 178 | 1 | tkerber | 'adddipfield':0.0,
|
| 179 | 1 | tkerber | 'position':None}
|
| 180 | 1 | tkerber |
|
| 181 | 1 | tkerber | nbands : integer
|
| 182 | 1 | tkerber | set the number of bands
|
| 183 | 1 | tkerber |
|
| 184 | 1 | tkerber | symmetry : Boolean
|
| 185 | 1 | tkerber | Turn symmetry reduction on (True) or off (False)
|
| 186 | 1 | tkerber |
|
| 187 | 1 | tkerber | stress : Boolean
|
| 188 | 1 | tkerber | Turn stress calculation on (True) or off (False)
|
| 189 | 1 | tkerber |
|
| 190 | 1 | tkerber | debug : level for logging
|
| 191 | 1 | tkerber | could be something like
|
| 192 | 1 | tkerber | logging.DEBUG or an integer 0-50. The higher the integer,
|
| 193 | 1 | tkerber | the less information you see set debug level (0 = off, 10 =
|
| 194 | 1 | tkerber | extreme)
|
| 195 | 1 | tkerber |
|
| 196 | 1 | tkerber | Modification of the nc file only occurs at calculate time if needed
|
| 197 | 1 | tkerber |
|
| 198 | 1 | tkerber | >>> calc = Jacapo('CO.nc')
|
| 199 | 1 | tkerber |
|
| 200 | 1 | tkerber | reads the calculator from CO.nc if it exists or
|
| 201 | 1 | tkerber | minimally initializes CO.nc with dimensions if it does not exist.
|
| 202 | 1 | tkerber |
|
| 203 | 1 | tkerber | >>> calc = Jacapo('CO.nc', pw=300)
|
| 204 | 1 | tkerber |
|
| 205 | 1 | tkerber | reads the calculator from CO.nc or initializes it if
|
| 206 | 1 | tkerber | it does not exist and changes the planewave cutoff energy to
|
| 207 | 1 | tkerber | 300eV
|
| 208 | 1 | tkerber |
|
| 209 | 1 | tkerber | >>> atoms = Jacapo.read_atoms('CO.nc')
|
| 210 | 1 | tkerber |
|
| 211 | 1 | tkerber | returns the atoms in the netcdffile CO.nc, with the calculator
|
| 212 | 1 | tkerber | attached to it.
|
| 213 | 1 | tkerber |
|
| 214 | 1 | tkerber | >>> atoms, calc = read('CO.nc')
|
| 215 | 1 | tkerber |
|
| 216 | 1 | tkerber | '''
|
| 217 | 1 | tkerber | self.debug = debug
|
| 218 | 1 | tkerber | log.setLevel(debug) |
| 219 | 1 | tkerber | |
| 220 | 1 | tkerber | self.pars = Jacapo.default_input.copy()
|
| 221 | 1 | tkerber | self.pars_uptodate = {}
|
| 222 | 1 | tkerber | |
| 223 | 1 | tkerber | log.debug(self.pars)
|
| 224 | 1 | tkerber | |
| 225 | 1 | tkerber | for key in self.pars: |
| 226 | 1 | tkerber | self.pars_uptodate[key] = False |
| 227 | 1 | tkerber | |
| 228 | 1 | tkerber | self.kwargs = kwargs
|
| 229 | 1 | tkerber | self.set_psp_database()
|
| 230 | 1 | tkerber | |
| 231 | 1 | tkerber | self.set_nc(nc)
|
| 232 | 1 | tkerber | #assume not ready at init, rely on code later to change this
|
| 233 | 1 | tkerber | self.ready = False |
| 234 | 1 | tkerber | |
| 235 | 1 | tkerber | # need to set a default value for stay_alive
|
| 236 | 1 | tkerber | self.stay_alive = stay_alive
|
| 237 | 1 | tkerber | |
| 238 | 1 | tkerber | # Jacapo('out.nc') should return a calculator with atoms in
|
| 239 | 1 | tkerber | # out.nc attached or initialize out.nc
|
| 240 | 1 | tkerber | if os.path.exists(nc):
|
| 241 | 1 | tkerber | |
| 242 | 1 | tkerber | # for correct updating, we need to set the correct frame number
|
| 243 | 1 | tkerber | # before setting atoms or calculator
|
| 244 | 1 | tkerber | |
| 245 | 1 | tkerber | self._set_frame_number()
|
| 246 | 1 | tkerber | |
| 247 | 1 | tkerber | self.atoms = self.read_only_atoms(nc) |
| 248 | 1 | tkerber | |
| 249 | 1 | tkerber | #if atoms object is passed to
|
| 250 | 1 | tkerber | #__init__ we assume the user wants the atoms object
|
| 251 | 1 | tkerber | # updated to the current state in the file.
|
| 252 | 1 | tkerber | if 'atoms' in kwargs: |
| 253 | 1 | tkerber | log.debug('Updating the atoms in kwargs')
|
| 254 | 1 | tkerber | |
| 255 | 1 | tkerber | atoms = kwargs['atoms']
|
| 256 | 1 | tkerber | atoms.set_cell(self.atoms.get_cell())
|
| 257 | 1 | tkerber | atoms.set_positions(self.atoms.get_positions())
|
| 258 | 1 | tkerber | atoms.calc = self
|
| 259 | 1 | tkerber | |
| 260 | 1 | tkerber | #update the parameter list from the ncfile
|
| 261 | 1 | tkerber | self.update_input_parameters()
|
| 262 | 1 | tkerber | |
| 263 | 1 | tkerber | self.ready = True |
| 264 | 1 | tkerber | |
| 265 | 1 | tkerber | #change output file if needed
|
| 266 | 1 | tkerber | if outnc:
|
| 267 | 1 | tkerber | self.set_nc(outnc)
|
| 268 | 1 | tkerber | |
| 269 | 1 | tkerber | if len(kwargs) > 0: |
| 270 | 1 | tkerber | |
| 271 | 1 | tkerber | if 'stress' in kwargs: |
| 272 | 1 | tkerber | raise DacapoInput, '''\ |
| 273 | 1 | tkerber | stress keyword is deprecated.
|
| 274 | 1 | tkerber | you must use calculate_stress instead'''
|
| 275 | 1 | tkerber | |
| 276 | 1 | tkerber | #make sure to set calculator on atoms if it was in kwargs
|
| 277 | 1 | tkerber | #and do this first, since some parameters need info from atoms
|
| 278 | 1 | tkerber | if 'atoms' in kwargs: |
| 279 | 1 | tkerber | #we need to set_atoms here so the atoms are written to
|
| 280 | 1 | tkerber | #the ncfile
|
| 281 | 1 | tkerber | self.set_atoms(kwargs['atoms']) |
| 282 | 1 | tkerber | kwargs['atoms'].calc = self |
| 283 | 1 | tkerber | del kwargs['atoms'] #so we don't call it in the next |
| 284 | 1 | tkerber | #line. we don't want to do that
|
| 285 | 1 | tkerber | #because it will update the _frame
|
| 286 | 1 | tkerber | #counter, and that should not be
|
| 287 | 1 | tkerber | #done here.
|
| 288 | 1 | tkerber | |
| 289 | 1 | tkerber | self.set(**kwargs) #if nothing changes, nothing will be done |
| 290 | 1 | tkerber | |
| 291 | 1 | tkerber | def set(self, **kwargs): |
| 292 | 1 | tkerber | '''set a parameter
|
| 293 | 1 | tkerber |
|
| 294 | 1 | tkerber | parameter is stored in dictionary that is processed later if a
|
| 295 | 1 | tkerber | calculation is need.
|
| 296 | 1 | tkerber | '''
|
| 297 | 1 | tkerber | for key in kwargs: |
| 298 | 1 | tkerber | if key not in self.default_input: |
| 299 | 1 | tkerber | raise DacapoInput, '%s is not valid input' % key |
| 300 | 1 | tkerber | |
| 301 | 1 | tkerber | if kwargs[key] is None: |
| 302 | 1 | tkerber | continue
|
| 303 | 1 | tkerber | |
| 304 | 1 | tkerber | #now check for valid input
|
| 305 | 1 | tkerber | validf = 'validate.valid_%s' % key
|
| 306 | 1 | tkerber | valid = eval('%s(kwargs[key])' % validf) |
| 307 | 1 | tkerber | if not valid: |
| 308 | 1 | tkerber | s = 'Warning invalid input detected for key "%s" %s'
|
| 309 | 1 | tkerber | log.warn(s % (key, |
| 310 | 1 | tkerber | kwargs[key])) |
| 311 | 1 | tkerber | raise DacapoInput, s % (key, kwargs[key])
|
| 312 | 1 | tkerber | |
| 313 | 1 | tkerber | #now see if key has changed
|
| 314 | 1 | tkerber | if key in self.pars: |
| 315 | 1 | tkerber | changef = 'changed.%s_changed' % key
|
| 316 | 1 | tkerber | if os.path.exists(self.get_nc()): |
| 317 | 1 | tkerber | notchanged = not eval('%s(self,kwargs[key])' % changef) |
| 318 | 1 | tkerber | else:
|
| 319 | 1 | tkerber | notchanged = False
|
| 320 | 1 | tkerber | log.debug('%s notchanged = %s' % (key, notchanged))
|
| 321 | 1 | tkerber | |
| 322 | 1 | tkerber | if notchanged:
|
| 323 | 1 | tkerber | continue
|
| 324 | 1 | tkerber | |
| 325 | 1 | tkerber | log.debug('setting: %s. self.ready = False ' % key)
|
| 326 | 1 | tkerber | |
| 327 | 1 | tkerber | self.pars[key] = kwargs[key]
|
| 328 | 1 | tkerber | self.pars_uptodate[key] = False |
| 329 | 1 | tkerber | self.ready = False |
| 330 | 1 | tkerber | log.debug('exiting set function')
|
| 331 | 1 | tkerber | |
| 332 | 1 | tkerber | def write_input(self): |
| 333 | 1 | tkerber | '''write out input parameters as needed
|
| 334 | 1 | tkerber |
|
| 335 | 1 | tkerber | you must define a self._set_keyword function that does all the
|
| 336 | 1 | tkerber | actual writing.
|
| 337 | 1 | tkerber | '''
|
| 338 | 1 | tkerber | log.debug('Writing input variables out')
|
| 339 | 1 | tkerber | log.debug(self.pars)
|
| 340 | 1 | tkerber | |
| 341 | 1 | tkerber | if 'DACAPO_READONLY' in os.environ: |
| 342 | 1 | tkerber | raise Exception, 'DACAPO_READONLY set and you tried to write!' |
| 343 | 1 | tkerber | |
| 344 | 1 | tkerber | if self.ready: |
| 345 | 1 | tkerber | return
|
| 346 | 1 | tkerber | # Only write out changed parameters. this function does not do
|
| 347 | 1 | tkerber | # the writing, that is done for each variable in private
|
| 348 | 1 | tkerber | # functions.
|
| 349 | 1 | tkerber | for key in self.pars: |
| 350 | 1 | tkerber | if self.pars_uptodate[key] is False: |
| 351 | 1 | tkerber | setf = 'set_%s' % key
|
| 352 | 1 | tkerber | |
| 353 | 1 | tkerber | if self.pars[key] is None: |
| 354 | 1 | tkerber | continue
|
| 355 | 1 | tkerber | |
| 356 | 1 | tkerber | log.debug('trying to call: %s' % setf)
|
| 357 | 1 | tkerber | log.debug('self.%s(self.pars[key])' % setf)
|
| 358 | 1 | tkerber | log.debug('key = %s' % str(self.pars[key])) |
| 359 | 1 | tkerber | |
| 360 | 1 | tkerber | if isinstance(self.pars[key], dict): |
| 361 | 1 | tkerber | eval('self.%s(**self.pars[key])' % setf) |
| 362 | 1 | tkerber | else:
|
| 363 | 1 | tkerber | eval('self.%s(self.pars[key])' % setf) |
| 364 | 1 | tkerber | |
| 365 | 1 | tkerber | self.pars_uptodate[key] = True #update the changed flag |
| 366 | 1 | tkerber | |
| 367 | 1 | tkerber | log.debug('wrote %s: %s' % (key, str(self.pars[key]))) |
| 368 | 1 | tkerber | |
| 369 | 1 | tkerber | #set Jacapo version
|
| 370 | 1 | tkerber | ncf = netCDF(self.get_nc(), 'a') |
| 371 | 1 | tkerber | ncf.Jacapo_version = Jacapo.__version__ |
| 372 | 1 | tkerber | ncf.sync() |
| 373 | 1 | tkerber | ncf.close() |
| 374 | 1 | tkerber | |
| 375 | 1 | tkerber | def update_input_parameters(self): |
| 376 | 1 | tkerber | '''read in all the input parameters from the netcdfile'''
|
| 377 | 1 | tkerber | |
| 378 | 1 | tkerber | log.debug('Updating parameters')
|
| 379 | 1 | tkerber | |
| 380 | 1 | tkerber | for key in self.default_input: |
| 381 | 1 | tkerber | getf = 'self.get_%s()' % key
|
| 382 | 1 | tkerber | log.debug('getting key: %s' % key)
|
| 383 | 1 | tkerber | self.pars[key] = eval(getf) |
| 384 | 1 | tkerber | self.pars_uptodate[key] = True |
| 385 | 1 | tkerber | return self.pars |
| 386 | 1 | tkerber | |
| 387 | 1 | tkerber | def initnc(self, ncfile=None): |
| 388 | 1 | tkerber | '''create an ncfile with minimal dimensions in it
|
| 389 | 1 | tkerber |
|
| 390 | 1 | tkerber | this makes sure the dimensions needed for other set functions
|
| 391 | 1 | tkerber | exist when needed.'''
|
| 392 | 1 | tkerber | |
| 393 | 1 | tkerber | if ncfile is None: |
| 394 | 1 | tkerber | ncfile = self.get_nc()
|
| 395 | 1 | tkerber | else:
|
| 396 | 1 | tkerber | self.set_nc(ncfile)
|
| 397 | 1 | tkerber | |
| 398 | 1 | tkerber | log.debug('initializing %s' % ncfile)
|
| 399 | 1 | tkerber | |
| 400 | 1 | tkerber | base = os.path.split(ncfile)[0]
|
| 401 | 1 | tkerber | if base is not '' and not os.path.isdir(base): |
| 402 | 1 | tkerber | os.makedirs(base) |
| 403 | 1 | tkerber | |
| 404 | 1 | tkerber | ncf = netCDF(ncfile, 'w')
|
| 405 | 1 | tkerber | #first, we define some dimensions we always need
|
| 406 | 1 | tkerber | #unlimited
|
| 407 | 1 | tkerber | ncf.createDimension('number_ionic_steps', None) |
| 408 | 1 | tkerber | ncf.createDimension('dim1', 1) |
| 409 | 1 | tkerber | ncf.createDimension('dim2', 2) |
| 410 | 1 | tkerber | ncf.createDimension('dim3', 3) |
| 411 | 1 | tkerber | ncf.createDimension('dim4', 4) |
| 412 | 1 | tkerber | ncf.createDimension('dim5', 5) |
| 413 | 1 | tkerber | ncf.createDimension('dim6', 6) |
| 414 | 1 | tkerber | ncf.createDimension('dim7', 7) |
| 415 | 1 | tkerber | ncf.createDimension('dim20', 20) #for longer strings |
| 416 | 1 | tkerber | ncf.status = 'new'
|
| 417 | 1 | tkerber | ncf.history = 'Dacapo'
|
| 418 | 1 | tkerber | ncf.jacapo_version = Jacapo.__version__ |
| 419 | 1 | tkerber | ncf.close() |
| 420 | 1 | tkerber | |
| 421 | 1 | tkerber | self.ready = False |
| 422 | 1 | tkerber | self._frame = 0 |
| 423 | 1 | tkerber | |
| 424 | 1 | tkerber | def __del__(self): |
| 425 | 1 | tkerber | '''If calculator is deleted try to stop dacapo program
|
| 426 | 1 | tkerber | '''
|
| 427 | 1 | tkerber | |
| 428 | 1 | tkerber | if hasattr(self, '_dacapo'): |
| 429 | 1 | tkerber | if self._dacapo.poll()==None: |
| 430 | 1 | tkerber | self.execute_external_dynamics(stopprogram=True) |
| 431 | 1 | tkerber | #and clean up after Dacapo
|
| 432 | 1 | tkerber | if os.path.exists('stop'): |
| 433 | 1 | tkerber | os.remove('stop')
|
| 434 | 1 | tkerber | #remove slave files
|
| 435 | 1 | tkerber | txt = self.get_txt()
|
| 436 | 1 | tkerber | if txt is not None: |
| 437 | 1 | tkerber | slv = txt + '.slave*'
|
| 438 | 1 | tkerber | for slvf in glob.glob(slv): |
| 439 | 1 | tkerber | os.remove(slvf) |
| 440 | 1 | tkerber | |
| 441 | 1 | tkerber | def __str__(self): |
| 442 | 1 | tkerber | '''
|
| 443 | 1 | tkerber | pretty-print the calculator and atoms.
|
| 444 | 1 | tkerber |
|
| 445 | 1 | tkerber | we read everything directly from the ncfile to prevent
|
| 446 | 1 | tkerber | triggering any calculations
|
| 447 | 1 | tkerber | '''
|
| 448 | 1 | tkerber | s = [] |
| 449 | 1 | tkerber | if self.nc is None: |
| 450 | 1 | tkerber | return 'No netcdf file attached to this calculator' |
| 451 | 1 | tkerber | if not os.path.exists(self.nc): |
| 452 | 1 | tkerber | return 'ncfile does not exist yet' |
| 453 | 1 | tkerber | |
| 454 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 455 | 1 | tkerber | s.append(' ---------------------------------')
|
| 456 | 1 | tkerber | s.append(' Dacapo calculation from %s' % self.nc) |
| 457 | 1 | tkerber | if hasattr(nc, 'status'): |
| 458 | 1 | tkerber | s.append(' status = %s' % nc.status)
|
| 459 | 1 | tkerber | if hasattr(nc, 'version'): |
| 460 | 1 | tkerber | s.append(' version = %s' % nc.version)
|
| 461 | 1 | tkerber | if hasattr(nc, 'Jacapo_version'): |
| 462 | 1 | tkerber | s.append(' Jacapo version = %s' % nc.Jacapo_version[0]) |
| 463 | 1 | tkerber | |
| 464 | 1 | tkerber | energy = nc.variables.get('TotalEnergy', None) |
| 465 | 1 | tkerber | |
| 466 | 1 | tkerber | if energy and energy[:][-1] < 1E36: # missing values get |
| 467 | 1 | tkerber | # returned at 9.3E36
|
| 468 | 1 | tkerber | s.append(' Energy = %1.6f eV' % energy[:][-1]) |
| 469 | 1 | tkerber | else:
|
| 470 | 1 | tkerber | s.append(' Energy = None')
|
| 471 | 1 | tkerber | |
| 472 | 1 | tkerber | s.append('')
|
| 473 | 1 | tkerber | |
| 474 | 1 | tkerber | atoms = self.get_atoms()
|
| 475 | 1 | tkerber | |
| 476 | 1 | tkerber | if atoms is None: |
| 477 | 1 | tkerber | s.append(' no atoms defined')
|
| 478 | 1 | tkerber | else:
|
| 479 | 1 | tkerber | uc = atoms.get_cell() |
| 480 | 1 | tkerber | #a, b, c = uc
|
| 481 | 1 | tkerber | s.append(" Unit Cell vectors (angstroms)")
|
| 482 | 1 | tkerber | s.append(" x y z length")
|
| 483 | 1 | tkerber | |
| 484 | 1 | tkerber | for i, v in enumerate(uc): |
| 485 | 1 | tkerber | L = (np.sum(v**2))**0.5 #vector length |
| 486 | 1 | tkerber | s.append(" a%i [% 1.4f % 1.4f % 1.4f] %1.2f" % (i,
|
| 487 | 1 | tkerber | v[0],
|
| 488 | 1 | tkerber | v[1],
|
| 489 | 1 | tkerber | v[2],
|
| 490 | 1 | tkerber | L)) |
| 491 | 1 | tkerber | |
| 492 | 1 | tkerber | stress = nc.variables.get('TotalStress', None) |
| 493 | 1 | tkerber | if stress is not None: |
| 494 | 1 | tkerber | stress = np.take(stress[:].ravel(), [0, 4, 8, 5, 2, 1]) |
| 495 | 1 | tkerber | s.append(' Stress: xx, yy, zz, yz, xz, xy')
|
| 496 | 1 | tkerber | s1 = ' % 1.3f % 1.3f % 1.3f % 1.3f % 1.3f % 1.3f'
|
| 497 | 1 | tkerber | s.append(s1 % tuple(stress))
|
| 498 | 1 | tkerber | else:
|
| 499 | 1 | tkerber | s.append(' No stress calculated.')
|
| 500 | 1 | tkerber | s.append(' Volume = %1.2f A^3' % atoms.get_volume())
|
| 501 | 1 | tkerber | s.append('')
|
| 502 | 1 | tkerber | |
| 503 | 1 | tkerber | z = " Atom, sym, position (in x,y,z), tag, rmsForce and psp"
|
| 504 | 1 | tkerber | s.append(z) |
| 505 | 1 | tkerber | |
| 506 | 1 | tkerber | #this is just the ncvariable
|
| 507 | 1 | tkerber | forces = nc.variables.get('DynamicAtomForces', None) |
| 508 | 1 | tkerber | |
| 509 | 1 | tkerber | for i, atom in enumerate(atoms): |
| 510 | 1 | tkerber | sym = atom.get_symbol() |
| 511 | 1 | tkerber | pos = atom.get_position() |
| 512 | 1 | tkerber | tag = atom.get_tag() |
| 513 | 1 | tkerber | if forces is not None and (forces[:][-1][i] < 1E36).all(): |
| 514 | 1 | tkerber | f = forces[:][-1][i]
|
| 515 | 1 | tkerber | # Lars Grabow: this seems to work right for some
|
| 516 | 1 | tkerber | # reason, but I would expect this to be the right
|
| 517 | 1 | tkerber | # index order f=forces[-1][i][:]
|
| 518 | 1 | tkerber | # frame,atom,direction
|
| 519 | 1 | tkerber | rmsforce = (np.sum(f**2))**0.5 |
| 520 | 1 | tkerber | else:
|
| 521 | 1 | tkerber | rmsforce = None
|
| 522 | 1 | tkerber | |
| 523 | 1 | tkerber | st = " %2i %3.12s " % (i, sym)
|
| 524 | 1 | tkerber | st += "[% 7.3f%7.3f% 7.3f] " % tuple(pos) |
| 525 | 1 | tkerber | st += " %2s " % tag
|
| 526 | 1 | tkerber | if rmsforce is not None: |
| 527 | 1 | tkerber | st += " %4.3f " % rmsforce
|
| 528 | 1 | tkerber | else:
|
| 529 | 1 | tkerber | st += ' None '
|
| 530 | 1 | tkerber | st += " %s" % (self.get_psp(sym)) |
| 531 | 1 | tkerber | s.append(st) |
| 532 | 1 | tkerber | |
| 533 | 1 | tkerber | s.append('')
|
| 534 | 1 | tkerber | s.append(' Details:')
|
| 535 | 1 | tkerber | xc = self.get_xc()
|
| 536 | 1 | tkerber | if xc is not None: |
| 537 | 1 | tkerber | s.append(' XCfunctional = %s' % self.get_xc()) |
| 538 | 1 | tkerber | else:
|
| 539 | 1 | tkerber | s.append(' XCfunctional = Not defined')
|
| 540 | 1 | tkerber | s.append(' Planewavecutoff = %i eV' % int(self.get_pw())) |
| 541 | 1 | tkerber | dw = self.get_dw()
|
| 542 | 1 | tkerber | if dw:
|
| 543 | 1 | tkerber | s.append(' Densitywavecutoff = %i eV' % int(self.get_dw())) |
| 544 | 1 | tkerber | else:
|
| 545 | 1 | tkerber | s.append(' Densitywavecutoff = None')
|
| 546 | 1 | tkerber | ft = self.get_ft()
|
| 547 | 1 | tkerber | if ft is not None: |
| 548 | 1 | tkerber | s.append(' FermiTemperature = %f kT' % ft)
|
| 549 | 1 | tkerber | else:
|
| 550 | 1 | tkerber | s.append(' FermiTemperature = not defined')
|
| 551 | 1 | tkerber | nelectrons = self.get_valence()
|
| 552 | 1 | tkerber | if nelectrons is not None: |
| 553 | 1 | tkerber | s.append(' Number of electrons = %1.1f' % nelectrons)
|
| 554 | 1 | tkerber | else:
|
| 555 | 1 | tkerber | s.append(' Number of electrons = None')
|
| 556 | 1 | tkerber | s.append(' Number of bands = %s' % self.get_nbands()) |
| 557 | 1 | tkerber | s.append(' Kpoint grid = %s' % str(self.get_kpts_type())) |
| 558 | 1 | tkerber | s.append(' Spin-polarized = %s' % self.get_spin_polarized()) |
| 559 | 1 | tkerber | s.append(' Dipole correction = %s' % self.get_dipole()) |
| 560 | 1 | tkerber | s.append(' Symmetry = %s' % self.get_symmetry()) |
| 561 | 1 | tkerber | s.append(' Constraints = %s' % str(atoms._get_constraints())) |
| 562 | 1 | tkerber | s.append(' ---------------------------------')
|
| 563 | 1 | tkerber | nc.close() |
| 564 | 1 | tkerber | return string.join(s, '\n') |
| 565 | 1 | tkerber | |
| 566 | 1 | tkerber | #todo figure out other xc psp databases
|
| 567 | 1 | tkerber | def set_psp_database(self, xc=None): |
| 568 | 1 | tkerber | '''
|
| 569 | 1 | tkerber | get the xc-dependent psp database
|
| 570 | 1 | tkerber |
|
| 571 | 1 | tkerber | :Parameters:
|
| 572 | 1 | tkerber |
|
| 573 | 1 | tkerber | xc : string
|
| 574 | 1 | tkerber | one of 'PW91', 'PBE', 'revPBE', 'RPBE', 'PZ'
|
| 575 | 1 | tkerber |
|
| 576 | 1 | tkerber |
|
| 577 | 1 | tkerber | not all the databases are complete, and that means
|
| 578 | 1 | tkerber | some psp do not exist.
|
| 579 | 1 | tkerber |
|
| 580 | 1 | tkerber | note: this function is not supported fully. only pw91 is
|
| 581 | 1 | tkerber | imported now. Changing the xc at this point results in loading
|
| 582 | 1 | tkerber | a nearly empty database, and I have not thought about how to
|
| 583 | 1 | tkerber | resolve that
|
| 584 | 1 | tkerber | '''
|
| 585 | 1 | tkerber | |
| 586 | 1 | tkerber | if xc == 'PW91' or xc is None: |
| 587 | 1 | tkerber | from pw91_psp import defaultpseudopotentials |
| 588 | 1 | tkerber | else:
|
| 589 | 1 | tkerber | log.warn('PW91 pseudopotentials are being used!')
|
| 590 | 1 | tkerber | #todo build other xc psp databases
|
| 591 | 1 | tkerber | from pw91_psp import defaultpseudopotentials |
| 592 | 1 | tkerber | |
| 593 | 1 | tkerber | self.psp = defaultpseudopotentials
|
| 594 | 1 | tkerber | |
| 595 | 1 | tkerber | def _set_frame_number(self, frame=None): |
| 596 | 1 | tkerber | 'set framenumber in the netcdf file'
|
| 597 | 1 | tkerber | |
| 598 | 1 | tkerber | if frame is None: |
| 599 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 600 | 1 | tkerber | if 'TotalEnergy' in nc.variables: |
| 601 | 1 | tkerber | frame = nc.variables['TotalEnergy'].shape[0] |
| 602 | 1 | tkerber | # make sure the last energy is reasonable. Sometime
|
| 603 | 1 | tkerber | # the field is empty if the calculation ran out of
|
| 604 | 1 | tkerber | # walltime for example. Empty values get returned as
|
| 605 | 1 | tkerber | # 9.6E36. Dacapos energies should always be negative,
|
| 606 | 1 | tkerber | # so if the energy is > 1E36, there is definitely
|
| 607 | 1 | tkerber | # something wrong and a restart is required.
|
| 608 | 1 | tkerber | if nc.variables.get('TotalEnergy', None)[-1] > 1E36: |
| 609 | 1 | tkerber | log.warn("Total energy > 1E36. NC file is incomplete. \
|
| 610 | 1 | tkerber | calc.restart required")
|
| 611 | 1 | tkerber | self.restart()
|
| 612 | 1 | tkerber | else:
|
| 613 | 1 | tkerber | frame = 1
|
| 614 | 1 | tkerber | nc.close() |
| 615 | 1 | tkerber | log.info("Current frame number is: %i" % (frame-1)) |
| 616 | 1 | tkerber | self._frame = frame-1 #netCDF starts counting with 1 |
| 617 | 1 | tkerber | |
| 618 | 1 | tkerber | def _increment_frame(self): |
| 619 | 1 | tkerber | 'increment the framenumber'
|
| 620 | 1 | tkerber | |
| 621 | 1 | tkerber | log.debug('incrementing frame')
|
| 622 | 1 | tkerber | self._frame += 1 |
| 623 | 1 | tkerber | |
| 624 | 1 | tkerber | def set_pw(self, pw): |
| 625 | 1 | tkerber | '''set the planewave cutoff.
|
| 626 | 1 | tkerber |
|
| 627 | 1 | tkerber | :Parameters:
|
| 628 | 1 | tkerber |
|
| 629 | 1 | tkerber | pw : integer
|
| 630 | 1 | tkerber | the planewave cutoff in eV
|
| 631 | 1 | tkerber |
|
| 632 | 1 | tkerber | this function checks to make sure the density wave cutoff is
|
| 633 | 1 | tkerber | greater than or equal to the planewave cutoff.'''
|
| 634 | 1 | tkerber | |
| 635 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
| 636 | 1 | tkerber | if 'PlaneWaveCutoff' in nc.variables: |
| 637 | 1 | tkerber | vpw = nc.variables['PlaneWaveCutoff']
|
| 638 | 1 | tkerber | vpw.assignValue(pw) |
| 639 | 1 | tkerber | else:
|
| 640 | 1 | tkerber | vpw = nc.createVariable('PlaneWaveCutoff', 'd', ('dim1',)) |
| 641 | 1 | tkerber | vpw.assignValue(pw) |
| 642 | 1 | tkerber | |
| 643 | 1 | tkerber | if 'Density_WaveCutoff' in nc.variables: |
| 644 | 1 | tkerber | vdw = nc.variables['Density_WaveCutoff']
|
| 645 | 1 | tkerber | dw = vdw.getValue() |
| 646 | 1 | tkerber | if pw > dw:
|
| 647 | 1 | tkerber | vdw.assignValue(pw) #make them equal
|
| 648 | 1 | tkerber | else:
|
| 649 | 1 | tkerber | vdw = nc.createVariable('Density_WaveCutoff', 'd', ('dim1',)) |
| 650 | 1 | tkerber | vdw.assignValue(pw) |
| 651 | 1 | tkerber | nc.close() |
| 652 | 1 | tkerber | self.restart() #nc dimension change for number_plane_Wave dimension |
| 653 | 1 | tkerber | self.set_status('new') |
| 654 | 1 | tkerber | self.ready = False |
| 655 | 1 | tkerber | |
| 656 | 1 | tkerber | def set_dw(self, dw): |
| 657 | 1 | tkerber | '''set the density wave cutoff energy.
|
| 658 | 1 | tkerber |
|
| 659 | 1 | tkerber | :Parameters:
|
| 660 | 1 | tkerber |
|
| 661 | 1 | tkerber | dw : integer
|
| 662 | 1 | tkerber | the density wave cutoff
|
| 663 | 1 | tkerber |
|
| 664 | 1 | tkerber | The function checks to make sure it is not less than the
|
| 665 | 1 | tkerber | planewave cutoff.
|
| 666 | 1 | tkerber |
|
| 667 | 1 | tkerber | Density_WaveCutoff describes the kinetic energy neccesary to
|
| 668 | 1 | tkerber | represent a wavefunction associated with the total density,
|
| 669 | 1 | tkerber | i.e. G-vectors for which $\vert G\vert^2$ $<$
|
| 670 | 1 | tkerber | 4*Density_WaveCutoff will be used to describe the total
|
| 671 | 1 | tkerber | density (including augmentation charge and partial core
|
| 672 | 1 | tkerber | density). If Density_WaveCutoff is equal to PlaneWaveCutoff
|
| 673 | 1 | tkerber | this implies that the total density is as soft as the
|
| 674 | 1 | tkerber | wavefunctions described by the kinetic energy cutoff
|
| 675 | 1 | tkerber | PlaneWaveCutoff. If a value of Density_WaveCutoff is specified
|
| 676 | 1 | tkerber | (must be larger than or equal to PlaneWaveCutoff) the program
|
| 677 | 1 | tkerber | will run using two grids, one for representing the
|
| 678 | 1 | tkerber | wavefunction density (softgrid_dim) and one representing the
|
| 679 | 1 | tkerber | total density (hardgrid_dim). If the density can be
|
| 680 | 1 | tkerber | reprensented on the same grid as the wavefunction density
|
| 681 | 1 | tkerber | Density_WaveCutoff can be chosen equal to PlaneWaveCutoff
|
| 682 | 1 | tkerber | (default).
|
| 683 | 1 | tkerber | '''
|
| 684 | 1 | tkerber | |
| 685 | 1 | tkerber | pw = self.get_pw()
|
| 686 | 1 | tkerber | if pw > dw:
|
| 687 | 1 | tkerber | log.warn('Planewave cutoff %i is greater \
|
| 688 | 1 | tkerber | than density cutoff %i' % (pw, dw))
|
| 689 | 1 | tkerber | |
| 690 | 1 | tkerber | ncf = netCDF(self.nc, 'a') |
| 691 | 1 | tkerber | if 'Density_WaveCutoff' in ncf.variables: |
| 692 | 1 | tkerber | vdw = ncf.variables['Density_WaveCutoff']
|
| 693 | 1 | tkerber | vdw.assignValue(dw) |
| 694 | 1 | tkerber | else:
|
| 695 | 1 | tkerber | vdw = ncf.createVariable('Density_WaveCutoff', 'i', ('dim1',)) |
| 696 | 1 | tkerber | vdw.assignValue(dw) |
| 697 | 1 | tkerber | ncf.close() |
| 698 | 1 | tkerber | self.restart() #nc dimension change |
| 699 | 1 | tkerber | self.set_status('new') |
| 700 | 1 | tkerber | self.ready = False |
| 701 | 1 | tkerber | |
| 702 | 1 | tkerber | def set_xc(self, xc): |
| 703 | 1 | tkerber | '''Set the self-consistent exchange-correlation functional
|
| 704 | 1 | tkerber |
|
| 705 | 1 | tkerber | :Parameters:
|
| 706 | 1 | tkerber |
|
| 707 | 1 | tkerber | xc : string
|
| 708 | 1 | tkerber | Must be one of 'PZ', 'VWN', 'PW91', 'PBE', 'revPBE', 'RPBE'
|
| 709 | 1 | tkerber |
|
| 710 | 1 | tkerber | Selects which density functional to use for
|
| 711 | 1 | tkerber | exchange-correlation when performing electronic minimization
|
| 712 | 1 | tkerber | (the electronic energy is minimized with respect to this
|
| 713 | 1 | tkerber | selected functional) Notice that the electronic energy is also
|
| 714 | 1 | tkerber | evaluated non-selfconsistently by DACAPO for other
|
| 715 | 1 | tkerber | exchange-correlation functionals Recognized options :
|
| 716 | 1 | tkerber |
|
| 717 | 1 | tkerber | * "PZ" (Perdew Zunger LDA-parametrization)
|
| 718 | 1 | tkerber | * "VWN" (Vosko Wilk Nusair LDA-parametrization)
|
| 719 | 1 | tkerber | * "PW91" (Perdew Wang 91 GGA-parametrization)
|
| 720 | 1 | tkerber | * "PBE" (Perdew Burke Ernzerhof GGA-parametrization)
|
| 721 | 1 | tkerber | * "revPBE" (revised PBE/1 GGA-parametrization)
|
| 722 | 1 | tkerber | * "RPBE" (revised PBE/2 GGA-parametrization)
|
| 723 | 1 | tkerber |
|
| 724 | 1 | tkerber | option "PZ" is not allowed for spin polarized
|
| 725 | 1 | tkerber | calculation; use "VWN" instead.
|
| 726 | 1 | tkerber | '''
|
| 727 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
| 728 | 1 | tkerber | v = 'ExcFunctional'
|
| 729 | 1 | tkerber | if v in nc.variables: |
| 730 | 1 | tkerber | nc.variables[v][:] = np.array('%7s' % xc, 'c') |
| 731 | 1 | tkerber | else:
|
| 732 | 1 | tkerber | vxc = nc.createVariable('ExcFunctional', 'c', ('dim7',)) |
| 733 | 1 | tkerber | vxc[:] = np.array('%7s' % xc, 'c') |
| 734 | 1 | tkerber | nc.close() |
| 735 | 1 | tkerber | self.set_status('new') |
| 736 | 1 | tkerber | self.ready = False |
| 737 | 1 | tkerber | |
| 738 | 1 | tkerber | def set_nbands(self, nbands=None): |
| 739 | 1 | tkerber | '''Set the number of bands. a few unoccupied bands are
|
| 740 | 1 | tkerber | recommended.
|
| 741 | 1 | tkerber |
|
| 742 | 1 | tkerber | :Parameters:
|
| 743 | 1 | tkerber |
|
| 744 | 1 | tkerber | nbands : integer
|
| 745 | 1 | tkerber | the number of bands.
|
| 746 | 1 | tkerber |
|
| 747 | 1 | tkerber | if nbands = None the function returns with nothing done. At
|
| 748 | 1 | tkerber | calculate time, if there are still no bands, they will be set
|
| 749 | 1 | tkerber | by:
|
| 750 | 1 | tkerber |
|
| 751 | 1 | tkerber | the number of bands is calculated as
|
| 752 | 1 | tkerber | $nbands=nvalence*0.65 + 4$
|
| 753 | 1 | tkerber | '''
|
| 754 | 1 | tkerber | if nbands is None: |
| 755 | 1 | tkerber | return
|
| 756 | 1 | tkerber | |
| 757 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 758 | 1 | tkerber | ncdims=['number_of_bands'],
|
| 759 | 1 | tkerber | ncvars=[]) |
| 760 | 1 | tkerber | |
| 761 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
| 762 | 1 | tkerber | v = 'ElectronicBands'
|
| 763 | 1 | tkerber | if v in nc.variables: |
| 764 | 1 | tkerber | vnb = nc.variables[v] |
| 765 | 1 | tkerber | else:
|
| 766 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 767 | 1 | tkerber | |
| 768 | 1 | tkerber | vnb.NumberOfBands = nbands |
| 769 | 1 | tkerber | nc.sync() |
| 770 | 1 | tkerber | nc.close() |
| 771 | 1 | tkerber | self.set_status('new') |
| 772 | 1 | tkerber | self.ready = False |
| 773 | 1 | tkerber | |
| 774 | 1 | tkerber | def set_kpts(self, kpts): |
| 775 | 1 | tkerber | '''
|
| 776 | 1 | tkerber | set the kpt grid.
|
| 777 | 1 | tkerber |
|
| 778 | 1 | tkerber | Parameters:
|
| 779 | 1 | tkerber |
|
| 780 | 1 | tkerber | kpts: (n1,n2,n3) or [k1,k2,k3,...] or one of these
|
| 781 | 1 | tkerber | chadi-cohen sets:
|
| 782 | 1 | tkerber |
|
| 783 | 1 | tkerber | * cc6_1x1
|
| 784 | 1 | tkerber | * cc12_2x3
|
| 785 | 1 | tkerber | * cc18_sq3xsq3
|
| 786 | 1 | tkerber | * cc18_1x1
|
| 787 | 1 | tkerber | * cc54_sq3xsq3
|
| 788 | 1 | tkerber | * cc54_1x1
|
| 789 | 1 | tkerber | * cc162_sq3xsq3
|
| 790 | 1 | tkerber | * cc162_1x1
|
| 791 | 1 | tkerber |
|
| 792 | 1 | tkerber | (n1,n2,n3) creates an n1 x n2 x n3 monkhorst-pack grid,
|
| 793 | 1 | tkerber | [k1,k2,k3,...] creates a kpt-grid based on the kpoints
|
| 794 | 1 | tkerber | defined in k1,k2,k3,...
|
| 795 | 1 | tkerber |
|
| 796 | 1 | tkerber | There is also a possibility to have Dacapo (fortran) create
|
| 797 | 1 | tkerber | the Kpoints in chadi-cohen or monkhorst-pack form. To do this
|
| 798 | 1 | tkerber | you need to set the KpointSetup.gridtype attribute, and
|
| 799 | 1 | tkerber | KpointSetup.
|
| 800 | 1 | tkerber |
|
| 801 | 1 | tkerber | KpointSetup = [3,0,0]
|
| 802 | 1 | tkerber | KpointSetup.gridtype = 'ChadiCohen'
|
| 803 | 1 | tkerber |
|
| 804 | 1 | tkerber | KpointSetup(1) Chadi-Cohen k-point set
|
| 805 | 1 | tkerber | 1 6 k-points 1x1
|
| 806 | 1 | tkerber | 2 18-kpoints sqrt(3)*sqrt(3)
|
| 807 | 1 | tkerber | 3 18-kpoints 1x1
|
| 808 | 1 | tkerber | 4 54-kpoints sqrt(3)*sqrt(3)
|
| 809 | 1 | tkerber | 5 54-kpoints 1x1
|
| 810 | 1 | tkerber | 6 162-kpoints 1x1
|
| 811 | 1 | tkerber | 7 12-kpoints 2x3
|
| 812 | 1 | tkerber | 8 162-kpoints 3xsqrt 3
|
| 813 | 1 | tkerber |
|
| 814 | 1 | tkerber | or
|
| 815 | 1 | tkerber | KpointSetup = [4,4,4]
|
| 816 | 1 | tkerber | KpointSetup.gridtype = 'MonkhorstPack'
|
| 817 | 1 | tkerber | we do not use this functionality.
|
| 818 | 1 | tkerber | '''
|
| 819 | 1 | tkerber | |
| 820 | 1 | tkerber | #chadi-cohen
|
| 821 | 1 | tkerber | if isinstance(kpts, str): |
| 822 | 1 | tkerber | exec('from ase.dft.kpoints import %s' % kpts)
|
| 823 | 1 | tkerber | listofkpts = eval(kpts)
|
| 824 | 1 | tkerber | gridtype = kpts #stored in ncfile
|
| 825 | 1 | tkerber | #uc = self.get_atoms().get_cell()
|
| 826 | 1 | tkerber | #listofkpts = np.dot(ccgrid,np.linalg.inv(uc.T))
|
| 827 | 1 | tkerber | |
| 828 | 1 | tkerber | #monkhorst-pack grid
|
| 829 | 1 | tkerber | if np.array(kpts).shape == (3,): |
| 830 | 1 | tkerber | from ase.dft.kpoints import monkhorst_pack |
| 831 | 1 | tkerber | N1, N2, N3 = kpts |
| 832 | 1 | tkerber | listofkpts = monkhorst_pack((N1, N2, N3)) |
| 833 | 1 | tkerber | gridtype = 'Monkhorst-Pack %s' % str(tuple(kpts)) |
| 834 | 1 | tkerber | |
| 835 | 1 | tkerber | #user-defined list is provided
|
| 836 | 1 | tkerber | if len(np.array(kpts).shape) == 2: |
| 837 | 1 | tkerber | listofkpts = kpts |
| 838 | 1 | tkerber | gridtype = 'user_defined_%i_kpts' % len(kpts) #stored in ncfile |
| 839 | 1 | tkerber | |
| 840 | 1 | tkerber | nbzkpts = len(listofkpts)
|
| 841 | 1 | tkerber | |
| 842 | 1 | tkerber | #we need to get dimensions stored temporarily so
|
| 843 | 1 | tkerber | #we can delete all dimensions and variables associated with
|
| 844 | 1 | tkerber | #kpoints before we save them back out.
|
| 845 | 1 | tkerber | nc2 = netCDF(self.nc, 'r') |
| 846 | 1 | tkerber | ncdims = nc2.dimensions |
| 847 | 1 | tkerber | nc2.close() |
| 848 | 1 | tkerber | |
| 849 | 1 | tkerber | if 'number_BZ_kpoints' in ncdims: |
| 850 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 851 | 1 | tkerber | ncdims=['number_plane_waves',
|
| 852 | 1 | tkerber | 'number_BZ_kpoints',
|
| 853 | 1 | tkerber | 'number_IBZ_kpoints'])
|
| 854 | 1 | tkerber | |
| 855 | 1 | tkerber | # now define dim and var
|
| 856 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
| 857 | 1 | tkerber | nc.createDimension('number_BZ_kpoints', nbzkpts)
|
| 858 | 1 | tkerber | bv = nc.createVariable('BZKpoints', 'd', ('number_BZ_kpoints', |
| 859 | 1 | tkerber | 'dim3'))
|
| 860 | 1 | tkerber | |
| 861 | 1 | tkerber | bv[:] = listofkpts |
| 862 | 1 | tkerber | bv.gridtype = gridtype |
| 863 | 1 | tkerber | nc.sync() |
| 864 | 1 | tkerber | nc.close() |
| 865 | 1 | tkerber | |
| 866 | 1 | tkerber | log.debug('kpts = %s' % str(self.get_kpts())) |
| 867 | 1 | tkerber | |
| 868 | 1 | tkerber | self.set_status('new') |
| 869 | 1 | tkerber | self.ready = False |
| 870 | 1 | tkerber | |
| 871 | 1 | tkerber | def atoms_are_equal(self, atoms): |
| 872 | 1 | tkerber | '''
|
| 873 | 1 | tkerber | comparison of atoms to self.atoms using tolerances to account
|
| 874 | 1 | tkerber | for float/double differences and float math.
|
| 875 | 1 | tkerber | '''
|
| 876 | 1 | tkerber | |
| 877 | 1 | tkerber | TOL = 1.0e-6 #angstroms |
| 878 | 1 | tkerber | |
| 879 | 1 | tkerber | a = self.atoms.arrays
|
| 880 | 1 | tkerber | b = atoms.arrays |
| 881 | 1 | tkerber | |
| 882 | 1 | tkerber | #match number of atoms in cell
|
| 883 | 1 | tkerber | lenmatch = len(atoms) == len(self.atoms) |
| 884 | 1 | tkerber | if lenmatch is not True: |
| 885 | 1 | tkerber | return False #the next two comparisons fail in this case. |
| 886 | 1 | tkerber | |
| 887 | 1 | tkerber | #match positions in cell
|
| 888 | 1 | tkerber | posmatch = (abs(a['positions'] - b['positions']) <= TOL).all() |
| 889 | 1 | tkerber | #match cell
|
| 890 | 1 | tkerber | cellmatch = (abs(self.atoms.get_cell() |
| 891 | 1 | tkerber | - atoms.get_cell()) <= TOL).all() |
| 892 | 1 | tkerber | |
| 893 | 1 | tkerber | if lenmatch and posmatch and cellmatch: |
| 894 | 1 | tkerber | return True |
| 895 | 1 | tkerber | else:
|
| 896 | 1 | tkerber | return False |
| 897 | 1 | tkerber | |
| 898 | 1 | tkerber | def set_atoms(self, atoms): |
| 899 | 1 | tkerber | '''attach an atoms to the calculator and update the ncfile
|
| 900 | 1 | tkerber |
|
| 901 | 1 | tkerber | :Parameters:
|
| 902 | 1 | tkerber |
|
| 903 | 1 | tkerber | atoms
|
| 904 | 1 | tkerber | ASE.Atoms instance
|
| 905 | 1 | tkerber |
|
| 906 | 1 | tkerber | '''
|
| 907 | 1 | tkerber | |
| 908 | 1 | tkerber | log.debug('setting atoms to: %s' % str(atoms)) |
| 909 | 1 | tkerber | |
| 910 | 1 | tkerber | if hasattr(self, 'atoms') and self.atoms is not None: |
| 911 | 1 | tkerber | #return if the atoms are the same. no change needs to be made
|
| 912 | 1 | tkerber | if self.atoms_are_equal(atoms): |
| 913 | 1 | tkerber | log.debug('No change to atoms in set_atoms, returning')
|
| 914 | 1 | tkerber | return
|
| 915 | 1 | tkerber | |
| 916 | 1 | tkerber | # some atoms already exist. Test if new atoms are
|
| 917 | 1 | tkerber | # different from old atoms.
|
| 918 | 1 | tkerber | # this is redundant
|
| 919 | 1 | tkerber | if atoms != self.atoms: |
| 920 | 1 | tkerber | # the new atoms are different from the old ones. Start
|
| 921 | 1 | tkerber | # a new frame.
|
| 922 | 1 | tkerber | log.debug('atoms != self.atoms, incrementing')
|
| 923 | 1 | tkerber | self._increment_frame()
|
| 924 | 1 | tkerber | |
| 925 | 1 | tkerber | self.atoms = atoms.copy()
|
| 926 | 1 | tkerber | self.ready = False |
| 927 | 1 | tkerber | log.debug('self.atoms = %s' % str(self.atoms)) |
| 928 | 1 | tkerber | |
| 929 | 1 | tkerber | def set_ft(self, ft): |
| 930 | 1 | tkerber | '''set the Fermi temperature for occupation smearing
|
| 931 | 1 | tkerber |
|
| 932 | 1 | tkerber | :Parameters:
|
| 933 | 1 | tkerber |
|
| 934 | 1 | tkerber | ft : float
|
| 935 | 1 | tkerber | Fermi temperature in kT (eV)
|
| 936 | 1 | tkerber |
|
| 937 | 1 | tkerber | Electronic temperature, corresponding to gaussian occupation
|
| 938 | 1 | tkerber | statistics. Device used to stabilize the convergence towards
|
| 939 | 1 | tkerber | the electronic ground state. Higher values stabilizes the
|
| 940 | 1 | tkerber | convergence. Values in the range 0.1-1.0 eV are recommended,
|
| 941 | 1 | tkerber | depending on the complexity of the Fermi surface (low values
|
| 942 | 1 | tkerber | for d-metals and narrow gap semiconducters, higher for free
|
| 943 | 1 | tkerber | electron-like metals).
|
| 944 | 1 | tkerber | '''
|
| 945 | 1 | tkerber | |
| 946 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
| 947 | 1 | tkerber | v = 'ElectronicBands'
|
| 948 | 1 | tkerber | if v in nc.variables: |
| 949 | 1 | tkerber | vnb = nc.variables[v] |
| 950 | 1 | tkerber | else:
|
| 951 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 952 | 1 | tkerber | |
| 953 | 1 | tkerber | vnb.OccupationStatistics_FermiTemperature = ft |
| 954 | 1 | tkerber | nc.sync() |
| 955 | 1 | tkerber | nc.close() |
| 956 | 1 | tkerber | self.set_status('new') |
| 957 | 1 | tkerber | self.ready = False |
| 958 | 1 | tkerber | |
| 959 | 1 | tkerber | def set_status(self, status): |
| 960 | 1 | tkerber | '''set the status flag in the netcdf file
|
| 961 | 1 | tkerber |
|
| 962 | 1 | tkerber | :Parameters:
|
| 963 | 1 | tkerber |
|
| 964 | 1 | tkerber | status : string
|
| 965 | 1 | tkerber | status flag, e.g. 'new', 'finished'
|
| 966 | 1 | tkerber | '''
|
| 967 | 1 | tkerber | |
| 968 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
| 969 | 1 | tkerber | nc.status = status |
| 970 | 1 | tkerber | nc.sync() |
| 971 | 1 | tkerber | nc.close() |
| 972 | 1 | tkerber | log.debug('set status to %s' % status)
|
| 973 | 1 | tkerber | |
| 974 | 1 | tkerber | def get_spinpol(self): |
| 975 | 1 | tkerber | 'Returns the spin polarization setting, either True or False'
|
| 976 | 1 | tkerber | |
| 977 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 978 | 1 | tkerber | v = 'ElectronicBands'
|
| 979 | 1 | tkerber | if v in nc.variables: |
| 980 | 1 | tkerber | vnb = nc.variables[v] |
| 981 | 1 | tkerber | if hasattr(vnb, 'SpinPolarization'): |
| 982 | 1 | tkerber | spinpol = vnb.SpinPolarization |
| 983 | 1 | tkerber | else:
|
| 984 | 1 | tkerber | spinpol = 1
|
| 985 | 1 | tkerber | else:
|
| 986 | 1 | tkerber | spinpol = 1
|
| 987 | 1 | tkerber | |
| 988 | 1 | tkerber | nc.close() |
| 989 | 1 | tkerber | if spinpol == 1: |
| 990 | 1 | tkerber | return False |
| 991 | 1 | tkerber | else:
|
| 992 | 1 | tkerber | return True |
| 993 | 1 | tkerber | |
| 994 | 1 | tkerber | def set_spinpol(self, spinpol=False): |
| 995 | 1 | tkerber | '''set Spin polarization.
|
| 996 | 1 | tkerber |
|
| 997 | 1 | tkerber | :Parameters:
|
| 998 | 1 | tkerber |
|
| 999 | 1 | tkerber | spinpol : Boolean
|
| 1000 | 1 | tkerber | set_spinpol(True) spin-polarized.
|
| 1001 | 1 | tkerber | set_spinpol(False) no spin polarization, default
|
| 1002 | 1 | tkerber |
|
| 1003 | 1 | tkerber | Specify whether to perform a spin polarized or unpolarized
|
| 1004 | 1 | tkerber | calculation.
|
| 1005 | 1 | tkerber | '''
|
| 1006 | 1 | tkerber | |
| 1007 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
| 1008 | 1 | tkerber | v = 'ElectronicBands'
|
| 1009 | 1 | tkerber | if v in nc.variables: |
| 1010 | 1 | tkerber | vnb = nc.variables[v] |
| 1011 | 1 | tkerber | else:
|
| 1012 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 1013 | 1 | tkerber | |
| 1014 | 1 | tkerber | if spinpol is True: |
| 1015 | 1 | tkerber | vnb.SpinPolarization = 2
|
| 1016 | 1 | tkerber | else:
|
| 1017 | 1 | tkerber | vnb.SpinPolarization = 1
|
| 1018 | 1 | tkerber | |
| 1019 | 1 | tkerber | nc.sync() |
| 1020 | 1 | tkerber | nc.close() |
| 1021 | 1 | tkerber | self.set_status('new') |
| 1022 | 1 | tkerber | self.ready = False |
| 1023 | 1 | tkerber | |
| 1024 | 1 | tkerber | def set_fixmagmom(self, fixmagmom=None): |
| 1025 | 1 | tkerber | '''set a fixed magnetic moment for a spin polarized calculation
|
| 1026 | 1 | tkerber |
|
| 1027 | 1 | tkerber | :Parameters:
|
| 1028 | 1 | tkerber |
|
| 1029 | 1 | tkerber | fixmagmom : float
|
| 1030 | 1 | tkerber | the magnetic moment of the cell in Bohr magnetons
|
| 1031 | 1 | tkerber | '''
|
| 1032 | 1 | tkerber | |
| 1033 | 1 | tkerber | if fixmagmom is None: |
| 1034 | 1 | tkerber | return
|
| 1035 | 1 | tkerber | |
| 1036 | 1 | tkerber | nc = netCDF(self.nc,'a') |
| 1037 | 1 | tkerber | v = 'ElectronicBands'
|
| 1038 | 1 | tkerber | if v in nc.variables: |
| 1039 | 1 | tkerber | vnb = nc.variables[v] |
| 1040 | 1 | tkerber | else:
|
| 1041 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
| 1042 | 1 | tkerber | |
| 1043 | 1 | tkerber | vnb.SpinPolarization = 2 #You must want spin-polarized |
| 1044 | 1 | tkerber | vnb.FixedMagneticMoment = fixmagmom |
| 1045 | 1 | tkerber | nc.sync() |
| 1046 | 1 | tkerber | nc.close() |
| 1047 | 1 | tkerber | self.set_status('new') |
| 1048 | 1 | tkerber | self.ready = False |
| 1049 | 1 | tkerber | |
| 1050 | 1 | tkerber | def get_fixmagmom(self): |
| 1051 | 1 | tkerber | 'returns the value of FixedMagneticMoment'
|
| 1052 | 1 | tkerber | |
| 1053 | 1 | tkerber | nc = netCDF(self.nc,'r') |
| 1054 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
| 1055 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
| 1056 | 1 | tkerber | if hasattr(v,'FixedMagneticMoment'): |
| 1057 | 1 | tkerber | fixmagmom = v.FixedMagneticMoment |
| 1058 | 1 | tkerber | else:
|
| 1059 | 1 | tkerber | fixmagmom = None
|
| 1060 | 1 | tkerber | else:
|
| 1061 | 1 | tkerber | fixmagmom = None
|
| 1062 | 1 | tkerber | nc.close() |
| 1063 | 1 | tkerber | return fixmagmom
|
| 1064 | 1 | tkerber | |
| 1065 | 1 | tkerber | def set_calculate_stress(self, stress=True): |
| 1066 | 1 | tkerber | '''Turn on stress calculation
|
| 1067 | 1 | tkerber |
|
| 1068 | 1 | tkerber | :Parameters:
|
| 1069 | 1 | tkerber |
|
| 1070 | 1 | tkerber | stress : boolean
|
| 1071 | 1 | tkerber | set_calculate_stress(True) calculates stress
|
| 1072 | 1 | tkerber | set_calculate_stress(False) do not calculate stress
|
| 1073 | 1 | tkerber | '''
|
| 1074 | 1 | tkerber | |
| 1075 | 1 | tkerber | nc = netCDF(self.get_nc(),'a') |
| 1076 | 1 | tkerber | vs = 'NetCDFOutputControl'
|
| 1077 | 1 | tkerber | if vs in nc.variables: |
| 1078 | 1 | tkerber | v = nc.variables[vs] |
| 1079 | 1 | tkerber | else:
|
| 1080 | 1 | tkerber | v = nc.createVariable('NetCDFOutputControl', 'c', ('dim1',)) |
| 1081 | 1 | tkerber | |
| 1082 | 1 | tkerber | if stress is True: |
| 1083 | 1 | tkerber | v.PrintTotalStress = 'Yes'
|
| 1084 | 1 | tkerber | else:
|
| 1085 | 1 | tkerber | v.PrintTotalStress = 'No'
|
| 1086 | 1 | tkerber | nc.sync() |
| 1087 | 1 | tkerber | nc.close() |
| 1088 | 1 | tkerber | self.set_status('new') |
| 1089 | 1 | tkerber | self.ready = False |
| 1090 | 1 | tkerber | |
| 1091 | 1 | tkerber | def set_nc(self, nc='out.nc'): |
| 1092 | 1 | tkerber | '''
|
| 1093 | 1 | tkerber | set filename for the netcdf and text output for this calculation
|
| 1094 | 1 | tkerber |
|
| 1095 | 1 | tkerber | :Parameters:
|
| 1096 | 1 | tkerber |
|
| 1097 | 1 | tkerber | nc : string
|
| 1098 | 1 | tkerber | filename for netcdf file
|
| 1099 | 1 | tkerber |
|
| 1100 | 1 | tkerber | if the ncfile attached to the calculator is changing, the old
|
| 1101 | 1 | tkerber | file will be copied to the new file if it doesn not exist so
|
| 1102 | 1 | tkerber | that all the calculator details are preserved. Otherwise, the
|
| 1103 | 1 | tkerber |
|
| 1104 | 1 | tkerber | if the ncfile does not exist, it will get initialized.
|
| 1105 | 1 | tkerber |
|
| 1106 | 1 | tkerber | the text file will have the same basename as the ncfile, but
|
| 1107 | 1 | tkerber | with a .txt extension.
|
| 1108 | 1 | tkerber | '''
|
| 1109 | 1 | tkerber | |
| 1110 | 1 | tkerber | #the first time this is called, there may be no self.nc defined
|
| 1111 | 1 | tkerber | if not hasattr(self, 'nc'): |
| 1112 | 1 | tkerber | self.nc = nc
|
| 1113 | 1 | tkerber | |
| 1114 | 1 | tkerber | #check if the name is changing and if so, copy the old ncfile
|
| 1115 | 1 | tkerber | #to the new one. This is necessary to ensure all the
|
| 1116 | 1 | tkerber | #calculator details are copied over. if the file already
|
| 1117 | 1 | tkerber | #exists we use the contents of the existing file
|
| 1118 | 1 | tkerber | if nc != self.nc and not os.path.exists(nc): |
| 1119 | 1 | tkerber | log.debug('copying %s to %s' % (self.nc, nc)) |
| 1120 | 1 | tkerber | #import shutil
|
| 1121 | 1 | tkerber | #shutil.copy(self.nc,nc)
|
| 1122 | 1 | tkerber | base = os.path.split(nc)[0]
|
| 1123 | 1 | tkerber | if not os.path.isdir(base) and base is not '': |
| 1124 | 1 | tkerber | os.makedirs(base) |
| 1125 | 1 | tkerber | status = os.system('cp %s %s' % (self.nc, nc)) |
| 1126 | 1 | tkerber | if status != 0: |
| 1127 | 1 | tkerber | raise Exception, 'Copying ncfile failed.' |
| 1128 | 1 | tkerber | self.nc = nc
|
| 1129 | 1 | tkerber | |
| 1130 | 1 | tkerber | elif os.path.exists(nc):
|
| 1131 | 1 | tkerber | self._set_frame_number()
|
| 1132 | 1 | tkerber | self.set_psp_database()
|
| 1133 | 1 | tkerber | self.atoms = self.read_only_atoms(nc) |
| 1134 | 1 | tkerber | self.nc = nc
|
| 1135 | 1 | tkerber | self.update_input_parameters()
|
| 1136 | 1 | tkerber | |
| 1137 | 1 | tkerber | #I always want the text file set based on the ncfile
|
| 1138 | 1 | tkerber | #and I never want to set this myself.
|
| 1139 | 1 | tkerber | base = os.path.splitext(self.nc)[0] |
| 1140 | 1 | tkerber | self.txt = base + '.txt' |
| 1141 | 1 | tkerber | |
| 1142 | 1 | tkerber | def set_psp(self, |
| 1143 | 1 | tkerber | sym=None,
|
| 1144 | 1 | tkerber | z=None,
|
| 1145 | 1 | tkerber | psp=None):
|
| 1146 | 1 | tkerber | '''
|
| 1147 | 1 | tkerber | set the pseudopotential file for a species or an atomic number.
|
| 1148 | 1 | tkerber |
|
| 1149 | 1 | tkerber | :Parameters:
|
| 1150 | 1 | tkerber |
|
| 1151 | 1 | tkerber | sym : string
|
| 1152 | 1 | tkerber | chemical symbol of the species
|
| 1153 | 1 | tkerber |
|
| 1154 | 1 | tkerber | z : integer
|
| 1155 | 1 | tkerber | the atomic number of the species
|
| 1156 | 1 | tkerber |
|
| 1157 | 1 | tkerber | psp : string
|
| 1158 | 1 | tkerber | filename of the pseudopotential
|
| 1159 | 1 | tkerber |
|
| 1160 | 1 | tkerber |
|
| 1161 | 1 | tkerber | you can only set sym or z.
|
| 1162 | 1 | tkerber |
|
| 1163 | 1 | tkerber | examples::
|
| 1164 | 1 | tkerber |
|
| 1165 | 1 | tkerber | set_psp('N',psp='pspfile')
|
| 1166 | 1 | tkerber | set_psp(z=6,psp='pspfile')
|
| 1167 | 1 | tkerber | '''
|
| 1168 | 1 | tkerber | log.debug(str([sym, z, psp]))
|
| 1169 | 1 | tkerber | if (sym, z, psp) == (None, None, None): |
| 1170 | 1 | tkerber | return
|
| 1171 | 1 | tkerber | |
| 1172 | 1 | tkerber | if (sym is None and z is not None): |
| 1173 | 1 | tkerber | from ase.data import chemical_symbols |
| 1174 | 1 | tkerber | sym = chemical_symbols[z] |
| 1175 | 1 | tkerber | elif (sym is not None and z is None): |
| 1176 | 1 | tkerber | pass
|
| 1177 | 1 | tkerber | else:
|
| 1178 | 1 | tkerber | raise Exception, 'You can only specify Z or sym!' |
| 1179 | 1 | tkerber | |
| 1180 | 1 | tkerber | if not hasattr(self, 'psp'): |
| 1181 | 1 | tkerber | self.set_psp_database()
|
| 1182 | 1 | tkerber | |
| 1183 | 1 | tkerber | #only make change if needed
|
| 1184 | 1 | tkerber | if sym not in self.psp: |
| 1185 | 1 | tkerber | self.psp[sym] = psp
|
| 1186 | 1 | tkerber | self.ready = False |
| 1187 | 1 | tkerber | self.set_status('new') |
| 1188 | 1 | tkerber | elif self.psp[sym] != psp: |
| 1189 | 1 | tkerber | self.psp[sym] = psp
|
| 1190 | 1 | tkerber | self.ready = False |
| 1191 | 1 | tkerber | self.set_status('new') |
| 1192 | 1 | tkerber | |
| 1193 | 1 | tkerber | if not self.ready: |
| 1194 | 1 | tkerber | #now we update the netcdf file
|
| 1195 | 1 | tkerber | ncf = netCDF(self.nc, 'a') |
| 1196 | 1 | tkerber | vn = 'AtomProperty_%s' % sym
|
| 1197 | 1 | tkerber | if vn not in ncf.variables: |
| 1198 | 1 | tkerber | p = ncf.createVariable(vn, 'c', ('dim20',)) |
| 1199 | 1 | tkerber | else:
|
| 1200 | 1 | tkerber | p = ncf.variables[vn] |
| 1201 | 1 | tkerber | |
| 1202 | 1 | tkerber | ppath = self.get_psp(sym=sym)
|
| 1203 | 1 | tkerber | p.PspotFile = ppath |
| 1204 | 1 | tkerber | ncf.close() |
| 1205 | 1 | tkerber | |
| 1206 | 1 | tkerber | def get_pseudopotentials(self): |
| 1207 | 1 | tkerber | 'get pseudopotentials set for atoms attached to calculator'
|
| 1208 | 1 | tkerber | |
| 1209 | 1 | tkerber | if self.atoms is None: |
| 1210 | 1 | tkerber | return None |
| 1211 | 1 | tkerber | |
| 1212 | 1 | tkerber | psp = {}
|
| 1213 | 1 | tkerber | for atom in self.atoms: |
| 1214 | 1 | tkerber | psp[atom.symbol] = self.psp[atom.symbol]
|
| 1215 | 1 | tkerber | return psp
|
| 1216 | 1 | tkerber | |
| 1217 | 1 | tkerber | def get_symmetry(self): |
| 1218 | 1 | tkerber | '''return the type of symmetry used'''
|
| 1219 | 1 | tkerber | |
| 1220 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 1221 | 1 | tkerber | if 'UseSymmetry' in nc.variables: |
| 1222 | 1 | tkerber | sym = string.join(nc.variables['UseSymmetry'][:],'').strip() |
| 1223 | 1 | tkerber | else:
|
| 1224 | 1 | tkerber | sym = None
|
| 1225 | 1 | tkerber | nc.close() |
| 1226 | 1 | tkerber | if sym in ['Off', None]: |
| 1227 | 1 | tkerber | return False |
| 1228 | 1 | tkerber | elif sym == 'Maximum': |
| 1229 | 1 | tkerber | return True |
| 1230 | 1 | tkerber | else:
|
| 1231 | 1 | tkerber | raise Exception, 'Type of symmetry not recognized: %s' % sym |
| 1232 | 1 | tkerber | |
| 1233 | 1 | tkerber | def set_symmetry(self, val=False): |
| 1234 | 1 | tkerber | '''set how symmetry is used to reduce k-points
|
| 1235 | 1 | tkerber |
|
| 1236 | 1 | tkerber | :Parameters:
|
| 1237 | 1 | tkerber |
|
| 1238 | 1 | tkerber | val : Boolean
|
| 1239 | 1 | tkerber | set_sym(True) Maximum symmetry is used
|
| 1240 | 1 | tkerber | set_sym(False) No symmetry is used
|
| 1241 | 1 | tkerber |
|
| 1242 | 1 | tkerber | This variable controls the if and how DACAPO should attempt
|
| 1243 | 1 | tkerber | using symmetry in the calculation. Imposing symmetry generally
|
| 1244 | 1 | tkerber | speeds up the calculation and reduces numerical noise to some
|
| 1245 | 1 | tkerber | extent. Symmetry should always be applied to the maximum
|
| 1246 | 1 | tkerber | extent, when ions are not moved. When relaxing ions, however,
|
| 1247 | 1 | tkerber | the symmetry of the equilibrium state may be lower than the
|
| 1248 | 1 | tkerber | initial state. Such an equilibrium state with lower symmetry
|
| 1249 | 1 | tkerber | is missed, if symmetry is imposed. Molecular dynamics-like
|
| 1250 | 1 | tkerber | algorithms for ionic propagation will generally not break the
|
| 1251 | 1 | tkerber | symmetry of the initial state, but some algorithms, like the
|
| 1252 | 1 | tkerber | BFGS may break the symmetry of the initial state. Recognized
|
| 1253 | 1 | tkerber | options:
|
| 1254 | 1 | tkerber |
|
| 1255 | 1 | tkerber | "Off": No symmetry will be imposed, apart from time inversion
|
| 1256 | 1 | tkerber | symmetry in recipical space. This is utilized to reduce the
|
| 1257 | 1 | tkerber | k-point sampling set for Brillouin zone integration and has no
|
| 1258 | 1 | tkerber | influence on the ionic forces/motion.
|
| 1259 | 1 | tkerber |
|
| 1260 | 1 | tkerber | "Maximum": DACAPO will look for symmetry in the supplied
|
| 1261 | 1 | tkerber | atomic structure and extract the highest possible symmetry
|
| 1262 | 1 | tkerber | group. During the calculation, DACAPO will impose the found
|
| 1263 | 1 | tkerber | spatial symmetry on ionic forces and electronic structure,
|
| 1264 | 1 | tkerber | i.e. the symmetry will be conserved during the calculation.
|
| 1265 | 1 | tkerber | '''
|
| 1266 | 1 | tkerber | |
| 1267 | 1 | tkerber | if val:
|
| 1268 | 1 | tkerber | symval = 'Maximum'
|
| 1269 | 1 | tkerber | else:
|
| 1270 | 1 | tkerber | symval = 'Off'
|
| 1271 | 1 | tkerber | |
| 1272 | 1 | tkerber | ncf = netCDF(self.get_nc(), 'a') |
| 1273 | 1 | tkerber | if 'UseSymmetry' not in ncf.variables: |
| 1274 | 1 | tkerber | sym = ncf.createVariable('UseSymmetry', 'c', ('dim7',)) |
| 1275 | 1 | tkerber | else:
|
| 1276 | 1 | tkerber | sym = ncf.variables['UseSymmetry']
|
| 1277 | 1 | tkerber | |
| 1278 | 1 | tkerber | sym[:] = np.array('%7s' % symval, 'c') |
| 1279 | 1 | tkerber | ncf.sync() |
| 1280 | 1 | tkerber | ncf.close() |
| 1281 | 1 | tkerber | self.set_status('new') |
| 1282 | 1 | tkerber | self.ready = False |
| 1283 | 1 | tkerber | |
| 1284 | 1 | tkerber | def set_extracharge(self, val): |
| 1285 | 1 | tkerber | '''add extra charge to unit cell
|
| 1286 | 1 | tkerber |
|
| 1287 | 1 | tkerber | :Parameters:
|
| 1288 | 1 | tkerber |
|
| 1289 | 1 | tkerber | val : float
|
| 1290 | 1 | tkerber | extra electrons to add or subtract from the unit cell
|
| 1291 | 1 | tkerber |
|
| 1292 | 1 | tkerber | Fixed extra charge in the unit cell (i.e. deviation from
|
| 1293 | 1 | tkerber | charge neutrality). This assumes a compensating, positive
|
| 1294 | 1 | tkerber | constant backgound charge (jellium) to forge overall charge
|
| 1295 | 1 | tkerber | neutrality.
|
| 1296 | 1 | tkerber | '''
|
| 1297 | 1 | tkerber | |
| 1298 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1299 | 1 | tkerber | if 'ExtraCharge' in nc.variables: |
| 1300 | 1 | tkerber | v = nc.variables['ExtraCharge']
|
| 1301 | 1 | tkerber | else:
|
| 1302 | 1 | tkerber | v = nc.createVariable('ExtraCharge', 'd', ('dim1',)) |
| 1303 | 1 | tkerber | |
| 1304 | 1 | tkerber | v.assignValue(val) |
| 1305 | 1 | tkerber | nc.sync() |
| 1306 | 1 | tkerber | nc.close() |
| 1307 | 1 | tkerber | |
| 1308 | 1 | tkerber | def get_extracharge(self): |
| 1309 | 1 | tkerber | 'Return the extra charge set in teh calculator'
|
| 1310 | 1 | tkerber | |
| 1311 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 1312 | 1 | tkerber | if 'ExtraCharge' in nc.variables: |
| 1313 | 1 | tkerber | v = nc.variables['ExtraCharge']
|
| 1314 | 1 | tkerber | exchg = v.getValue() |
| 1315 | 1 | tkerber | else:
|
| 1316 | 1 | tkerber | exchg = None
|
| 1317 | 1 | tkerber | nc.close() |
| 1318 | 1 | tkerber | return exchg
|
| 1319 | 1 | tkerber | |
| 1320 | 1 | tkerber | def get_extpot(self): |
| 1321 | 1 | tkerber | 'return the external potential set in teh calculator'
|
| 1322 | 1 | tkerber | |
| 1323 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1324 | 1 | tkerber | if 'ExternalPotential' in nc.variables: |
| 1325 | 1 | tkerber | v = nc.variables['ExternalPotential']
|
| 1326 | 1 | tkerber | extpot = v[:] |
| 1327 | 1 | tkerber | else:
|
| 1328 | 1 | tkerber | extpot = None
|
| 1329 | 1 | tkerber | |
| 1330 | 1 | tkerber | nc.close() |
| 1331 | 1 | tkerber | return extpot
|
| 1332 | 1 | tkerber | |
| 1333 | 1 | tkerber | def set_extpot(self, potgrid): |
| 1334 | 1 | tkerber | '''add external potential of value
|
| 1335 | 1 | tkerber |
|
| 1336 | 1 | tkerber | see this link before using this
|
| 1337 | 1 | tkerber | https://listserv.fysik.dtu.dk/pipermail/campos/2003-August/000657.html
|
| 1338 | 1 | tkerber |
|
| 1339 | 1 | tkerber | :Parameters:
|
| 1340 | 1 | tkerber |
|
| 1341 | 1 | tkerber | potgrid : np.array with shape (nx,ny,nz)
|
| 1342 | 1 | tkerber | the shape must be the same as the fft soft grid
|
| 1343 | 1 | tkerber | the value of the potential to add
|
| 1344 | 1 | tkerber |
|
| 1345 | 1 | tkerber |
|
| 1346 | 1 | tkerber | you have to know both of the fft grid dimensions ahead of time!
|
| 1347 | 1 | tkerber | if you know what you are doing, you can set the fft_grid you want
|
| 1348 | 1 | tkerber | before hand with:
|
| 1349 | 1 | tkerber | calc.set_fftgrid((n1,n2,n3))
|
| 1350 | 1 | tkerber | '''
|
| 1351 | 1 | tkerber | |
| 1352 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1353 | 1 | tkerber | if 'ExternalPotential' in nc.variables: |
| 1354 | 1 | tkerber | v = nc.variables['ExternalPotential']
|
| 1355 | 1 | tkerber | else:
|
| 1356 | 1 | tkerber | # I assume here you have the dimensions of potgrid correct
|
| 1357 | 1 | tkerber | # and that the soft and hard grids are the same.
|
| 1358 | 1 | tkerber | # if softgrid is defined, Dacapo requires hardgrid to be
|
| 1359 | 1 | tkerber | # defined too.
|
| 1360 | 1 | tkerber | s1, s2, s3 = potgrid.shape |
| 1361 | 1 | tkerber | if 'softgrid_dim1' not in nc.dimensions: |
| 1362 | 1 | tkerber | nc.createDimension('softgrid_dim1', s1)
|
| 1363 | 1 | tkerber | nc.createDimension('softgrid_dim2', s2)
|
| 1364 | 1 | tkerber | nc.createDimension('softgrid_dim3', s3)
|
| 1365 | 1 | tkerber | nc.createDimension('hardgrid_dim1', s1)
|
| 1366 | 1 | tkerber | nc.createDimension('hardgrid_dim2', s2)
|
| 1367 | 1 | tkerber | nc.createDimension('hardgrid_dim3', s3)
|
| 1368 | 1 | tkerber | |
| 1369 | 1 | tkerber | v = nc.createVariable('ExternalPotential',
|
| 1370 | 1 | tkerber | 'd',
|
| 1371 | 1 | tkerber | ('softgrid_dim1',
|
| 1372 | 1 | tkerber | 'softgrid_dim2',
|
| 1373 | 1 | tkerber | 'softgrid_dim3',))
|
| 1374 | 1 | tkerber | v[:] = potgrid |
| 1375 | 1 | tkerber | nc.sync() |
| 1376 | 1 | tkerber | nc.close() |
| 1377 | 1 | tkerber | self.set_status('new') |
| 1378 | 1 | tkerber | self.ready = False |
| 1379 | 1 | tkerber | |
| 1380 | 1 | tkerber | def set_fftgrid(self, soft=None, hard=None): |
| 1381 | 1 | tkerber | '''
|
| 1382 | 1 | tkerber | sets the dimensions of the FFT grid to be used
|
| 1383 | 1 | tkerber |
|
| 1384 | 1 | tkerber | :Parameters:
|
| 1385 | 1 | tkerber |
|
| 1386 | 1 | tkerber | soft : (n1,n2,n3) integers
|
| 1387 | 1 | tkerber | make a n1 x n2 x n3 grid
|
| 1388 | 1 | tkerber |
|
| 1389 | 1 | tkerber | hard : (n1,n2,n3) integers
|
| 1390 | 1 | tkerber | make a n1 x n2 x n3 grid
|
| 1391 | 1 | tkerber |
|
| 1392 | 1 | tkerber |
|
| 1393 | 1 | tkerber | >>> calc.set_fftgrid(soft=[42,44,46])
|
| 1394 | 1 | tkerber | sets the soft and hard grid dimensions to 42,44,46
|
| 1395 | 1 | tkerber |
|
| 1396 | 1 | tkerber | >>> calc.set_fftgrid(soft=[42,44,46],hard=[80,84,88])
|
| 1397 | 1 | tkerber | sets the soft grid dimensions to 42,44,46 and the hard
|
| 1398 | 1 | tkerber | grid dimensions to 80,84,88
|
| 1399 | 1 | tkerber |
|
| 1400 | 1 | tkerber | These are the fast FFt grid numbers listed in fftdimensions.F
|
| 1401 | 1 | tkerber |
|
| 1402 | 1 | tkerber | data list_of_fft /2, 4, 6, 8, 10, 12, 14, 16, 18, 20, &
|
| 1403 | 1 | tkerber | 22,24, 28, 30,32, 36, 40, 42, 44, 48, &
|
| 1404 | 1 | tkerber | 56,60, 64, 66, 70, 72, 80, 84, 88, 90, &
|
| 1405 | 1 | tkerber | 96,108,110,112,120,126,128,132,140,144,154, &
|
| 1406 | 1 | tkerber | 160,168,176,180,192,198,200, &
|
| 1407 | 1 | tkerber | 216,240,264,270,280,288,324,352,360,378,384,400,432, &
|
| 1408 | 1 | tkerber | 450,480,540,576,640/
|
| 1409 | 1 | tkerber |
|
| 1410 | 1 | tkerber | otherwise you will get some errors from mis-dimensioned variables.
|
| 1411 | 1 | tkerber |
|
| 1412 | 1 | tkerber | this is usually automatically set by Dacapo.
|
| 1413 | 1 | tkerber | '''
|
| 1414 | 1 | tkerber | |
| 1415 | 1 | tkerber | if soft is not None: |
| 1416 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 1417 | 1 | tkerber | ncdims=['softgrid_dim1',
|
| 1418 | 1 | tkerber | 'softgrid_dim2',
|
| 1419 | 1 | tkerber | 'softgrid_dim3'
|
| 1420 | 1 | tkerber | ], |
| 1421 | 1 | tkerber | ncvars=[]) |
| 1422 | 1 | tkerber | |
| 1423 | 1 | tkerber | |
| 1424 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1425 | 1 | tkerber | nc.createDimension('softgrid_dim1', soft[0]) |
| 1426 | 1 | tkerber | nc.createDimension('softgrid_dim2', soft[1]) |
| 1427 | 1 | tkerber | nc.createDimension('softgrid_dim3', soft[2]) |
| 1428 | 1 | tkerber | nc.sync() |
| 1429 | 1 | tkerber | nc.close() |
| 1430 | 1 | tkerber | |
| 1431 | 1 | tkerber | if hard is None: |
| 1432 | 1 | tkerber | hard = soft |
| 1433 | 1 | tkerber | |
| 1434 | 1 | tkerber | if hard is not None: |
| 1435 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 1436 | 1 | tkerber | ncdims=['hardgrid_dim1',
|
| 1437 | 1 | tkerber | 'hardgrid_dim2',
|
| 1438 | 1 | tkerber | 'hardgrid_dim3'
|
| 1439 | 1 | tkerber | ], |
| 1440 | 1 | tkerber | ncvars=[]) |
| 1441 | 1 | tkerber | nc = netCDF(self.get_nc(),'a') |
| 1442 | 1 | tkerber | nc.createDimension('hardgrid_dim1', hard[0]) |
| 1443 | 1 | tkerber | nc.createDimension('hardgrid_dim2', hard[1]) |
| 1444 | 1 | tkerber | nc.createDimension('hardgrid_dim3', hard[2]) |
| 1445 | 1 | tkerber | nc.sync() |
| 1446 | 1 | tkerber | nc.close() |
| 1447 | 1 | tkerber | |
| 1448 | 1 | tkerber | self.set_status('new') |
| 1449 | 1 | tkerber | self.ready = False |
| 1450 | 1 | tkerber | |
| 1451 | 1 | tkerber | def get_ascii_debug(self): |
| 1452 | 1 | tkerber | 'Return the debug settings in Dacapo'
|
| 1453 | 1 | tkerber | |
| 1454 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 1455 | 1 | tkerber | if 'PrintDebugInfo' in nc.variables: |
| 1456 | 1 | tkerber | v = nc.variables['PrintDebugInfo']
|
| 1457 | 1 | tkerber | debug = string.join(v[:], '')
|
| 1458 | 1 | tkerber | else:
|
| 1459 | 1 | tkerber | debug = None
|
| 1460 | 1 | tkerber | nc.close() |
| 1461 | 1 | tkerber | return debug
|
| 1462 | 1 | tkerber | |
| 1463 | 1 | tkerber | def set_ascii_debug(self, level): |
| 1464 | 1 | tkerber | '''set the debug level for Dacapo
|
| 1465 | 1 | tkerber |
|
| 1466 | 1 | tkerber | :Parameters:
|
| 1467 | 1 | tkerber |
|
| 1468 | 1 | tkerber | level : string
|
| 1469 | 1 | tkerber | one of 'Off', 'MediumLevel', 'HighLevel'
|
| 1470 | 1 | tkerber | '''
|
| 1471 | 1 | tkerber | |
| 1472 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1473 | 1 | tkerber | if 'PrintDebugInfo' in nc.variables: |
| 1474 | 1 | tkerber | v = nc.variables['PrintDebugInfo']
|
| 1475 | 1 | tkerber | else:
|
| 1476 | 1 | tkerber | if 'dim20' not in nc.dimensions: |
| 1477 | 1 | tkerber | nc.createDimension('dim20', 20) |
| 1478 | 1 | tkerber | v = nc.createVariable('PrintDebugInfo', 'c', ('dim20',)) |
| 1479 | 1 | tkerber | |
| 1480 | 1 | tkerber | v[:] = np.array('%20s' % level, dtype='c') |
| 1481 | 1 | tkerber | nc.sync() |
| 1482 | 1 | tkerber | nc.close() |
| 1483 | 1 | tkerber | self.set_status('new') |
| 1484 | 1 | tkerber | self.ready = False |
| 1485 | 1 | tkerber | |
| 1486 | 1 | tkerber | def get_ncoutput(self): |
| 1487 | 1 | tkerber | 'returns the control variables for the ncfile'
|
| 1488 | 1 | tkerber | |
| 1489 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1490 | 1 | tkerber | if 'NetCDFOutputControl' in nc.variables: |
| 1491 | 1 | tkerber | v = nc.variables['NetCDFOutputControl']
|
| 1492 | 1 | tkerber | ncoutput = {}
|
| 1493 | 1 | tkerber | if hasattr(v, 'PrintWaveFunction'): |
| 1494 | 1 | tkerber | ncoutput['wf'] = v.PrintWaveFunction
|
| 1495 | 1 | tkerber | if hasattr(v, 'PrintChargeDensity'): |
| 1496 | 1 | tkerber | ncoutput['cd'] = v.PrintChargeDensity
|
| 1497 | 1 | tkerber | if hasattr(v, 'PrintEffPotential'): |
| 1498 | 1 | tkerber | ncoutput['efp'] = v.PrintEffPotential
|
| 1499 | 1 | tkerber | if hasattr(v, 'PrintElsPotential'): |
| 1500 | 1 | tkerber | ncoutput['esp'] = v.PrintElsPotential
|
| 1501 | 1 | tkerber | else:
|
| 1502 | 1 | tkerber | ncoutput = None
|
| 1503 | 1 | tkerber | nc.close() |
| 1504 | 1 | tkerber | return ncoutput
|
| 1505 | 1 | tkerber | |
| 1506 | 1 | tkerber | def set_ncoutput(self, |
| 1507 | 1 | tkerber | wf=None,
|
| 1508 | 1 | tkerber | cd=None,
|
| 1509 | 1 | tkerber | efp=None,
|
| 1510 | 1 | tkerber | esp=None):
|
| 1511 | 1 | tkerber | '''set the output of large variables in the netcdf output file
|
| 1512 | 1 | tkerber |
|
| 1513 | 1 | tkerber | :Parameters:
|
| 1514 | 1 | tkerber |
|
| 1515 | 1 | tkerber | wf : string
|
| 1516 | 1 | tkerber | controls output of wavefunction. values can
|
| 1517 | 1 | tkerber | be 'Yes' or 'No'
|
| 1518 | 1 | tkerber |
|
| 1519 | 1 | tkerber | cd : string
|
| 1520 | 1 | tkerber | controls output of charge density. values can
|
| 1521 | 1 | tkerber | be 'Yes' or 'No'
|
| 1522 | 1 | tkerber |
|
| 1523 | 1 | tkerber | efp : string
|
| 1524 | 1 | tkerber | controls output of effective potential. values can
|
| 1525 | 1 | tkerber | be 'Yes' or 'No'
|
| 1526 | 1 | tkerber |
|
| 1527 | 1 | tkerber | esp : string
|
| 1528 | 1 | tkerber | controls output of electrostatic potential. values can
|
| 1529 | 1 | tkerber | be 'Yes' or 'No'
|
| 1530 | 1 | tkerber | '''
|
| 1531 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1532 | 1 | tkerber | if 'NetCDFOutputControl' in nc.variables: |
| 1533 | 1 | tkerber | v = nc.variables['NetCDFOutputControl']
|
| 1534 | 1 | tkerber | else:
|
| 1535 | 1 | tkerber | v = nc.createVariable('NetCDFOutputControl', 'c', ()) |
| 1536 | 1 | tkerber | |
| 1537 | 1 | tkerber | if wf is not None: |
| 1538 | 1 | tkerber | v.PrintWaveFunction = wf |
| 1539 | 1 | tkerber | if cd is not None: |
| 1540 | 1 | tkerber | v.PrintChargeDensity = cd |
| 1541 | 1 | tkerber | if efp is not None: |
| 1542 | 1 | tkerber | v.PrintEffPotential = efp |
| 1543 | 1 | tkerber | if esp is not None: |
| 1544 | 1 | tkerber | v.PrintElsPotential = esp |
| 1545 | 1 | tkerber | |
| 1546 | 1 | tkerber | nc.sync() |
| 1547 | 1 | tkerber | nc.close() |
| 1548 | 1 | tkerber | self.set_status('new') |
| 1549 | 1 | tkerber | self.ready = False |
| 1550 | 1 | tkerber | |
| 1551 | 1 | tkerber | def get_ados(self, **kwargs): |
| 1552 | 1 | tkerber | '''
|
| 1553 | 1 | tkerber | attempt at maintaining backward compatibility with get_ados
|
| 1554 | 1 | tkerber | returning data
|
| 1555 | 1 | tkerber |
|
| 1556 | 1 | tkerber | Now when we call calc.get_ados() it will return settings,
|
| 1557 | 1 | tkerber |
|
| 1558 | 1 | tkerber | and calc.get_ados(atoms=[],...) should return data
|
| 1559 | 1 | tkerber |
|
| 1560 | 1 | tkerber | '''
|
| 1561 | 1 | tkerber | |
| 1562 | 1 | tkerber | if len(kwargs) != 0: |
| 1563 | 1 | tkerber | return self.get_ados_data(**kwargs) |
| 1564 | 1 | tkerber | |
| 1565 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
| 1566 | 1 | tkerber | if 'PrintAtomProjectedDOS' in nc.variables: |
| 1567 | 1 | tkerber | v = nc.variables['PrintAtomProjectedDOS']
|
| 1568 | 1 | tkerber | ados = {}
|
| 1569 | 1 | tkerber | if hasattr(v, 'EnergyWindow'): |
| 1570 | 1 | tkerber | ados['energywindow'] = v.EnergyWindow
|
| 1571 | 1 | tkerber | if hasattr(v, 'EnergyWidth'): |
| 1572 | 1 | tkerber | ados['energywidth'] = v.EnergyWidth
|
| 1573 | 1 | tkerber | if hasattr(v, 'NumberEnergyPoints'): |
| 1574 | 1 | tkerber | ados['npoints'] = v.NumberEnergyPoints
|
| 1575 | 1 | tkerber | if hasattr(v, 'CutoffRadius'): |
| 1576 | 1 | tkerber | ados['cutoff'] = v.CutoffRadius
|
| 1577 | 1 | tkerber | else:
|
| 1578 | 1 | tkerber | ados = None
|
| 1579 | 1 | tkerber | |
| 1580 | 1 | tkerber | nc.close() |
| 1581 | 1 | tkerber | return ados
|
| 1582 | 1 | tkerber | |
| 1583 | 1 | tkerber | def set_ados(self, |
| 1584 | 1 | tkerber | energywindow=(-15,5), |
| 1585 | 1 | tkerber | energywidth=0.2,
|
| 1586 | 1 | tkerber | npoints=250,
|
| 1587 | 1 | tkerber | cutoff=1.0):
|
| 1588 | 1 | tkerber | '''
|
| 1589 | 1 | tkerber | setup calculation of atom-projected density of states
|
| 1590 | 1 | tkerber |
|
| 1591 | 1 | tkerber | :Parameters:
|
| 1592 | 1 | tkerber |
|
| 1593 | 1 | tkerber | energywindow : (float, float)
|
| 1594 | 1 | tkerber | sets (emin,emax) in eV referenced to the Fermi level
|
| 1595 | 1 | tkerber |
|
| 1596 | 1 | tkerber | energywidth : float
|
| 1597 | 1 | tkerber | the gaussian used in smearing
|
| 1598 | 1 | tkerber |
|
| 1599 | 1 | tkerber | npoints : integer
|
| 1600 | 1 | tkerber | the number of points to sample the DOS at
|
| 1601 | 1 | tkerber |
|
| 1602 | 1 | tkerber | cutoff : float
|
| 1603 | 1 | tkerber | the cutoff radius in angstroms for the integration.
|
| 1604 | 1 | tkerber | '''
|
| 1605 | 1 | tkerber | |
| 1606 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1607 | 1 | tkerber | if 'PrintAtomProjectedDOS' in nc.variables: |
| 1608 | 1 | tkerber | v = nc.variables['PrintAtomProjectedDOS']
|
| 1609 | 1 | tkerber | else:
|
| 1610 | 1 | tkerber | v = nc.createVariable('PrintAtomProjectedDOS', 'c', ()) |
| 1611 | 1 | tkerber | |
| 1612 | 1 | tkerber | v.EnergyWindow = energywindow |
| 1613 | 1 | tkerber | v.EnergyWidth = energywidth |
| 1614 | 1 | tkerber | v.NumberEnergyPoints = npoints |
| 1615 | 1 | tkerber | v.CutoffRadius = cutoff |
| 1616 | 1 | tkerber | |
| 1617 | 1 | tkerber | nc.sync() |
| 1618 | 1 | tkerber | nc.close() |
| 1619 | 1 | tkerber | self.set_status('new') |
| 1620 | 1 | tkerber | self.ready = False |
| 1621 | 1 | tkerber | |
| 1622 | 1 | tkerber | def get_mdos(self): |
| 1623 | 1 | tkerber | 'return multicentered projected dos parameters'
|
| 1624 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
| 1625 | 1 | tkerber | |
| 1626 | 1 | tkerber | mdos = {}
|
| 1627 | 1 | tkerber | |
| 1628 | 1 | tkerber | if 'MultiCenterProjectedDOS' in nc.variables: |
| 1629 | 1 | tkerber | v = nc.variables['MultiCenterProjectedDOS']
|
| 1630 | 1 | tkerber | mdos['energywindow'] = v.EnergyWindow
|
| 1631 | 1 | tkerber | mdos['energywidth'] = v.EnergyWidth
|
| 1632 | 1 | tkerber | mdos['numberenergypoints'] = v.NumberEnergyPoints
|
| 1633 | 1 | tkerber | mdos['cutoffradius'] = v.CutoffRadius
|
| 1634 | 1 | tkerber | mdos['mcenters'] = eval(v.mcenters) |
| 1635 | 1 | tkerber | |
| 1636 | 1 | tkerber | nc.close() |
| 1637 | 1 | tkerber | |
| 1638 | 1 | tkerber | return mdos
|
| 1639 | 1 | tkerber | |
| 1640 | 1 | tkerber | def get_mdos_data(self, |
| 1641 | 1 | tkerber | spin=0,
|
| 1642 | 1 | tkerber | cutoffradius='infinite'):
|
| 1643 | 1 | tkerber | '''returns data from multicentered projection
|
| 1644 | 1 | tkerber |
|
| 1645 | 1 | tkerber |
|
| 1646 | 1 | tkerber | returns (mdos, rotmat)
|
| 1647 | 1 | tkerber |
|
| 1648 | 1 | tkerber | the rotation matrices are retrieved from the text file. I am
|
| 1649 | 1 | tkerber | not sure what you would do with these, but there was a note
|
| 1650 | 1 | tkerber | about them in the old documentation so I put the code to
|
| 1651 | 1 | tkerber | retrieve them here. the syntax for the return value is:
|
| 1652 | 1 | tkerber | rotmat[atom#][label] returns the rotation matrix for the
|
| 1653 | 1 | tkerber | center on the atom# for label. I do not not know what the
|
| 1654 | 1 | tkerber | label refers to.
|
| 1655 | 1 | tkerber | '''
|
| 1656 | 1 | tkerber | |
| 1657 | 1 | tkerber | if self.calculation_required(): |
| 1658 | 1 | tkerber | self.calculate()
|
| 1659 | 1 | tkerber | |
| 1660 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
| 1661 | 1 | tkerber | icut = 1 #short |
| 1662 | 1 | tkerber | if cutoffradius == "infinite": |
| 1663 | 1 | tkerber | icut = 0
|
| 1664 | 1 | tkerber | |
| 1665 | 1 | tkerber | #var = nc.variables['MultiCenterProjectedDOS']
|
| 1666 | 1 | tkerber | integrated = nc.variables['MultiCenterProjectedDOS_IntegratedDOS'][:]
|
| 1667 | 1 | tkerber | tz = 'MultiCenterProjectedDOS_EnergyResolvedDOS'
|
| 1668 | 1 | tkerber | energyresolved = nc.variables[tz][:] |
| 1669 | 1 | tkerber | energygrid = nc.variables['MultiCenterProjectedDOS_EnergyGrid'][:]
|
| 1670 | 1 | tkerber | |
| 1671 | 1 | tkerber | number_of_multicenters = integrated.shape[0]
|
| 1672 | 1 | tkerber | #number_of_cutoff = integrated.shape[1]
|
| 1673 | 1 | tkerber | #number_of_spin = integrated.shape[2]
|
| 1674 | 1 | tkerber | |
| 1675 | 1 | tkerber | multicenterprojections = [] |
| 1676 | 1 | tkerber | for multicenter in range(number_of_multicenters): |
| 1677 | 1 | tkerber | #orbitals = var[multicenter]
|
| 1678 | 1 | tkerber | energyresolveddata = energyresolved[multicenter, icut, spin, :] |
| 1679 | 1 | tkerber | #integrateddata = integrated[multicenter, icut, spin]
|
| 1680 | 1 | tkerber | multicenterprojections.append([energygrid, energyresolveddata]) |
| 1681 | 1 | tkerber | |
| 1682 | 1 | tkerber | log.info('Found %d multicenters' % len(multicenterprojections)) |
| 1683 | 1 | tkerber | nc.close() |
| 1684 | 1 | tkerber | |
| 1685 | 1 | tkerber | #now parse the text file for the rotation matrices
|
| 1686 | 1 | tkerber | rot_mat_lines = [] |
| 1687 | 1 | tkerber | txt = self.get_txt()
|
| 1688 | 1 | tkerber | if os.path.exists(txt):
|
| 1689 | 1 | tkerber | f = open(txt,'r') |
| 1690 | 1 | tkerber | for line in f: |
| 1691 | 1 | tkerber | if 'MUL: Rmatrix' in line: |
| 1692 | 1 | tkerber | rot_mat_lines.append(line) |
| 1693 | 1 | tkerber | f.close() |
| 1694 | 1 | tkerber | |
| 1695 | 1 | tkerber | rotmat = [] |
| 1696 | 1 | tkerber | for line in rot_mat_lines: |
| 1697 | 1 | tkerber | fields = line.split() |
| 1698 | 1 | tkerber | novl = int(fields[2]) |
| 1699 | 1 | tkerber | ncen = int(fields[3]) |
| 1700 | 1 | tkerber | row = [float(x) for x in fields[4:]] |
| 1701 | 1 | tkerber | |
| 1702 | 1 | tkerber | try:
|
| 1703 | 1 | tkerber | rotmat[novl-1][ncen-1].append(row) |
| 1704 | 1 | tkerber | except IndexError: |
| 1705 | 1 | tkerber | try:
|
| 1706 | 1 | tkerber | rotmat[novl-1].append([])
|
| 1707 | 1 | tkerber | rotmat[novl-1][ncen-1].append(row) |
| 1708 | 1 | tkerber | except IndexError: |
| 1709 | 1 | tkerber | rotmat.append([]) |
| 1710 | 1 | tkerber | rotmat[novl-1].append([])
|
| 1711 | 1 | tkerber | rotmat[novl-1][ncen-1].append(row) |
| 1712 | 1 | tkerber | else:
|
| 1713 | 1 | tkerber | rotmat = None
|
| 1714 | 1 | tkerber | |
| 1715 | 1 | tkerber | return (multicenterprojections, rotmat)
|
| 1716 | 1 | tkerber | |
| 1717 | 1 | tkerber | def set_mdos(self, |
| 1718 | 1 | tkerber | mcenters=None,
|
| 1719 | 1 | tkerber | energywindow=(-15,5), |
| 1720 | 1 | tkerber | energywidth=0.2,
|
| 1721 | 1 | tkerber | numberenergypoints=250,
|
| 1722 | 1 | tkerber | cutoffradius=1.0):
|
| 1723 | 1 | tkerber | '''Setup multicentered projected DOS.
|
| 1724 | 1 | tkerber |
|
| 1725 | 1 | tkerber | mcenters
|
| 1726 | 1 | tkerber | a list of tuples containing (atom#,l,m,weight)
|
| 1727 | 1 | tkerber | (0,0,0,1.0) specifies (atom 0, l=0, m=0, weight=1.0) an s orbital
|
| 1728 | 1 | tkerber | on atom 0
|
| 1729 | 1 | tkerber |
|
| 1730 | 1 | tkerber | (1,1,1,1.0) specifies (atom 1, l=1, m=1, weight=1.0) a p orbital
|
| 1731 | 1 | tkerber | with m = +1 on atom 0
|
| 1732 | 1 | tkerber |
|
| 1733 | 1 | tkerber | l=0 s-orbital
|
| 1734 | 1 | tkerber | l=1 p-orbital
|
| 1735 | 1 | tkerber | l=2 d-orbital
|
| 1736 | 1 | tkerber |
|
| 1737 | 1 | tkerber | m in range of ( -l ... 0 ... +l )
|
| 1738 | 1 | tkerber |
|
| 1739 | 1 | tkerber | The direction cosines for which the spherical harmonics are
|
| 1740 | 1 | tkerber | set up are using the next different atom in the list
|
| 1741 | 1 | tkerber | (cyclic) as direction pointer, so the z-direction is chosen
|
| 1742 | 1 | tkerber | along the direction to this next atom. At the moment the
|
| 1743 | 1 | tkerber | rotation matrices is only given in the text file, you can
|
| 1744 | 1 | tkerber | use grep'MUL: Rmatrix' out_o2.txt to get this information.
|
| 1745 | 1 | tkerber |
|
| 1746 | 1 | tkerber | adapated from old MultiCenterProjectedDOS.py
|
| 1747 | 1 | tkerber | '''
|
| 1748 | 1 | tkerber | if mcenters is None: |
| 1749 | 1 | tkerber | return
|
| 1750 | 1 | tkerber | |
| 1751 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1752 | 1 | tkerber | |
| 1753 | 1 | tkerber | _listofmcenters_ = mcenters |
| 1754 | 1 | tkerber | |
| 1755 | 1 | tkerber | # get number of multi centers
|
| 1756 | 1 | tkerber | ncenters = len(_listofmcenters_)
|
| 1757 | 1 | tkerber | # get max number of orbitals any center
|
| 1758 | 1 | tkerber | max_orbitals = max(map(len, _listofmcenters_)) |
| 1759 | 1 | tkerber | |
| 1760 | 1 | tkerber | mmatrix = np.zeros([ncenters, max_orbitals, 4], np.float)
|
| 1761 | 1 | tkerber | ncenter = 0
|
| 1762 | 1 | tkerber | for multicenter in _listofmcenters_: |
| 1763 | 1 | tkerber | norbital = 0
|
| 1764 | 1 | tkerber | for orbital in multicenter: |
| 1765 | 1 | tkerber | mmatrix[ncenter, norbital] = orbital |
| 1766 | 1 | tkerber | norbital = norbital + 1
|
| 1767 | 1 | tkerber | |
| 1768 | 1 | tkerber | # signal that this multicenter contains less than
|
| 1769 | 1 | tkerber | # max_orbital orbitals
|
| 1770 | 1 | tkerber | if len(multicenter) < max_orbitals: |
| 1771 | 1 | tkerber | mmatrix[ncenter, len(multicenter):max_orbitals] = (-1.0, 0, |
| 1772 | 1 | tkerber | 0, 0) |
| 1773 | 1 | tkerber | |
| 1774 | 1 | tkerber | ncenter = ncenter + 1
|
| 1775 | 1 | tkerber | |
| 1776 | 1 | tkerber | nc.createDimension('max_orbitals', max_orbitals)
|
| 1777 | 1 | tkerber | nc.createDimension('number_of_multicenters', ncenters)
|
| 1778 | 1 | tkerber | |
| 1779 | 1 | tkerber | if 'MultiCenterProjectedDOS' in nc.variables: |
| 1780 | 1 | tkerber | v = nc.variables['MultiCenterProjectedDOS']
|
| 1781 | 1 | tkerber | else:
|
| 1782 | 1 | tkerber | v = nc.createVariable('MultiCenterProjectedDOS',
|
| 1783 | 1 | tkerber | 'd',
|
| 1784 | 1 | tkerber | ('number_of_multicenters',
|
| 1785 | 1 | tkerber | 'max_orbitals',
|
| 1786 | 1 | tkerber | 'dim4'))
|
| 1787 | 1 | tkerber | |
| 1788 | 1 | tkerber | v.EnergyWindow = energywindow |
| 1789 | 1 | tkerber | v.EnergyWidth = energywidth |
| 1790 | 1 | tkerber | v.NumberEnergyPoints = numberenergypoints |
| 1791 | 1 | tkerber | v.CutoffRadius = cutoffradius |
| 1792 | 1 | tkerber | |
| 1793 | 1 | tkerber | #this is kind of hacky, but it is needed for get_mdos so you
|
| 1794 | 1 | tkerber | #can tell if the input is changed.
|
| 1795 | 1 | tkerber | v.mcenters = str(mcenters)
|
| 1796 | 1 | tkerber | |
| 1797 | 1 | tkerber | v[:] = mmatrix |
| 1798 | 1 | tkerber | |
| 1799 | 1 | tkerber | nc.sync() |
| 1800 | 1 | tkerber | nc.close() |
| 1801 | 1 | tkerber | |
| 1802 | 1 | tkerber | def set_debug(self, debug): |
| 1803 | 1 | tkerber | '''
|
| 1804 | 1 | tkerber | set debug level for python logging
|
| 1805 | 1 | tkerber |
|
| 1806 | 1 | tkerber | debug should be an integer from 0-100 or one of the logging
|
| 1807 | 1 | tkerber | constants like logging.DEBUG, logging.WARN, etc...
|
| 1808 | 1 | tkerber |
|
| 1809 | 1 | tkerber | '''
|
| 1810 | 1 | tkerber | |
| 1811 | 1 | tkerber | self.debug = debug
|
| 1812 | 1 | tkerber | log.setLevel(debug) |
| 1813 | 1 | tkerber | |
| 1814 | 1 | tkerber | def get_debug(self): |
| 1815 | 1 | tkerber | 'Return the python logging level'
|
| 1816 | 1 | tkerber | |
| 1817 | 1 | tkerber | return self.debug |
| 1818 | 1 | tkerber | |
| 1819 | 1 | tkerber | def get_decoupling(self): |
| 1820 | 1 | tkerber | 'return the electrostatic decoupling parameters'
|
| 1821 | 1 | tkerber | |
| 1822 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 1823 | 1 | tkerber | if 'Decoupling' in nc.variables: |
| 1824 | 1 | tkerber | v = nc.variables['Decoupling']
|
| 1825 | 1 | tkerber | decoupling = {}
|
| 1826 | 1 | tkerber | if hasattr(v,'NumberOfGaussians'): |
| 1827 | 1 | tkerber | decoupling['ngaussians'] = v.NumberOfGaussians
|
| 1828 | 1 | tkerber | if hasattr(v,'ECutoff'): |
| 1829 | 1 | tkerber | decoupling['ecutoff'] = v.ECutoff
|
| 1830 | 1 | tkerber | if hasattr(v,'WidthOfGaussian'): |
| 1831 | 1 | tkerber | decoupling['gausswidth'] = v.WidthOfGaussian
|
| 1832 | 1 | tkerber | else:
|
| 1833 | 1 | tkerber | decoupling = None
|
| 1834 | 1 | tkerber | nc.close() |
| 1835 | 1 | tkerber | return decoupling
|
| 1836 | 1 | tkerber | |
| 1837 | 1 | tkerber | def set_decoupling(self, |
| 1838 | 1 | tkerber | ngaussians=3,
|
| 1839 | 1 | tkerber | ecutoff=100,
|
| 1840 | 1 | tkerber | gausswidth=0.35):
|
| 1841 | 1 | tkerber | '''
|
| 1842 | 1 | tkerber | Decoupling activates the three dimensional electrostatic
|
| 1843 | 1 | tkerber | decoupling. Based on paper by Peter E. Bloechl: JCP 103
|
| 1844 | 1 | tkerber | page7422 (1995).
|
| 1845 | 1 | tkerber |
|
| 1846 | 1 | tkerber | :Parameters:
|
| 1847 | 1 | tkerber |
|
| 1848 | 1 | tkerber | ngaussians : int
|
| 1849 | 1 | tkerber | The number of gaussian functions per atom
|
| 1850 | 1 | tkerber | used for constructing the model charge of the system
|
| 1851 | 1 | tkerber |
|
| 1852 | 1 | tkerber | ecutoff : int
|
| 1853 | 1 | tkerber | The cut off energy (eV) of system charge density in
|
| 1854 | 1 | tkerber | g-space used when mapping constructing the model change of
|
| 1855 | 1 | tkerber | the system, i.e. only charge density components below
|
| 1856 | 1 | tkerber | ECutoff enters when constructing the model change.
|
| 1857 | 1 | tkerber |
|
| 1858 | 1 | tkerber | gausswidth : float
|
| 1859 | 1 | tkerber | The width of the Gaussians defined by
|
| 1860 | 1 | tkerber | $widthofgaussian*1.5^(n-1)$ $n$=(1 to numberofgaussians)
|
| 1861 | 1 | tkerber |
|
| 1862 | 1 | tkerber | '''
|
| 1863 | 1 | tkerber | |
| 1864 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1865 | 1 | tkerber | if 'Decoupling' in nc.variables: |
| 1866 | 1 | tkerber | v = nc.variables['Decoupling']
|
| 1867 | 1 | tkerber | else:
|
| 1868 | 1 | tkerber | v = nc.createVariable('Decoupling', 'c', ()) |
| 1869 | 1 | tkerber | |
| 1870 | 1 | tkerber | v.NumberOfGaussians = ngaussians |
| 1871 | 1 | tkerber | v.ECutoff = ecutoff |
| 1872 | 1 | tkerber | v.WidthOfGaussian = gausswidth |
| 1873 | 1 | tkerber | |
| 1874 | 1 | tkerber | nc.sync() |
| 1875 | 1 | tkerber | nc.close() |
| 1876 | 1 | tkerber | self.set_status('new') |
| 1877 | 1 | tkerber | self.ready = False |
| 1878 | 1 | tkerber | |
| 1879 | 1 | tkerber | def set_external_dipole(self, |
| 1880 | 1 | tkerber | value, |
| 1881 | 1 | tkerber | position=None):
|
| 1882 | 1 | tkerber | '''
|
| 1883 | 1 | tkerber | Externally imposed dipole potential. This option overwrites
|
| 1884 | 1 | tkerber | DipoleCorrection if set.
|
| 1885 | 1 | tkerber |
|
| 1886 | 1 | tkerber | :Parameters:
|
| 1887 | 1 | tkerber |
|
| 1888 | 1 | tkerber | value : float
|
| 1889 | 1 | tkerber | units of volts
|
| 1890 | 1 | tkerber |
|
| 1891 | 1 | tkerber | position : float
|
| 1892 | 1 | tkerber | scaled coordinates along third unit cell direction.
|
| 1893 | 1 | tkerber | if None, the compensation dipole layer plane in the
|
| 1894 | 1 | tkerber | vacuum position farthest from any other atoms on both
|
| 1895 | 1 | tkerber | sides of the slab. Do not set to 0.0.
|
| 1896 | 1 | tkerber | '''
|
| 1897 | 1 | tkerber | |
| 1898 | 1 | tkerber | var = 'ExternalDipolePotential'
|
| 1899 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 1900 | 1 | tkerber | if var in nc.variables: |
| 1901 | 1 | tkerber | v = nc.variables[var] |
| 1902 | 1 | tkerber | else:
|
| 1903 | 1 | tkerber | v = nc.createVariable('ExternalDipolePotential', 'd', ()) |
| 1904 | 1 | tkerber | |
| 1905 | 1 | tkerber | v.assignValue(value) |
| 1906 | 1 | tkerber | if position is not None: |
| 1907 | 1 | tkerber | v.DipoleLayerPosition = position |
| 1908 | 1 | tkerber | |
| 1909 | 1 | tkerber | nc.sync() |
| 1910 | 1 | tkerber | nc.close() |
| 1911 | 1 | tkerber | self.set_status('new') |
| 1912 | 1 | tkerber | self.ready = False |
| 1913 | 1 | tkerber | |
| 1914 | 1 | tkerber | def get_external_dipole(self): |
| 1915 | 1 | tkerber | 'return the External dipole settings'
|
| 1916 | 1 | tkerber | |
| 1917 | 1 | tkerber | var = 'ExternalDipolePotential'
|
| 1918 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
| 1919 | 1 | tkerber | if var in nc.variables: |
| 1920 | 1 | tkerber | v = nc.variables[var] |
| 1921 | 1 | tkerber | value = v.getValue() |
| 1922 | 1 | tkerber | if hasattr(v, 'DipoleLayerPosition'): |
| 1923 | 1 | tkerber | position = v.DipoleLayerPosition |
| 1924 | 1 | tkerber | else:
|
| 1925 | 1 | tkerber | position = None
|
| 1926 | 1 | tkerber | |
| 1927 | 1 | tkerber | ed = {'value':value, 'position':position}
|
| 1928 | 1 | tkerber | else:
|
| 1929 | 1 | tkerber | ed = None
|
| 1930 | 1 | tkerber | nc.close() |
| 1931 | 1 | tkerber | return ed
|
| 1932 | 1 | tkerber | |
| 1933 | 1 | tkerber | def set_dipole(self, |
| 1934 | 1 | tkerber | status=True,
|
| 1935 | 1 | tkerber | mixpar=0.2,
|
| 1936 | 1 | tkerber | initval=0.0,
|
| 1937 | 1 | tkerber | adddipfield=0.0,
|
| 1938 | 1 | tkerber | position=None):
|
| 1939 | 1 | tkerber | '''turn on and set dipole correction scheme
|
| 1940 | 1 | tkerber |
|
| 1941 | 1 | tkerber | :Parameters:
|
| 1942 | 1 | tkerber |
|
| 1943 | 1 | tkerber | status : Boolean
|
| 1944 | 1 | tkerber | True turns dipole on. False turns Dipole off
|
| 1945 | 1 | tkerber |
|
| 1946 | 1 | tkerber | mixpar : float
|
| 1947 | 1 | tkerber | Mixing Parameter for the the dipole correction field
|
| 1948 | 1 | tkerber | during the electronic minimization process. If instabilities
|
| 1949 | 1 | tkerber | occur during electronic minimization, this value may be
|
| 1950 | 1 | tkerber | decreased.
|
| 1951 | 1 | tkerber |
|
| 1952 | 1 | tkerber | initval : float
|
| 1953 | 1 | tkerber | initial value to start at
|
| 1954 | 1 | tkerber |
|
| 1955 | 1 | tkerber | adddipfield : float
|
| 1956 | 1 | tkerber | additional dipole field to add
|
| 1957 | 1 | tkerber | units : V/ang
|
| 1958 | 1 | tkerber | External additive, constant electrostatic field along
|
| 1959 | 1 | tkerber | third unit cell vector, corresponding to an external
|
| 1960 | 1 | tkerber | dipole layer. The field discontinuity follows the position
|
| 1961 | 1 | tkerber | of the dynamical dipole correction, i.e. if
|
| 1962 | 1 | tkerber | DipoleCorrection:DipoleLayerPosition is set, the field
|
| 1963 | 1 | tkerber | discontinuity is at this value, otherwise it is at the
|
| 1964 | 1 | tkerber | vacuum position farthest from any other atoms on both
|
| 1965 | 1 | tkerber | sides of the slab.
|
| 1966 | 1 | tkerber |
|
| 1967 | 1 | tkerber | position : float
|
| 1968 | 1 | tkerber | scaled coordinates along third unit cell direction.
|
| 1969 | 1 | tkerber | If this attribute is set, DACAPO will position the
|
| 1970 | 1 | tkerber | compensation dipole layer plane in at the provided value.
|
| 1971 | 1 | tkerber | If this attribute is not set, DACAPO will put the compensation
|
| 1972 | 1 | tkerber | dipole layer plane in the vacuum position farthest from any
|
| 1973 | 1 | tkerber | other atoms on both sides of the slab. Do not set this to
|
| 1974 | 1 | tkerber | 0.0
|
| 1975 | 1 | tkerber |
|
| 1976 | 1 | tkerber |
|
| 1977 | 1 | tkerber | calling set_dipole() sets all default values.
|
| 1978 | 1 | tkerber |
|
| 1979 | 1 | tkerber | '''
|
| 1980 | 1 | tkerber | if status == False: |
| 1981 | 1 | tkerber | self.delete_ncattdimvar(self.nc, ncvars=['DipoleCorrection']) |
| 1982 | 1 | tkerber | return
|
| 1983 | 1 | tkerber | |
| 1984 | 1 | tkerber | ncf = netCDF(self.get_nc(), 'a') |
| 1985 | 1 | tkerber | if 'DipoleCorrection' not in ncf.variables: |
| 1986 | 1 | tkerber | dip = ncf.createVariable('DipoleCorrection', 'c', ()) |
| 1987 | 1 | tkerber | else:
|
| 1988 | 1 | tkerber | dip = ncf.variables['DipoleCorrection']
|
| 1989 | 1 | tkerber | dip.MixingParameter = mixpar |
| 1990 | 1 | tkerber | dip.InitialValue = initval |
| 1991 | 1 | tkerber | dip.AdditiveDipoleField = adddipfield |
| 1992 | 1 | tkerber | |
| 1993 | 1 | tkerber | if position is not None: |
| 1994 | 1 | tkerber | dip.DipoleLayerPosition = position |
| 1995 | 1 | tkerber | |
| 1996 | 1 | tkerber | ncf.sync() |
| 1997 | 1 | tkerber | ncf.close() |
| 1998 | 1 | tkerber | self.set_status('new') |
| 1999 | 1 | tkerber | self.ready = False |
| 2000 | 1 | tkerber | |
| 2001 | 1 | tkerber | def set_stay_alive(self, value): |
| 2002 | 1 | tkerber | 'set the stay alive setting'
|
| 2003 | 1 | tkerber | |
| 2004 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 2005 | 1 | tkerber | ncvars=['Dynamics'])
|
| 2006 | 1 | tkerber | |
| 2007 | 1 | tkerber | if value in [True, False]: |
| 2008 | 1 | tkerber | self.stay_alive = value
|
| 2009 | 1 | tkerber | #self._dacapo_is_running = False
|
| 2010 | 1 | tkerber | else:
|
| 2011 | 1 | tkerber | log.debug("stay_alive must be boolean. Value was not changed.")
|
| 2012 | 1 | tkerber | |
| 2013 | 1 | tkerber | def get_stay_alive(self): |
| 2014 | 1 | tkerber | 'return the stay alive settings'
|
| 2015 | 1 | tkerber | |
| 2016 | 1 | tkerber | return self.stay_alive |
| 2017 | 1 | tkerber | |
| 2018 | 1 | tkerber | def get_fftgrid(self): |
| 2019 | 1 | tkerber | 'return soft and hard fft grids'
|
| 2020 | 1 | tkerber | |
| 2021 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2022 | 1 | tkerber | soft = [] |
| 2023 | 1 | tkerber | hard = [] |
| 2024 | 1 | tkerber | for d in [1, 2, 3]: |
| 2025 | 1 | tkerber | sd = 'softgrid_dim%i' % d
|
| 2026 | 1 | tkerber | hd = 'hardgrid_dim%i' % d
|
| 2027 | 1 | tkerber | if sd in nc.dimensions: |
| 2028 | 1 | tkerber | soft.append(nc.dimensions[sd]) |
| 2029 | 1 | tkerber | hard.append(nc.dimensions[hd]) |
| 2030 | 1 | tkerber | nc.close() |
| 2031 | 1 | tkerber | return ({'soft':soft, |
| 2032 | 1 | tkerber | 'hard':hard})
|
| 2033 | 1 | tkerber | |
| 2034 | 1 | tkerber | def get_kpts_type(self): |
| 2035 | 1 | tkerber | 'return the kpt grid type'
|
| 2036 | 1 | tkerber | |
| 2037 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2038 | 1 | tkerber | |
| 2039 | 1 | tkerber | if 'BZKpoints' in nc.variables: |
| 2040 | 1 | tkerber | bv = nc.variables['BZKpoints']
|
| 2041 | 1 | tkerber | if hasattr(bv, 'gridtype'): |
| 2042 | 1 | tkerber | kpts_type = bv.gridtype #string saved in jacapo
|
| 2043 | 1 | tkerber | else:
|
| 2044 | 1 | tkerber | #no grid attribute, this ncfile was created pre-jacapo
|
| 2045 | 1 | tkerber | kpts_type = 'pre-Jacapo: %i kpts' % len(bv[:]) |
| 2046 | 1 | tkerber | else:
|
| 2047 | 1 | tkerber | kpts_type = 'BZKpoints not defined. [[0,0,0]] used by default.'
|
| 2048 | 1 | tkerber | |
| 2049 | 1 | tkerber | nc.close() |
| 2050 | 1 | tkerber | return kpts_type
|
| 2051 | 1 | tkerber | |
| 2052 | 1 | tkerber | def get_kpts(self): |
| 2053 | 1 | tkerber | 'return the BZ kpts'
|
| 2054 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2055 | 1 | tkerber | |
| 2056 | 1 | tkerber | if 'BZKpoints' in nc.variables: |
| 2057 | 1 | tkerber | bv = nc.variables['BZKpoints']
|
| 2058 | 1 | tkerber | kpts = bv[:] |
| 2059 | 1 | tkerber | else:
|
| 2060 | 1 | tkerber | kpts = ([0, 0, 0]) #default Gamma point used in Dacapo when |
| 2061 | 1 | tkerber | #BZKpoints not defined
|
| 2062 | 1 | tkerber | |
| 2063 | 1 | tkerber | nc.close() |
| 2064 | 1 | tkerber | return kpts
|
| 2065 | 1 | tkerber | |
| 2066 | 1 | tkerber | def get_nbands(self): |
| 2067 | 1 | tkerber | 'return the number of bands used in the calculation'
|
| 2068 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2069 | 1 | tkerber | |
| 2070 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
| 2071 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
| 2072 | 1 | tkerber | if hasattr(v, 'NumberOfBands'): |
| 2073 | 1 | tkerber | nbands = v.NumberOfBands[0]
|
| 2074 | 1 | tkerber | else:
|
| 2075 | 1 | tkerber | nbands = None
|
| 2076 | 1 | tkerber | else:
|
| 2077 | 1 | tkerber | nbands = None
|
| 2078 | 1 | tkerber | |
| 2079 | 1 | tkerber | nc.close() |
| 2080 | 1 | tkerber | return nbands
|
| 2081 | 1 | tkerber | |
| 2082 | 1 | tkerber | def get_ft(self): |
| 2083 | 1 | tkerber | 'return the FermiTemperature used in the calculation'
|
| 2084 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2085 | 1 | tkerber | |
| 2086 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
| 2087 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
| 2088 | 1 | tkerber | if hasattr(v, 'OccupationStatistics_FermiTemperature'): |
| 2089 | 1 | tkerber | ft = v.OccupationStatistics_FermiTemperature |
| 2090 | 1 | tkerber | else:
|
| 2091 | 1 | tkerber | ft = None
|
| 2092 | 1 | tkerber | else:
|
| 2093 | 1 | tkerber | ft = None
|
| 2094 | 1 | tkerber | nc.close() |
| 2095 | 1 | tkerber | return ft
|
| 2096 | 1 | tkerber | |
| 2097 | 1 | tkerber | def get_dipole(self): |
| 2098 | 1 | tkerber | 'return dictionary of parameters if the DipoleCorrection was used'
|
| 2099 | 1 | tkerber | |
| 2100 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 2101 | 1 | tkerber | pars = {}
|
| 2102 | 1 | tkerber | if 'DipoleCorrection' in nc.variables: |
| 2103 | 1 | tkerber | v = nc.variables['DipoleCorrection']
|
| 2104 | 1 | tkerber | pars['status'] = True |
| 2105 | 1 | tkerber | if hasattr(v, 'MixingParameter'): |
| 2106 | 1 | tkerber | pars['mixpar'] = v.MixingParameter
|
| 2107 | 1 | tkerber | if hasattr(v, 'InitialValue'): |
| 2108 | 1 | tkerber | pars['initval'] = v.InitialValue
|
| 2109 | 1 | tkerber | if hasattr(v, 'AdditiveDipoleField'): |
| 2110 | 1 | tkerber | pars['adddipfield'] = v.AdditiveDipoleField
|
| 2111 | 1 | tkerber | if hasattr(v, 'DipoleLayerPosition'): |
| 2112 | 1 | tkerber | pars['position'] = v.DipoleLayerPosition
|
| 2113 | 1 | tkerber | |
| 2114 | 1 | tkerber | else:
|
| 2115 | 1 | tkerber | pars = False
|
| 2116 | 1 | tkerber | nc.close() |
| 2117 | 1 | tkerber | return pars
|
| 2118 | 1 | tkerber | |
| 2119 | 1 | tkerber | def get_pw(self): |
| 2120 | 1 | tkerber | 'return the planewave cutoff used'
|
| 2121 | 1 | tkerber | |
| 2122 | 1 | tkerber | ncf = netCDF(self.nc, 'r') |
| 2123 | 1 | tkerber | if 'PlaneWaveCutoff' in ncf.variables: |
| 2124 | 1 | tkerber | pw = ncf.variables['PlaneWaveCutoff'].getValue()
|
| 2125 | 1 | tkerber | else:
|
| 2126 | 1 | tkerber | pw = None
|
| 2127 | 1 | tkerber | ncf.close() |
| 2128 | 1 | tkerber | |
| 2129 | 1 | tkerber | if isinstance(pw, int) or isinstance(pw, float): |
| 2130 | 1 | tkerber | return pw
|
| 2131 | 1 | tkerber | elif pw is None: |
| 2132 | 1 | tkerber | return None |
| 2133 | 1 | tkerber | else:
|
| 2134 | 1 | tkerber | return pw[0] |
| 2135 | 1 | tkerber | |
| 2136 | 1 | tkerber | def get_dw(self): |
| 2137 | 1 | tkerber | 'return the density wave cutoff'
|
| 2138 | 1 | tkerber | |
| 2139 | 1 | tkerber | ncf = netCDF(self.nc, 'r') |
| 2140 | 1 | tkerber | if 'Density_WaveCutoff' in ncf.variables: |
| 2141 | 1 | tkerber | dw = ncf.variables['Density_WaveCutoff'].getValue()
|
| 2142 | 1 | tkerber | else:
|
| 2143 | 1 | tkerber | dw = None
|
| 2144 | 1 | tkerber | ncf.close() |
| 2145 | 1 | tkerber | |
| 2146 | 1 | tkerber | #some old calculations apparently store ints, while newer ones
|
| 2147 | 1 | tkerber | #are lists
|
| 2148 | 1 | tkerber | if isinstance(dw, int) or isinstance(dw, float): |
| 2149 | 1 | tkerber | return dw
|
| 2150 | 1 | tkerber | else:
|
| 2151 | 1 | tkerber | if dw is None: |
| 2152 | 1 | tkerber | return None |
| 2153 | 1 | tkerber | else:
|
| 2154 | 1 | tkerber | return dw[0] |
| 2155 | 1 | tkerber | |
| 2156 | 1 | tkerber | def get_xc(self): |
| 2157 | 1 | tkerber | '''return the self-consistent exchange-correlation functional used
|
| 2158 | 1 | tkerber |
|
| 2159 | 1 | tkerber | returns a string'''
|
| 2160 | 1 | tkerber | |
| 2161 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2162 | 1 | tkerber | v = 'ExcFunctional'
|
| 2163 | 1 | tkerber | if v in nc.variables: |
| 2164 | 1 | tkerber | xc = nc.variables[v][:].tostring().strip() |
| 2165 | 1 | tkerber | else:
|
| 2166 | 1 | tkerber | xc = None
|
| 2167 | 1 | tkerber | |
| 2168 | 1 | tkerber | nc.close() |
| 2169 | 1 | tkerber | return xc
|
| 2170 | 1 | tkerber | |
| 2171 | 1 | tkerber | def get_potential_energy(self, |
| 2172 | 1 | tkerber | atoms=None,
|
| 2173 | 1 | tkerber | force_consistent=False):
|
| 2174 | 1 | tkerber | '''
|
| 2175 | 1 | tkerber | return the potential energy.
|
| 2176 | 1 | tkerber | '''
|
| 2177 | 1 | tkerber | |
| 2178 | 1 | tkerber | if self.calculation_required(atoms): |
| 2179 | 1 | tkerber | log.debug('calculation required for energy')
|
| 2180 | 1 | tkerber | self.calculate()
|
| 2181 | 1 | tkerber | else:
|
| 2182 | 1 | tkerber | log.debug('no calculation required for energy')
|
| 2183 | 1 | tkerber | |
| 2184 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 2185 | 1 | tkerber | try:
|
| 2186 | 1 | tkerber | if force_consistent:
|
| 2187 | 1 | tkerber | e = nc.variables['TotalFreeEnergy'][-1] |
| 2188 | 1 | tkerber | else:
|
| 2189 | 1 | tkerber | e = nc.variables['TotalEnergy'][-1] |
| 2190 | 1 | tkerber | nc.close() |
| 2191 | 1 | tkerber | return e
|
| 2192 | 1 | tkerber | except (TypeError, KeyError): |
| 2193 | 1 | tkerber | raise RuntimeError('Error in calculating the total energy\n' + |
| 2194 | 1 | tkerber | 'Check ascii out file for error messages')
|
| 2195 | 1 | tkerber | |
| 2196 | 1 | tkerber | def get_forces(self, atoms=None): |
| 2197 | 1 | tkerber | """Calculate atomic forces"""
|
| 2198 | 1 | tkerber | |
| 2199 | 1 | tkerber | if atoms is None: |
| 2200 | 1 | tkerber | atoms = self.atoms
|
| 2201 | 1 | tkerber | if self.calculation_required(atoms): |
| 2202 | 1 | tkerber | self.calculate()
|
| 2203 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 2204 | 1 | tkerber | forces = nc.variables['DynamicAtomForces'][-1] |
| 2205 | 1 | tkerber | nc.close() |
| 2206 | 1 | tkerber | return forces
|
| 2207 | 1 | tkerber | |
| 2208 | 1 | tkerber | def get_atoms(self): |
| 2209 | 1 | tkerber | 'return the atoms attached to a calculator()'
|
| 2210 | 1 | tkerber | |
| 2211 | 1 | tkerber | if hasattr(self, 'atoms'): |
| 2212 | 1 | tkerber | if self.atoms is None: |
| 2213 | 1 | tkerber | return None |
| 2214 | 1 | tkerber | atoms = self.atoms.copy()
|
| 2215 | 1 | tkerber | #it is not obvious the copy of atoms should have teh same
|
| 2216 | 1 | tkerber | #calculator
|
| 2217 | 1 | tkerber | atoms.set_calculator(self)
|
| 2218 | 1 | tkerber | else:
|
| 2219 | 1 | tkerber | atoms = None
|
| 2220 | 1 | tkerber | return atoms
|
| 2221 | 1 | tkerber | |
| 2222 | 1 | tkerber | def get_nc(self): |
| 2223 | 1 | tkerber | 'return the ncfile used for output'
|
| 2224 | 1 | tkerber | |
| 2225 | 1 | tkerber | return self.nc |
| 2226 | 1 | tkerber | |
| 2227 | 1 | tkerber | def get_txt(self): |
| 2228 | 1 | tkerber | 'return the txt file used for output'
|
| 2229 | 1 | tkerber | |
| 2230 | 1 | tkerber | if hasattr(self,'txt'): |
| 2231 | 1 | tkerber | return self.txt |
| 2232 | 1 | tkerber | else:
|
| 2233 | 1 | tkerber | return None |
| 2234 | 1 | tkerber | |
| 2235 | 1 | tkerber | def get_psp(self, sym=None, z=None): |
| 2236 | 1 | tkerber | '''get the pseudopotential filename from the psp database
|
| 2237 | 1 | tkerber |
|
| 2238 | 1 | tkerber | :Parameters:
|
| 2239 | 1 | tkerber |
|
| 2240 | 1 | tkerber | sym : string
|
| 2241 | 1 | tkerber | the chemical symbol of the species
|
| 2242 | 1 | tkerber |
|
| 2243 | 1 | tkerber | z : integer
|
| 2244 | 1 | tkerber | the atomic number of the species
|
| 2245 | 1 | tkerber |
|
| 2246 | 1 | tkerber |
|
| 2247 | 1 | tkerber | you can only specify sym or z. Returns the pseudopotential
|
| 2248 | 1 | tkerber | filename, not the full path.
|
| 2249 | 1 | tkerber | '''
|
| 2250 | 1 | tkerber | |
| 2251 | 1 | tkerber | if (sym is None and z is not None): |
| 2252 | 1 | tkerber | from ase.data import chemical_symbols |
| 2253 | 1 | tkerber | sym = chemical_symbols[z] |
| 2254 | 1 | tkerber | elif (sym is not None and z is None): |
| 2255 | 1 | tkerber | pass
|
| 2256 | 1 | tkerber | else:
|
| 2257 | 1 | tkerber | raise Exception, 'You can only specify Z or sym!' |
| 2258 | 1 | tkerber | psp = self.psp[sym]
|
| 2259 | 1 | tkerber | return psp
|
| 2260 | 1 | tkerber | |
| 2261 | 1 | tkerber | def get_spin_polarized(self): |
| 2262 | 1 | tkerber | 'Return True if calculate is spin-polarized or False if not'
|
| 2263 | 1 | tkerber | |
| 2264 | 1 | tkerber | #self.calculate() #causes recursion error with get_magnetic_moments
|
| 2265 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2266 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
| 2267 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
| 2268 | 1 | tkerber | if hasattr(v, 'SpinPolarization'): |
| 2269 | 1 | tkerber | if v.SpinPolarization == 1: |
| 2270 | 1 | tkerber | spinpol = False
|
| 2271 | 1 | tkerber | elif v.SpinPolarization == 2: |
| 2272 | 1 | tkerber | spinpol = True
|
| 2273 | 1 | tkerber | else:
|
| 2274 | 1 | tkerber | spinpol = False
|
| 2275 | 1 | tkerber | else:
|
| 2276 | 1 | tkerber | spinpol = 'Not defined'
|
| 2277 | 1 | tkerber | |
| 2278 | 1 | tkerber | nc.close() |
| 2279 | 1 | tkerber | return spinpol
|
| 2280 | 1 | tkerber | |
| 2281 | 1 | tkerber | def get_magnetic_moments(self, atoms=None): |
| 2282 | 1 | tkerber | '''return magnetic moments on each atom after the calculation is
|
| 2283 | 1 | tkerber | run'''
|
| 2284 | 1 | tkerber | |
| 2285 | 1 | tkerber | if self.calculation_required(atoms): |
| 2286 | 1 | tkerber | self.calculate()
|
| 2287 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2288 | 1 | tkerber | if 'InitialAtomicMagneticMoment' in nc.variables: |
| 2289 | 1 | tkerber | mom = nc.variables['InitialAtomicMagneticMoment'][:]
|
| 2290 | 1 | tkerber | else:
|
| 2291 | 1 | tkerber | mom = [0.0]*len(self.atoms) |
| 2292 | 1 | tkerber | |
| 2293 | 1 | tkerber | nc.close() |
| 2294 | 1 | tkerber | return mom
|
| 2295 | 1 | tkerber | |
| 2296 | 1 | tkerber | def get_status(self): |
| 2297 | 1 | tkerber | '''get status of calculation from ncfile. usually one of:
|
| 2298 | 1 | tkerber | 'new',
|
| 2299 | 1 | tkerber | 'aborted'
|
| 2300 | 1 | tkerber | 'running'
|
| 2301 | 1 | tkerber | 'finished'
|
| 2302 | 1 | tkerber | None
|
| 2303 | 1 | tkerber | '''
|
| 2304 | 1 | tkerber | |
| 2305 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2306 | 1 | tkerber | if hasattr(nc, 'status'): |
| 2307 | 1 | tkerber | status = nc.status |
| 2308 | 1 | tkerber | else:
|
| 2309 | 1 | tkerber | status = None
|
| 2310 | 1 | tkerber | nc.close() |
| 2311 | 1 | tkerber | return status
|
| 2312 | 1 | tkerber | |
| 2313 | 1 | tkerber | def get_calculate_stress(self): |
| 2314 | 1 | tkerber | 'return whether stress is calculated or not'
|
| 2315 | 1 | tkerber | |
| 2316 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 2317 | 1 | tkerber | if 'TotalStress' in nc.variables: |
| 2318 | 1 | tkerber | calcstress = True
|
| 2319 | 1 | tkerber | else:
|
| 2320 | 1 | tkerber | calcstress = False
|
| 2321 | 1 | tkerber | nc.close() |
| 2322 | 1 | tkerber | return calcstress
|
| 2323 | 1 | tkerber | |
| 2324 | 1 | tkerber | def get_stress(self, atoms=None): |
| 2325 | 1 | tkerber | '''get stress on the atoms.
|
| 2326 | 1 | tkerber |
|
| 2327 | 1 | tkerber | you should have set up the calculation
|
| 2328 | 1 | tkerber | to calculate stress first.
|
| 2329 | 1 | tkerber |
|
| 2330 | 1 | tkerber | returns [sxx, syy, szz, syz, sxz, sxy]'''
|
| 2331 | 1 | tkerber | |
| 2332 | 1 | tkerber | if self.calculation_required(atoms): |
| 2333 | 1 | tkerber | self.calculate()
|
| 2334 | 1 | tkerber | |
| 2335 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 2336 | 1 | tkerber | if 'TotalStress' in nc.variables: |
| 2337 | 1 | tkerber | stress = nc.variables['TotalStress'][:]
|
| 2338 | 1 | tkerber | #ase expects the 6-element form
|
| 2339 | 1 | tkerber | stress = np.take(stress.ravel(), [0, 4, 8, 5, 2, 1]) |
| 2340 | 1 | tkerber | else:
|
| 2341 | 1 | tkerber | #stress will not be here if you did not set it up by
|
| 2342 | 1 | tkerber | #calling set_stress() or in the __init__
|
| 2343 | 1 | tkerber | stress = None
|
| 2344 | 1 | tkerber | |
| 2345 | 1 | tkerber | nc.close() |
| 2346 | 1 | tkerber | |
| 2347 | 1 | tkerber | return stress
|
| 2348 | 1 | tkerber | |
| 2349 | 1 | tkerber | def get_psp_valence(self, psp): |
| 2350 | 1 | tkerber | '''
|
| 2351 | 1 | tkerber | get the psp valence charge on an atom from the pspfile.
|
| 2352 | 1 | tkerber | '''
|
| 2353 | 1 | tkerber | |
| 2354 | 1 | tkerber | from struct import unpack |
| 2355 | 1 | tkerber | dacapopath = os.environ.get('DACAPOPATH')
|
| 2356 | 1 | tkerber | |
| 2357 | 1 | tkerber | if os.path.exists(psp):
|
| 2358 | 1 | tkerber | #the pspfile may be in the current directory
|
| 2359 | 1 | tkerber | #or defined by an absolute path
|
| 2360 | 1 | tkerber | fullpsp = psp |
| 2361 | 1 | tkerber | else:
|
| 2362 | 1 | tkerber | #or, it is in the default psp path
|
| 2363 | 1 | tkerber | fullpsp = os.path.join(dacapopath, psp) |
| 2364 | 1 | tkerber | |
| 2365 | 1 | tkerber | if os.path.exists(fullpsp.strip()):
|
| 2366 | 1 | tkerber | f = open(fullpsp)
|
| 2367 | 1 | tkerber | # read past version numbers and text information
|
| 2368 | 1 | tkerber | buf = f.read(64)
|
| 2369 | 1 | tkerber | # read number valence electrons
|
| 2370 | 1 | tkerber | buf = f.read(8)
|
| 2371 | 1 | tkerber | fmt = ">d"
|
| 2372 | 1 | tkerber | nvalence = unpack(fmt, buf)[0]
|
| 2373 | 1 | tkerber | f.close() |
| 2374 | 1 | tkerber | |
| 2375 | 1 | tkerber | else:
|
| 2376 | 1 | tkerber | raise Exception, "%s does not exist" % fullpsp |
| 2377 | 1 | tkerber | |
| 2378 | 1 | tkerber | return nvalence
|
| 2379 | 1 | tkerber | |
| 2380 | 1 | tkerber | def get_psp_nuclear_charge(self, psp): |
| 2381 | 1 | tkerber | '''
|
| 2382 | 1 | tkerber | get the nuclear charge of the atom from teh psp-file.
|
| 2383 | 1 | tkerber |
|
| 2384 | 1 | tkerber | This is not the same as the atomic number, nor is it
|
| 2385 | 1 | tkerber | necessarily the negative of the number of valence electrons,
|
| 2386 | 1 | tkerber | since a psp may be an ion. this function is needed to compute
|
| 2387 | 1 | tkerber | centers of ion charge for the dipole moment calculation.
|
| 2388 | 1 | tkerber |
|
| 2389 | 1 | tkerber | We read in the valence ion configuration from the psp file and
|
| 2390 | 1 | tkerber | add up the charges in each shell.
|
| 2391 | 1 | tkerber | '''
|
| 2392 | 1 | tkerber | |
| 2393 | 1 | tkerber | from struct import unpack |
| 2394 | 1 | tkerber | dacapopath = os.environ.get('DACAPOPATH')
|
| 2395 | 1 | tkerber | |
| 2396 | 1 | tkerber | if os.path.exists(psp):
|
| 2397 | 1 | tkerber | #the pspfile may be in the current directory
|
| 2398 | 1 | tkerber | #or defined by an absolute path
|
| 2399 | 1 | tkerber | fullpsp = psp |
| 2400 | 1 | tkerber | |
| 2401 | 1 | tkerber | else:
|
| 2402 | 1 | tkerber | #or, it is in the default psp path
|
| 2403 | 1 | tkerber | fullpsp = os.path.join(dacapopath, psp) |
| 2404 | 1 | tkerber | |
| 2405 | 1 | tkerber | if os.path.exists(fullpsp.strip()):
|
| 2406 | 1 | tkerber | f = open(fullpsp)
|
| 2407 | 1 | tkerber | unpack('>i', f.read(4))[0] |
| 2408 | 1 | tkerber | for i in range(3): |
| 2409 | 1 | tkerber | f.read(4)
|
| 2410 | 1 | tkerber | for i in range(3): |
| 2411 | 1 | tkerber | f.read(4)
|
| 2412 | 1 | tkerber | f.read(8)
|
| 2413 | 1 | tkerber | f.read(20)
|
| 2414 | 1 | tkerber | f.read(8)
|
| 2415 | 1 | tkerber | f.read(8)
|
| 2416 | 1 | tkerber | f.read(8)
|
| 2417 | 1 | tkerber | nvalps = unpack('>i', f.read(4))[0] |
| 2418 | 1 | tkerber | f.read(4)
|
| 2419 | 1 | tkerber | f.read(8)
|
| 2420 | 1 | tkerber | f.read(8)
|
| 2421 | 1 | tkerber | wwnlps = [] |
| 2422 | 1 | tkerber | for i in range(nvalps): |
| 2423 | 1 | tkerber | f.read(4)
|
| 2424 | 1 | tkerber | wwnlps.append(unpack('>d', f.read(8))[0]) |
| 2425 | 1 | tkerber | f.read(8)
|
| 2426 | 1 | tkerber | f.close() |
| 2427 | 1 | tkerber | |
| 2428 | 1 | tkerber | else:
|
| 2429 | 1 | tkerber | raise Exception, "%s does not exist" % fullpsp |
| 2430 | 1 | tkerber | |
| 2431 | 1 | tkerber | return np.array(wwnlps).sum()
|
| 2432 | 1 | tkerber | |
| 2433 | 1 | tkerber | def get_valence(self, atoms=None): |
| 2434 | 1 | tkerber | '''return the total number of valence electrons for the
|
| 2435 | 1 | tkerber | atoms. valence electrons are read directly from the
|
| 2436 | 1 | tkerber | pseudopotentials.
|
| 2437 | 1 | tkerber |
|
| 2438 | 1 | tkerber | the psp filenames are stored in the ncfile. They may be just
|
| 2439 | 1 | tkerber | the name of the file, in which case the psp may exist in the
|
| 2440 | 1 | tkerber | same directory as the ncfile, or in $DACAPOPATH, or the psp
|
| 2441 | 1 | tkerber | may be defined by an absolute or relative path. This function
|
| 2442 | 1 | tkerber | deals with all these possibilities.
|
| 2443 | 1 | tkerber | '''
|
| 2444 | 1 | tkerber | |
| 2445 | 1 | tkerber | from struct import unpack |
| 2446 | 1 | tkerber | |
| 2447 | 1 | tkerber | #do not use get_atoms() or recursion occurs
|
| 2448 | 1 | tkerber | if atoms is None: |
| 2449 | 1 | tkerber | if hasattr(self, 'atoms'): |
| 2450 | 1 | tkerber | atoms = self.atoms
|
| 2451 | 1 | tkerber | else:
|
| 2452 | 1 | tkerber | return None |
| 2453 | 1 | tkerber | |
| 2454 | 1 | tkerber | dacapopath = os.environ.get('DACAPOPATH')
|
| 2455 | 1 | tkerber | totval = 0.0
|
| 2456 | 1 | tkerber | for sym in atoms.get_chemical_symbols(): |
| 2457 | 1 | tkerber | psp = self.get_psp(sym)
|
| 2458 | 1 | tkerber | |
| 2459 | 1 | tkerber | if os.path.exists(psp):
|
| 2460 | 1 | tkerber | #the pspfile may be in the current directory
|
| 2461 | 1 | tkerber | #or defined by an absolute path
|
| 2462 | 1 | tkerber | fullpsp = psp |
| 2463 | 1 | tkerber | |
| 2464 | 1 | tkerber | #let's also see if we can construct an absolute path to a
|
| 2465 | 1 | tkerber | #local or relative path psp.
|
| 2466 | 1 | tkerber | abs_path_to_nc = os.path.abspath(self.get_nc())
|
| 2467 | 1 | tkerber | base = os.path.split(abs_path_to_nc)[0]
|
| 2468 | 1 | tkerber | possible_path_to_psp = os.path.join(base, psp) |
| 2469 | 1 | tkerber | if os.path.exists(possible_path_to_psp):
|
| 2470 | 1 | tkerber | fullpsp = possible_path_to_psp |
| 2471 | 1 | tkerber | |
| 2472 | 1 | tkerber | else:
|
| 2473 | 1 | tkerber | #or, it is in the default psp path
|
| 2474 | 1 | tkerber | fullpsp = os.path.join(dacapopath, psp) |
| 2475 | 1 | tkerber | if os.path.exists(fullpsp.strip()):
|
| 2476 | 1 | tkerber | f = open(fullpsp)
|
| 2477 | 1 | tkerber | # read past version numbers and text information
|
| 2478 | 1 | tkerber | buf = f.read(64)
|
| 2479 | 1 | tkerber | # read number valence electrons
|
| 2480 | 1 | tkerber | buf = f.read(8)
|
| 2481 | 1 | tkerber | fmt = ">d"
|
| 2482 | 1 | tkerber | nvalence = unpack(fmt, buf)[0]
|
| 2483 | 1 | tkerber | f.close() |
| 2484 | 1 | tkerber | totval += float(nvalence)
|
| 2485 | 1 | tkerber | else:
|
| 2486 | 1 | tkerber | raise Exception, "%s does not exist" % fullpsp |
| 2487 | 1 | tkerber | |
| 2488 | 1 | tkerber | return totval
|
| 2489 | 1 | tkerber | |
| 2490 | 1 | tkerber | def calculation_required(self, atoms=None, quantities=None): |
| 2491 | 1 | tkerber | '''
|
| 2492 | 1 | tkerber | determines if a calculation is needed.
|
| 2493 | 1 | tkerber |
|
| 2494 | 1 | tkerber | return True if a calculation is needed to get up to date data.
|
| 2495 | 1 | tkerber | return False if no calculation is needed.
|
| 2496 | 1 | tkerber |
|
| 2497 | 1 | tkerber | quantities is here because of the ase interface.
|
| 2498 | 1 | tkerber | '''
|
| 2499 | 1 | tkerber | |
| 2500 | 1 | tkerber | # first, compare if the atoms is the same as the stored atoms
|
| 2501 | 1 | tkerber | # if anything has changed, we need to run a calculation
|
| 2502 | 1 | tkerber | log.debug('running calculation_required')
|
| 2503 | 1 | tkerber | |
| 2504 | 1 | tkerber | if self.nc is None: |
| 2505 | 1 | tkerber | raise Exception, 'No output ncfile specified!' |
| 2506 | 1 | tkerber | |
| 2507 | 1 | tkerber | if atoms is not None: |
| 2508 | 1 | tkerber | if not self.atoms_are_equal(atoms): |
| 2509 | 1 | tkerber | log.debug('found that atoms != self.atoms')
|
| 2510 | 1 | tkerber | tol = 1.0e-6 #tolerance that the unit cell is the same |
| 2511 | 1 | tkerber | new = atoms.get_cell() |
| 2512 | 1 | tkerber | old = self.atoms.get_cell()
|
| 2513 | 1 | tkerber | #float comparison of equality
|
| 2514 | 1 | tkerber | if not np.all(abs(old-new) < tol): |
| 2515 | 1 | tkerber | #this often changes the number of planewaves
|
| 2516 | 1 | tkerber | #which requires a complete restart
|
| 2517 | 1 | tkerber | log.debug('restart required! because cell changed')
|
| 2518 | 1 | tkerber | self.restart()
|
| 2519 | 1 | tkerber | else:
|
| 2520 | 1 | tkerber | log.debug('Unitcells apparently the same')
|
| 2521 | 1 | tkerber | |
| 2522 | 1 | tkerber | self.set_atoms(atoms) #we have to update the atoms in any case |
| 2523 | 1 | tkerber | return True |
| 2524 | 1 | tkerber | |
| 2525 | 1 | tkerber | #if we make it past the atoms check, we look in the
|
| 2526 | 1 | tkerber | #nc file. if parameters have been changed the status
|
| 2527 | 1 | tkerber | #will tell us if a calculation is needed
|
| 2528 | 1 | tkerber | |
| 2529 | 1 | tkerber | #past this point, atoms was None or equal, so there is nothing to
|
| 2530 | 1 | tkerber | #update in the calculator
|
| 2531 | 1 | tkerber | |
| 2532 | 1 | tkerber | log.debug('atoms tested equal')
|
| 2533 | 1 | tkerber | if os.path.exists(self.nc): |
| 2534 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
| 2535 | 1 | tkerber | if hasattr(nc, 'status'): |
| 2536 | 1 | tkerber | if nc.status == 'finished' and self.ready: |
| 2537 | 1 | tkerber | nc.close() |
| 2538 | 1 | tkerber | return False |
| 2539 | 1 | tkerber | elif nc.status == 'running': |
| 2540 | 1 | tkerber | nc.close() |
| 2541 | 1 | tkerber | raise DacapoRunning('Dacapo is Running') |
| 2542 | 1 | tkerber | elif nc.status == 'aborted': |
| 2543 | 1 | tkerber | nc.close() |
| 2544 | 1 | tkerber | raise DacapoAborted('Dacapo aborted. see txt file!') |
| 2545 | 1 | tkerber | else:
|
| 2546 | 1 | tkerber | log.debug('ncfile exists, but is not ready')
|
| 2547 | 1 | tkerber | nc.close() |
| 2548 | 1 | tkerber | return True |
| 2549 | 1 | tkerber | else:
|
| 2550 | 1 | tkerber | #legacy calculations do not have a status flag in them.
|
| 2551 | 1 | tkerber | #let us guess that if the TotalEnergy is there
|
| 2552 | 1 | tkerber | #no calculation needs to be run?
|
| 2553 | 1 | tkerber | if 'TotalEnergy' in nc.variables: |
| 2554 | 1 | tkerber | runflag = False
|
| 2555 | 1 | tkerber | else:
|
| 2556 | 1 | tkerber | runflag = True
|
| 2557 | 1 | tkerber | nc.close() |
| 2558 | 1 | tkerber | log.debug('Legacy calculation')
|
| 2559 | 1 | tkerber | return runflag #if no status run calculation |
| 2560 | 1 | tkerber | nc.close() |
| 2561 | 1 | tkerber | |
| 2562 | 1 | tkerber | #default, a calculation is required
|
| 2563 | 1 | tkerber | return True |
| 2564 | 1 | tkerber | |
| 2565 | 1 | tkerber | def get_scratch(self): |
| 2566 | 1 | tkerber | '''finds an appropriate scratch directory for the calculation'''
|
| 2567 | 1 | tkerber | |
| 2568 | 1 | tkerber | import getpass |
| 2569 | 1 | tkerber | username = getpass.getuser() |
| 2570 | 1 | tkerber | |
| 2571 | 1 | tkerber | scratch_dirs = [] |
| 2572 | 1 | tkerber | if os.environ.has_key('SCRATCH'): |
| 2573 | 1 | tkerber | scratch_dirs.append(os.environ['SCRATCH'])
|
| 2574 | 1 | tkerber | if os.environ.has_key('SCR'): |
| 2575 | 1 | tkerber | scratch_dirs.append(os.environ['SCR'])
|
| 2576 | 1 | tkerber | scratch_dirs.append('/scratch/'+username)
|
| 2577 | 1 | tkerber | scratch_dirs.append('/scratch/')
|
| 2578 | 1 | tkerber | scratch_dirs.append(os.curdir) |
| 2579 | 1 | tkerber | for scratch_dir in scratch_dirs: |
| 2580 | 1 | tkerber | if os.access(scratch_dir, os.W_OK):
|
| 2581 | 1 | tkerber | return scratch_dir
|
| 2582 | 1 | tkerber | raise IOError, "No suitable scratch directory and no write access \ |
| 2583 | 1 | tkerber | to current dir."
|
| 2584 | 1 | tkerber | |
| 2585 | 1 | tkerber | def calculate(self): |
| 2586 | 1 | tkerber | '''run a calculation.
|
| 2587 | 1 | tkerber |
|
| 2588 | 1 | tkerber | you have to be a little careful with code in here. Use the
|
| 2589 | 1 | tkerber | calculation_required function to tell if a calculation is
|
| 2590 | 1 | tkerber | required. It is assumed here that if you call this, you mean
|
| 2591 | 1 | tkerber | it.'''
|
| 2592 | 1 | tkerber | |
| 2593 | 1 | tkerber | #provide a way to make no calculation get run
|
| 2594 | 1 | tkerber | if os.environ.get('DACAPO_DRYRUN', None) is not None: |
| 2595 | 1 | tkerber | raise Exception, '$DACAPO_DRYRUN detected, and a calculation \ |
| 2596 | 1 | tkerber | attempted'
|
| 2597 | 1 | tkerber | |
| 2598 | 1 | tkerber | if not self.ready: |
| 2599 | 1 | tkerber | log.debug('Calculator is not ready.')
|
| 2600 | 1 | tkerber | if not os.path.exists(self.get_nc()): |
| 2601 | 1 | tkerber | self.initnc()
|
| 2602 | 1 | tkerber | |
| 2603 | 1 | tkerber | log.debug('writing atoms out')
|
| 2604 | 1 | tkerber | log.debug(self.atoms)
|
| 2605 | 1 | tkerber | |
| 2606 | 1 | tkerber | self.write_nc() #write atoms to ncfile |
| 2607 | 1 | tkerber | |
| 2608 | 1 | tkerber | log.debug('writing input out')
|
| 2609 | 1 | tkerber | self.write_input() #make sure input is uptodate |
| 2610 | 1 | tkerber | |
| 2611 | 1 | tkerber | |
| 2612 | 1 | tkerber | #check that the bands get set
|
| 2613 | 1 | tkerber | if self.get_nbands() is None: |
| 2614 | 1 | tkerber | nelectrons = self.get_valence()
|
| 2615 | 1 | tkerber | nbands = int(nelectrons * 0.65 + 4) |
| 2616 | 1 | tkerber | self.set_nbands(nbands)
|
| 2617 | 1 | tkerber | |
| 2618 | 1 | tkerber | log.debug('running a calculation')
|
| 2619 | 1 | tkerber | |
| 2620 | 1 | tkerber | nc = self.get_nc()
|
| 2621 | 1 | tkerber | txt = self.get_txt()
|
| 2622 | 1 | tkerber | scratch = self.get_scratch()
|
| 2623 | 1 | tkerber | |
| 2624 | 1 | tkerber | if self.stay_alive: |
| 2625 | 1 | tkerber | self.execute_external_dynamics(nc, txt)
|
| 2626 | 1 | tkerber | self.ready = True |
| 2627 | 1 | tkerber | self.set_status('finished') |
| 2628 | 1 | tkerber | else:
|
| 2629 | 1 | tkerber | cmd = 'dacapo.run %(innc)s -out %(txt)s -scratch %(scratch)s'
|
| 2630 | 1 | tkerber | cmd = cmd % {'innc':nc,
|
| 2631 | 1 | tkerber | 'txt':txt,
|
| 2632 | 1 | tkerber | 'scratch':scratch}
|
| 2633 | 1 | tkerber | |
| 2634 | 1 | tkerber | log.debug(cmd) |
| 2635 | 1 | tkerber | # using subprocess instead of commands subprocess is more
|
| 2636 | 1 | tkerber | # flexible and works better for stay_alive
|
| 2637 | 1 | tkerber | self._dacapo = sp.Popen(cmd,
|
| 2638 | 1 | tkerber | stdout=sp.PIPE, |
| 2639 | 1 | tkerber | stderr=sp.PIPE, |
| 2640 | 1 | tkerber | shell=True)
|
| 2641 | 1 | tkerber | status = self._dacapo.wait()
|
| 2642 | 1 | tkerber | [stdout, stderr] = self._dacapo.communicate()
|
| 2643 | 1 | tkerber | output = stdout+stderr |
| 2644 | 1 | tkerber | |
| 2645 | 1 | tkerber | if status is 0: #that means it ended fine! |
| 2646 | 1 | tkerber | self.ready = True |
| 2647 | 1 | tkerber | self.set_status('finished') |
| 2648 | 1 | tkerber | else:
|
| 2649 | 1 | tkerber | log.debug('Status was not 0')
|
| 2650 | 1 | tkerber | log.debug(output) |
| 2651 | 1 | tkerber | self.ready = False |
| 2652 | 1 | tkerber | # directory cleanup has been moved to self.__del__()
|
| 2653 | 1 | tkerber | del self._dacapo |
| 2654 | 1 | tkerber | |
| 2655 | 1 | tkerber | #Sometimes dacapo dies or is killed abnormally, and in this
|
| 2656 | 1 | tkerber | #case an exception should be raised to prevent a geometry
|
| 2657 | 1 | tkerber | #optimization from continuing for example. The best way to
|
| 2658 | 1 | tkerber | #detect this right now is actually to check the end of the
|
| 2659 | 1 | tkerber | #text file to make sure it ends with the right line. The
|
| 2660 | 1 | tkerber | #line differs if the job was run in parallel or in serial.
|
| 2661 | 1 | tkerber | f = open(txt, 'r') |
| 2662 | 1 | tkerber | lines = f.readlines() |
| 2663 | 1 | tkerber | f.close() |
| 2664 | 1 | tkerber | |
| 2665 | 1 | tkerber | if 'PAR: msexit halting Master' in lines[-1]: |
| 2666 | 1 | tkerber | pass #standard parallel end |
| 2667 | 1 | tkerber | elif ('TIM' in lines[-2] |
| 2668 | 1 | tkerber | and 'clexit: exiting the program' in lines[-1]): |
| 2669 | 1 | tkerber | pass #standard serial end |
| 2670 | 1 | tkerber | else:
|
| 2671 | 1 | tkerber | # text file does not end as expected, print the last
|
| 2672 | 1 | tkerber | # 10 lines and raise exception
|
| 2673 | 1 | tkerber | log.debug(string.join(lines[-10:-1], '')) |
| 2674 | 1 | tkerber | s = 'Dacapo output txtfile (%s) did not end normally.'
|
| 2675 | 1 | tkerber | raise DacapoAbnormalTermination(s % txt)
|
| 2676 | 1 | tkerber | |
| 2677 | 1 | tkerber | def execute_external_dynamics(self, |
| 2678 | 1 | tkerber | nc=None,
|
| 2679 | 1 | tkerber | txt=None,
|
| 2680 | 1 | tkerber | stoppfile='stop',
|
| 2681 | 1 | tkerber | stopprogram=None):
|
| 2682 | 1 | tkerber | '''
|
| 2683 | 1 | tkerber | Implementation of the stay alive functionality with socket
|
| 2684 | 1 | tkerber | communication between dacapo and python. Known limitations:
|
| 2685 | 1 | tkerber | It is not possible to start 2 independent Dacapo calculators
|
| 2686 | 1 | tkerber | from the same python process, since the python PID is used as
|
| 2687 | 1 | tkerber | identifier for the script[PID].py file.
|
| 2688 | 1 | tkerber | '''
|
| 2689 | 1 | tkerber | |
| 2690 | 1 | tkerber | from socket import socket, AF_INET, SOCK_STREAM, timeout |
| 2691 | 1 | tkerber | import tempfile |
| 2692 | 1 | tkerber | |
| 2693 | 1 | tkerber | if hasattr(self, "_dacapo"): |
| 2694 | 1 | tkerber | msg = "Starting External Dynamics while Dacapo is runnning: %s"
|
| 2695 | 1 | tkerber | msg = msg % str(self._dacapo.poll()) |
| 2696 | 1 | tkerber | log.debug(msg) |
| 2697 | 1 | tkerber | else:
|
| 2698 | 1 | tkerber | log.debug("No dacapo instance has been started yet")
|
| 2699 | 1 | tkerber | log.debug("Stopprogram: %s" % stopprogram)
|
| 2700 | 1 | tkerber | |
| 2701 | 1 | tkerber | if not nc: |
| 2702 | 1 | tkerber | nc = self.get_nc()
|
| 2703 | 1 | tkerber | if not txt: |
| 2704 | 1 | tkerber | txt = self.get_txt()
|
| 2705 | 1 | tkerber | tempfile.tempdir = os.curdir |
| 2706 | 1 | tkerber | |
| 2707 | 1 | tkerber | if stopprogram:
|
| 2708 | 1 | tkerber | # write stop file
|
| 2709 | 1 | tkerber | stfile = open(stoppfile, 'w') |
| 2710 | 1 | tkerber | stfile.write('1 \n')
|
| 2711 | 1 | tkerber | stfile.close() |
| 2712 | 1 | tkerber | |
| 2713 | 1 | tkerber | # signal to dacapo that positions are ready
|
| 2714 | 1 | tkerber | # let dacapo continue, it is up to the python mainloop
|
| 2715 | 1 | tkerber | # to allow dacapo enough time to finish properly.
|
| 2716 | 1 | tkerber | self._client.send('ok too proceed') |
| 2717 | 1 | tkerber | |
| 2718 | 1 | tkerber | # Wait for dacapo to acknowledge that netcdf file has
|
| 2719 | 1 | tkerber | # been updated, and analysis part of the code has been
|
| 2720 | 1 | tkerber | # terminated. Dacapo sends a signal at the end of call
|
| 2721 | 1 | tkerber | # clexit().
|
| 2722 | 1 | tkerber | log.info("waiting for dacapo to exit...")
|
| 2723 | 1 | tkerber | self.s.settimeout(1200.0) # if dacapo exits with an |
| 2724 | 1 | tkerber | # error, self.s.accept()
|
| 2725 | 1 | tkerber | # should time out,
|
| 2726 | 1 | tkerber | # but we need to give it
|
| 2727 | 1 | tkerber | # enough time to write the
|
| 2728 | 1 | tkerber | # wave function to the nc
|
| 2729 | 1 | tkerber | # file.
|
| 2730 | 1 | tkerber | try:
|
| 2731 | 1 | tkerber | self._client, self._addr = self.s.accept() # Last |
| 2732 | 1 | tkerber | # mumble
|
| 2733 | 1 | tkerber | # before
|
| 2734 | 1 | tkerber | # Dacapo
|
| 2735 | 1 | tkerber | # dies.
|
| 2736 | 1 | tkerber | os.system("sleep 5") # 5 seconds of silence |
| 2737 | 1 | tkerber | # mourning
|
| 2738 | 1 | tkerber | # dacapo.
|
| 2739 | 1 | tkerber | except timeout:
|
| 2740 | 1 | tkerber | print '''Socket connection timed out.''' |
| 2741 | 1 | tkerber | print '''This usually means Dacapo crashed.''' |
| 2742 | 1 | tkerber | |
| 2743 | 1 | tkerber | # close the socket s
|
| 2744 | 1 | tkerber | self.s.close()
|
| 2745 | 1 | tkerber | self._client.close()
|
| 2746 | 1 | tkerber | |
| 2747 | 1 | tkerber | # remove the script???? file
|
| 2748 | 1 | tkerber | ncfile = netCDF(nc, 'r')
|
| 2749 | 1 | tkerber | vdyn = ncfile.variables['Dynamics']
|
| 2750 | 1 | tkerber | os.system('rm -f '+vdyn.ExternalIonMotion_script)
|
| 2751 | 1 | tkerber | ncfile.close() |
| 2752 | 1 | tkerber | os.system('rm -f '+stoppfile)
|
| 2753 | 1 | tkerber | |
| 2754 | 1 | tkerber | if self._dacapo.poll()==None: # dacapo is still not dead! |
| 2755 | 1 | tkerber | # but this should do it!
|
| 2756 | 1 | tkerber | sp.Popen("kill -9 "+str(self._dacapo.pid), shell=True) |
| 2757 | 1 | tkerber | #if Dacapo dies for example because of too few
|
| 2758 | 1 | tkerber | #bands, subprocess never returns an exitcode.
|
| 2759 | 1 | tkerber | #very strange, but at least the program is
|
| 2760 | 1 | tkerber | #terminated. print self._dacapo.returncode
|
| 2761 | 1 | tkerber | del self._dacapo |
| 2762 | 1 | tkerber | return
|
| 2763 | 1 | tkerber | |
| 2764 | 1 | tkerber | if hasattr(self, '_dacapo') and self._dacapo.poll()==None: |
| 2765 | 1 | tkerber | # returns None if dacapo is running self._dacapo_is_running:
|
| 2766 | 1 | tkerber | |
| 2767 | 1 | tkerber | # calculation_required already updated the positions in
|
| 2768 | 1 | tkerber | # the nc file
|
| 2769 | 1 | tkerber | self._client.send('ok too proceed') |
| 2770 | 1 | tkerber | |
| 2771 | 1 | tkerber | else:
|
| 2772 | 1 | tkerber | |
| 2773 | 1 | tkerber | # get process pid that will be used as communication
|
| 2774 | 1 | tkerber | # channel
|
| 2775 | 1 | tkerber | pid = os.getpid() |
| 2776 | 1 | tkerber | |
| 2777 | 1 | tkerber | # setup communication channel to dacapo
|
| 2778 | 1 | tkerber | from sys import version |
| 2779 | 1 | tkerber | from string import split |
| 2780 | 1 | tkerber | effpid = (pid)%(2**16-1025)+1025 # This translate pid |
| 2781 | 1 | tkerber | # [0;99999] to a number
|
| 2782 | 1 | tkerber | # in [1025;65535] (the
|
| 2783 | 1 | tkerber | # allowed socket
|
| 2784 | 1 | tkerber | # numbers)
|
| 2785 | 1 | tkerber | |
| 2786 | 1 | tkerber | self.s = socket(AF_INET, SOCK_STREAM)
|
| 2787 | 1 | tkerber | foundafreesocket = 0
|
| 2788 | 1 | tkerber | while not foundafreesocket: |
| 2789 | 1 | tkerber | try:
|
| 2790 | 1 | tkerber | if split(version)[0] > "2": # new interface |
| 2791 | 1 | tkerber | self.s.bind(("", effpid)) |
| 2792 | 1 | tkerber | else: # old interface |
| 2793 | 1 | tkerber | self.s.bind("", effpid) |
| 2794 | 1 | tkerber | foundafreesocket = 1
|
| 2795 | 1 | tkerber | except:
|
| 2796 | 1 | tkerber | effpid = effpid + 1
|
| 2797 | 1 | tkerber | |
| 2798 | 1 | tkerber | # write script file that will be used by dacapo
|
| 2799 | 1 | tkerber | scriptname = 'script%s.py' % str(pid) |
| 2800 | 1 | tkerber | scriptfile = open(scriptname, 'w') |
| 2801 | 1 | tkerber | scriptfile.write( |
| 2802 | 1 | tkerber | """#!/usr/bin/env python
|
| 2803 | 1 | tkerber | from socket import *
|
| 2804 | 1 | tkerber | from sys import version
|
| 2805 | 1 | tkerber | from string import split
|
| 2806 | 1 | tkerber | s = socket(AF_INET,SOCK_STREAM)
|
| 2807 | 1 | tkerber | # tell python that dacapo has finished
|
| 2808 | 1 | tkerber | if split(version)[0] > "2": # new interface
|
| 2809 | 1 | tkerber | s.connect(("",%(effpid)s))
|
| 2810 | 1 | tkerber | else: # old interface
|
| 2811 | 1 | tkerber | s.connect("",%(effpid)s)
|
| 2812 | 1 | tkerber | # wait for python main loop
|
| 2813 | 1 | tkerber | s.recv(14)
|
| 2814 | 1 | tkerber | """ % {'effpid':str(effpid)}) |
| 2815 | 1 | tkerber | scriptfile.close() |
| 2816 | 1 | tkerber | os.system('chmod +x ' + scriptname)
|
| 2817 | 1 | tkerber | |
| 2818 | 1 | tkerber | # setup dynamics as external and set the script name
|
| 2819 | 1 | tkerber | ncfile = netCDF(nc, 'a')
|
| 2820 | 1 | tkerber | if 'Dynamics' not in ncfile.variables: |
| 2821 | 1 | tkerber | vdyn = ncfile.createVariable('Dynamics', 'c', ()) |
| 2822 | 1 | tkerber | else:
|
| 2823 | 1 | tkerber | vdyn = ncfile.variables['Dynamics']
|
| 2824 | 1 | tkerber | vdyn.Type = "ExternalIonMotion"
|
| 2825 | 1 | tkerber | vdyn.ExternalIonMotion_script = './'+ scriptname
|
| 2826 | 1 | tkerber | ncfile.close() |
| 2827 | 1 | tkerber | |
| 2828 | 1 | tkerber | # dacapo is not running start dacapo non blocking
|
| 2829 | 1 | tkerber | scratch_in_nc = tempfile.mktemp() |
| 2830 | 1 | tkerber | os.system('mv '+nc+' '+scratch_in_nc) |
| 2831 | 1 | tkerber | os.system('rm -f '+stoppfile)
|
| 2832 | 1 | tkerber | scratch = self.get_scratch()
|
| 2833 | 1 | tkerber | cmd = 'dacapo.run'
|
| 2834 | 1 | tkerber | cmd += ' %(innc)s %(outnc)s -out %(txt)s -scratch %(scratch)s'
|
| 2835 | 1 | tkerber | cmd = cmd % {'innc':scratch_in_nc,
|
| 2836 | 1 | tkerber | 'outnc':nc,
|
| 2837 | 1 | tkerber | 'txt':txt,
|
| 2838 | 1 | tkerber | 'scratch':scratch}
|
| 2839 | 1 | tkerber | |
| 2840 | 1 | tkerber | log.debug(cmd) |
| 2841 | 1 | tkerber | self._dacapo = sp.Popen(cmd,
|
| 2842 | 1 | tkerber | stdout=sp.PIPE, |
| 2843 | 1 | tkerber | stderr=sp.PIPE, |
| 2844 | 1 | tkerber | shell=True)
|
| 2845 | 1 | tkerber | |
| 2846 | 1 | tkerber | self.s.listen(1) |
| 2847 | 1 | tkerber | |
| 2848 | 1 | tkerber | # wait for dacapo
|
| 2849 | 1 | tkerber | self._client, self._addr = self.s.accept() |
| 2850 | 1 | tkerber | |
| 2851 | 1 | tkerber | def write_nc(self, nc=None, atoms=None): |
| 2852 | 1 | tkerber | '''
|
| 2853 | 1 | tkerber | write out atoms to a netcdffile.
|
| 2854 | 1 | tkerber |
|
| 2855 | 1 | tkerber | This does not write out the calculation parameters!
|
| 2856 | 1 | tkerber |
|
| 2857 | 1 | tkerber | :Parameters:
|
| 2858 | 1 | tkerber |
|
| 2859 | 1 | tkerber | nc : string
|
| 2860 | 1 | tkerber | ncfilename to write to. this file will get clobbered
|
| 2861 | 1 | tkerber | if it already exists.
|
| 2862 | 1 | tkerber |
|
| 2863 | 1 | tkerber | atoms : ASE.Atoms
|
| 2864 | 1 | tkerber | atoms to write. if None use the attached atoms
|
| 2865 | 1 | tkerber | if no atoms are attached only the calculator is
|
| 2866 | 1 | tkerber | written out.
|
| 2867 | 1 | tkerber |
|
| 2868 | 1 | tkerber | the ncfile is always opened in 'a' mode.
|
| 2869 | 1 | tkerber |
|
| 2870 | 1 | tkerber | note: it is good practice to use the atoms argument to make
|
| 2871 | 1 | tkerber | sure that the geometry you mean gets written! Otherwise, the
|
| 2872 | 1 | tkerber | atoms in the calculator is used, which may be different than
|
| 2873 | 1 | tkerber | the external copy of the atoms.
|
| 2874 | 1 | tkerber |
|
| 2875 | 1 | tkerber | '''
|
| 2876 | 1 | tkerber | |
| 2877 | 1 | tkerber | log.debug('writing atoms to ncfile')
|
| 2878 | 1 | tkerber | #no filename was provided to function, use the current ncfile
|
| 2879 | 1 | tkerber | if nc is None: |
| 2880 | 1 | tkerber | nc = self.get_nc()
|
| 2881 | 1 | tkerber | |
| 2882 | 1 | tkerber | if nc != self.nc: |
| 2883 | 1 | tkerber | #this means we are writing a new file, and we should copy
|
| 2884 | 1 | tkerber | #the old file to it first. this makes sure the old
|
| 2885 | 1 | tkerber | #calculator settings are preserved
|
| 2886 | 1 | tkerber | new = nc |
| 2887 | 1 | tkerber | old = self.nc
|
| 2888 | 1 | tkerber | log.debug('Copying old ncfile to new ncfile')
|
| 2889 | 1 | tkerber | log.debug('cp %s %s' % (old, new))
|
| 2890 | 1 | tkerber | os.system('cp %s %s' % (old, new))
|
| 2891 | 1 | tkerber | |
| 2892 | 1 | tkerber | if atoms is None: |
| 2893 | 1 | tkerber | atoms = self.get_atoms()
|
| 2894 | 1 | tkerber | |
| 2895 | 1 | tkerber | log.debug('self.atoms = %s' % str(self.atoms)) |
| 2896 | 1 | tkerber | log.debug('atoms = %s' % str(atoms)) |
| 2897 | 1 | tkerber | |
| 2898 | 1 | tkerber | if atoms is not None: #there may still be no atoms attached |
| 2899 | 1 | tkerber | log.debug('about to write to %s' % nc)
|
| 2900 | 1 | tkerber | ncf = netCDF(nc, 'a')
|
| 2901 | 1 | tkerber | |
| 2902 | 1 | tkerber | if 'number_of_dynamic_atoms' not in ncf.dimensions: |
| 2903 | 1 | tkerber | ncf.createDimension('number_of_dynamic_atoms',
|
| 2904 | 1 | tkerber | len(atoms))
|
| 2905 | 1 | tkerber | else:
|
| 2906 | 1 | tkerber | # number of atoms is already a dimension, but we might
|
| 2907 | 1 | tkerber | # be setting new atoms here
|
| 2908 | 1 | tkerber | # check for same atom symbols (implicitly includes
|
| 2909 | 1 | tkerber | # a length check)
|
| 2910 | 1 | tkerber | symbols = np.array(['%2s' % s for s in |
| 2911 | 1 | tkerber | atoms.get_chemical_symbols()], dtype='c')
|
| 2912 | 1 | tkerber | ncsym = ncf.variables['DynamicAtomSpecies'][:]
|
| 2913 | 1 | tkerber | if (symbols.size != ncsym.size) or (np.any(ncsym != symbols)): |
| 2914 | 1 | tkerber | # the number of atoms or their order has changed.
|
| 2915 | 1 | tkerber | # Treat this as a new calculation and reset
|
| 2916 | 1 | tkerber | # number_of_ionic_steps and
|
| 2917 | 1 | tkerber | # number_of_dynamic_atoms.
|
| 2918 | 1 | tkerber | ncf.close() #nc file must be closed for
|
| 2919 | 1 | tkerber | #delete_ncattdimvar to work correctly
|
| 2920 | 1 | tkerber | self.delete_ncattdimvar(nc, ncattrs=[],
|
| 2921 | 1 | tkerber | ncdims=['number_of_dynamic_atoms',
|
| 2922 | 1 | tkerber | 'number_ionic_steps'])
|
| 2923 | 1 | tkerber | ncf = netCDF(nc, 'a')
|
| 2924 | 1 | tkerber | ncf.createDimension('number_of_dynamic_atoms',
|
| 2925 | 1 | tkerber | len(atoms))
|
| 2926 | 1 | tkerber | ncf.createDimension('number_ionic_steps', None) |
| 2927 | 1 | tkerber | self._set_frame_number(0) |
| 2928 | 1 | tkerber | ncf.close() #nc file must be closed for restart to
|
| 2929 | 1 | tkerber | #work correctly
|
| 2930 | 1 | tkerber | self.restart()
|
| 2931 | 1 | tkerber | ncf = netCDF(nc, 'a')
|
| 2932 | 1 | tkerber | |
| 2933 | 1 | tkerber | #now, create variables
|
| 2934 | 1 | tkerber | if 'DynamicAtomSpecies' not in ncf.variables: |
| 2935 | 1 | tkerber | sym = ncf.createVariable('DynamicAtomSpecies',
|
| 2936 | 1 | tkerber | 'c',
|
| 2937 | 1 | tkerber | ('number_of_dynamic_atoms',
|
| 2938 | 1 | tkerber | 'dim2',))
|
| 2939 | 1 | tkerber | else:
|
| 2940 | 1 | tkerber | sym = ncf.variables['DynamicAtomSpecies']
|
| 2941 | 1 | tkerber | |
| 2942 | 1 | tkerber | #note explicit array casting was required here
|
| 2943 | 1 | tkerber | symbols = atoms.get_chemical_symbols() |
| 2944 | 1 | tkerber | sym[:] = np.array(['%2s' % s for s in symbols], dtype='c') |
| 2945 | 1 | tkerber | |
| 2946 | 1 | tkerber | if 'DynamicAtomPositions' not in ncf.variables: |
| 2947 | 1 | tkerber | pos = ncf.createVariable('DynamicAtomPositions',
|
| 2948 | 1 | tkerber | 'd',
|
| 2949 | 1 | tkerber | ('number_ionic_steps',
|
| 2950 | 1 | tkerber | 'number_of_dynamic_atoms',
|
| 2951 | 1 | tkerber | 'dim3'))
|
| 2952 | 1 | tkerber | else:
|
| 2953 | 1 | tkerber | pos = ncf.variables['DynamicAtomPositions']
|
| 2954 | 1 | tkerber | |
| 2955 | 1 | tkerber | spos = atoms.get_scaled_positions() |
| 2956 | 1 | tkerber | if pos.typecode() == 'f': |
| 2957 | 1 | tkerber | spos = np.array(spos, dtype=np.float32) |
| 2958 | 1 | tkerber | pos[self._frame, :] = spos
|
| 2959 | 1 | tkerber | |
| 2960 | 1 | tkerber | if 'UnitCell' not in ncf.variables: |
| 2961 | 1 | tkerber | uc = ncf.createVariable('UnitCell', 'd', |
| 2962 | 1 | tkerber | ('number_ionic_steps',
|
| 2963 | 1 | tkerber | 'dim3', 'dim3')) |
| 2964 | 1 | tkerber | else:
|
| 2965 | 1 | tkerber | uc = ncf.variables['UnitCell']
|
| 2966 | 1 | tkerber | |
| 2967 | 1 | tkerber | cell = atoms.get_cell() |
| 2968 | 1 | tkerber | if uc.typecode() == 'f': |
| 2969 | 1 | tkerber | cell = np.array(cell, dtype=np.float32) |
| 2970 | 1 | tkerber | |
| 2971 | 1 | tkerber | uc[self._frame, :] = cell
|
| 2972 | 1 | tkerber | |
| 2973 | 1 | tkerber | if 'AtomTags' not in ncf.variables: |
| 2974 | 1 | tkerber | tags = ncf.createVariable('AtomTags', 'i', |
| 2975 | 1 | tkerber | ('number_of_dynamic_atoms',))
|
| 2976 | 1 | tkerber | else:
|
| 2977 | 1 | tkerber | tags = ncf.variables['AtomTags']
|
| 2978 | 1 | tkerber | |
| 2979 | 1 | tkerber | tags[:] = np.array(atoms.get_tags(), np.int32) |
| 2980 | 1 | tkerber | |
| 2981 | 1 | tkerber | if 'InitialAtomicMagneticMoment' not in ncf.variables: |
| 2982 | 1 | tkerber | mom = ncf.createVariable('InitialAtomicMagneticMoment',
|
| 2983 | 1 | tkerber | 'd',
|
| 2984 | 1 | tkerber | ('number_of_dynamic_atoms',))
|
| 2985 | 1 | tkerber | else:
|
| 2986 | 1 | tkerber | mom = ncf.variables['InitialAtomicMagneticMoment']
|
| 2987 | 1 | tkerber | |
| 2988 | 1 | tkerber | #explain why we have to use get_initial_magnetic_moments()
|
| 2989 | 1 | tkerber | moms = atoms.get_initial_magnetic_moments() |
| 2990 | 1 | tkerber | if mom.typecode() == 'f': |
| 2991 | 1 | tkerber | moms = np.array(moms, dtype=np.float32) |
| 2992 | 1 | tkerber | mom[:] = moms |
| 2993 | 1 | tkerber | |
| 2994 | 1 | tkerber | #finally the atom pseudopotentials
|
| 2995 | 1 | tkerber | for sym in atoms.get_chemical_symbols(): |
| 2996 | 1 | tkerber | vn = 'AtomProperty_%s' % sym
|
| 2997 | 1 | tkerber | if vn not in ncf.variables: |
| 2998 | 1 | tkerber | p = ncf.createVariable(vn, 'c', ('dim20',)) |
| 2999 | 1 | tkerber | else:
|
| 3000 | 1 | tkerber | p = ncf.variables[vn] |
| 3001 | 1 | tkerber | |
| 3002 | 1 | tkerber | ppath = self.get_psp(sym=sym)
|
| 3003 | 1 | tkerber | p.PspotFile = ppath |
| 3004 | 1 | tkerber | |
| 3005 | 1 | tkerber | ncf.sync() |
| 3006 | 1 | tkerber | ncf.close() |
| 3007 | 1 | tkerber | |
| 3008 | 1 | tkerber | #store constraints if they exist
|
| 3009 | 1 | tkerber | constraints = atoms._get_constraints() |
| 3010 | 1 | tkerber | if constraints != []:
|
| 3011 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 3012 | 1 | tkerber | if 'constraints' not in nc.variables: |
| 3013 | 1 | tkerber | if 'dim1' not in nc.dimensions: |
| 3014 | 1 | tkerber | nc.createDimension('dim1', 1) |
| 3015 | 1 | tkerber | c = nc.createVariable('constraints', 'c', ('dim1',)) |
| 3016 | 1 | tkerber | else:
|
| 3017 | 1 | tkerber | c = nc.variables['constraints']
|
| 3018 | 1 | tkerber | #we store the pickle string as an attribute of a
|
| 3019 | 1 | tkerber | #netcdf variable because that way we do not have to
|
| 3020 | 1 | tkerber | #know how long the string is. with a character
|
| 3021 | 1 | tkerber | #variable you have to specify the dimension of the
|
| 3022 | 1 | tkerber | #string ahead of time.
|
| 3023 | 1 | tkerber | c.data = pickle.dumps(constraints) |
| 3024 | 1 | tkerber | nc.close() |
| 3025 | 1 | tkerber | else:
|
| 3026 | 1 | tkerber | # getting here means there where no constraints on the
|
| 3027 | 1 | tkerber | # atoms just written we should check if there are any
|
| 3028 | 1 | tkerber | # old constraints left in the ncfile
|
| 3029 | 1 | tkerber | # from a previous atoms, and delete them if so
|
| 3030 | 1 | tkerber | delete_constraints = False
|
| 3031 | 1 | tkerber | nc = netCDF(self.get_nc())
|
| 3032 | 1 | tkerber | if 'constraints' in nc.variables: |
| 3033 | 1 | tkerber | delete_constraints = True
|
| 3034 | 1 | tkerber | nc.close() |
| 3035 | 1 | tkerber | |
| 3036 | 1 | tkerber | if delete_constraints:
|
| 3037 | 1 | tkerber | log.debug('deleting old constraints')
|
| 3038 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 3039 | 1 | tkerber | ncvars=['constraints'])
|
| 3040 | 1 | tkerber | |
| 3041 | 1 | tkerber | def read_atoms(filename): |
| 3042 | 1 | tkerber | '''read atoms and calculator from an existing netcdf file.
|
| 3043 | 1 | tkerber |
|
| 3044 | 1 | tkerber | :Parameters:
|
| 3045 | 1 | tkerber |
|
| 3046 | 1 | tkerber | filename : string
|
| 3047 | 1 | tkerber | name of file to read from.
|
| 3048 | 1 | tkerber |
|
| 3049 | 1 | tkerber | static method
|
| 3050 | 1 | tkerber |
|
| 3051 | 1 | tkerber | example::
|
| 3052 | 1 | tkerber |
|
| 3053 | 1 | tkerber | >>> atoms = Jacapo.read_atoms(ncfile)
|
| 3054 | 1 | tkerber | >>> calc = atoms.get_calculator()
|
| 3055 | 1 | tkerber |
|
| 3056 | 1 | tkerber | this method is here for legacy purposes. I used to use it alot.
|
| 3057 | 1 | tkerber | '''
|
| 3058 | 1 | tkerber | |
| 3059 | 1 | tkerber | calc = Jacapo(filename) |
| 3060 | 1 | tkerber | atoms = calc.get_atoms() |
| 3061 | 1 | tkerber | return atoms
|
| 3062 | 1 | tkerber | |
| 3063 | 1 | tkerber | read_atoms = staticmethod(read_atoms)
|
| 3064 | 1 | tkerber | |
| 3065 | 1 | tkerber | def read_only_atoms(self, ncfile): |
| 3066 | 1 | tkerber | '''read only the atoms from an existing netcdf file. Used to
|
| 3067 | 1 | tkerber | initialize a calculator from a ncfilename.
|
| 3068 | 1 | tkerber |
|
| 3069 | 1 | tkerber | :Parameters:
|
| 3070 | 1 | tkerber |
|
| 3071 | 1 | tkerber | ncfile : string
|
| 3072 | 1 | tkerber | name of file to read from.
|
| 3073 | 1 | tkerber |
|
| 3074 | 1 | tkerber | return ASE.Atoms with no calculator attached or None if no
|
| 3075 | 1 | tkerber | atoms found
|
| 3076 | 1 | tkerber | '''
|
| 3077 | 1 | tkerber | |
| 3078 | 1 | tkerber | from ase import Atoms |
| 3079 | 1 | tkerber | |
| 3080 | 1 | tkerber | nc = netCDF(ncfile, 'r')
|
| 3081 | 1 | tkerber | #some ncfiles do not have atoms in them
|
| 3082 | 1 | tkerber | if 'UnitCell' not in nc.variables: |
| 3083 | 1 | tkerber | log.debug('no unit cell found in ncfile')
|
| 3084 | 1 | tkerber | nc.close() |
| 3085 | 1 | tkerber | return None |
| 3086 | 1 | tkerber | |
| 3087 | 1 | tkerber | cell = nc.variables['UnitCell'][:][-1] |
| 3088 | 1 | tkerber | sym = nc.variables['DynamicAtomSpecies'][:]
|
| 3089 | 1 | tkerber | symbols = [x.tostring().strip() for x in sym] |
| 3090 | 1 | tkerber | spos = nc.variables['DynamicAtomPositions'][:][-1] |
| 3091 | 1 | tkerber | |
| 3092 | 1 | tkerber | pos = np.dot(spos, cell) |
| 3093 | 1 | tkerber | |
| 3094 | 1 | tkerber | atoms = Atoms(symbols=symbols, |
| 3095 | 1 | tkerber | positions=pos, |
| 3096 | 1 | tkerber | cell=cell) |
| 3097 | 1 | tkerber | |
| 3098 | 1 | tkerber | if 'AtomTags' in nc.variables: |
| 3099 | 1 | tkerber | tags = nc.variables['AtomTags'][:]
|
| 3100 | 1 | tkerber | atoms.set_tags(tags) |
| 3101 | 1 | tkerber | |
| 3102 | 1 | tkerber | if 'InitialAtomicMagneticMoment' in nc.variables: |
| 3103 | 1 | tkerber | mom = nc.variables['InitialAtomicMagneticMoment'][:]
|
| 3104 | 1 | tkerber | atoms.set_initial_magnetic_moments(mom) |
| 3105 | 1 | tkerber | |
| 3106 | 1 | tkerber | #update psp database
|
| 3107 | 1 | tkerber | for sym in symbols: |
| 3108 | 1 | tkerber | vn = 'AtomProperty_%s' % sym
|
| 3109 | 1 | tkerber | if vn in nc.variables: |
| 3110 | 1 | tkerber | var = nc.variables[vn] |
| 3111 | 1 | tkerber | pspfile = var.PspotFile |
| 3112 | 1 | tkerber | self.psp[sym] = pspfile
|
| 3113 | 1 | tkerber | |
| 3114 | 1 | tkerber | #get constraints if they exist
|
| 3115 | 1 | tkerber | c = nc.variables.get('constraints', None) |
| 3116 | 1 | tkerber | if c is not None: |
| 3117 | 1 | tkerber | constraints = pickle.loads(c.data) |
| 3118 | 1 | tkerber | atoms.set_constraint(constraints) |
| 3119 | 1 | tkerber | |
| 3120 | 1 | tkerber | nc.close() |
| 3121 | 1 | tkerber | |
| 3122 | 1 | tkerber | return atoms
|
| 3123 | 1 | tkerber | |
| 3124 | 1 | tkerber | def delete_ncattdimvar(self, ncf, ncattrs=None, ncdims=None, ncvars=None): |
| 3125 | 1 | tkerber | '''
|
| 3126 | 1 | tkerber | helper function to delete attributes,
|
| 3127 | 1 | tkerber | dimensions and variables in a netcdffile
|
| 3128 | 1 | tkerber |
|
| 3129 | 1 | tkerber | this functionality is not implemented for some reason in
|
| 3130 | 1 | tkerber | netcdf, so the only way to do this is to copy all the
|
| 3131 | 1 | tkerber | attributes, dimensions, and variables to a new file, excluding
|
| 3132 | 1 | tkerber | the ones you want to delete and then rename the new file.
|
| 3133 | 1 | tkerber |
|
| 3134 | 1 | tkerber | if you delete a dimension, all variables with that dimension
|
| 3135 | 1 | tkerber | are also deleted.
|
| 3136 | 1 | tkerber | '''
|
| 3137 | 1 | tkerber | |
| 3138 | 1 | tkerber | if ncattrs is None: |
| 3139 | 1 | tkerber | ncattrs = [] |
| 3140 | 1 | tkerber | if ncdims is None: |
| 3141 | 1 | tkerber | ncdims = [] |
| 3142 | 1 | tkerber | if ncvars is None: |
| 3143 | 1 | tkerber | ncvars = [] |
| 3144 | 1 | tkerber | |
| 3145 | 1 | tkerber | log.debug('beginning: going to delete dims: %s' % str(ncdims)) |
| 3146 | 1 | tkerber | log.debug('beginning: going to delete vars: %s' % str(ncvars)) |
| 3147 | 1 | tkerber | |
| 3148 | 1 | tkerber | oldnc = netCDF(ncf, 'r')
|
| 3149 | 1 | tkerber | |
| 3150 | 1 | tkerber | #h,tempnc = tempfile.mkstemp(dir='.',suffix='.nc')
|
| 3151 | 1 | tkerber | tempnc = ncf+'.temp'
|
| 3152 | 1 | tkerber | |
| 3153 | 1 | tkerber | newnc = netCDF(tempnc, 'w')
|
| 3154 | 1 | tkerber | |
| 3155 | 1 | tkerber | for attr in dir(oldnc): |
| 3156 | 1 | tkerber | if attr in ['close', 'createDimension', |
| 3157 | 1 | tkerber | 'createVariable', 'flush', 'sync']: |
| 3158 | 1 | tkerber | continue
|
| 3159 | 1 | tkerber | if attr in ncattrs: |
| 3160 | 1 | tkerber | continue #do not copy this attribute |
| 3161 | 1 | tkerber | setattr(newnc, attr, getattr(oldnc, attr)) |
| 3162 | 1 | tkerber | |
| 3163 | 1 | tkerber | #copy dimensions
|
| 3164 | 1 | tkerber | for dim in oldnc.dimensions: |
| 3165 | 1 | tkerber | if dim in ncdims: |
| 3166 | 1 | tkerber | log.debug('deleting %s of %s' % (dim, str(ncdims))) |
| 3167 | 1 | tkerber | continue #do not copy this dimension |
| 3168 | 1 | tkerber | size = oldnc.dimensions[dim] |
| 3169 | 1 | tkerber | |
| 3170 | 1 | tkerber | newnc.createDimension(dim, size) |
| 3171 | 1 | tkerber | |
| 3172 | 1 | tkerber | # we need to delete all variables that depended on a deleted dimension
|
| 3173 | 1 | tkerber | for v in oldnc.variables: |
| 3174 | 1 | tkerber | dims1 = oldnc.variables[v].dimensions |
| 3175 | 1 | tkerber | for dim in ncdims: |
| 3176 | 1 | tkerber | if dim in dims1: |
| 3177 | 1 | tkerber | s = 'deleting "%s" because it depends on dim "%s"'
|
| 3178 | 1 | tkerber | log.debug(s %(v, dim)) |
| 3179 | 1 | tkerber | ncvars.append(v) |
| 3180 | 1 | tkerber | |
| 3181 | 1 | tkerber | #copy variables, except the ones to delete
|
| 3182 | 1 | tkerber | for v in oldnc.variables: |
| 3183 | 1 | tkerber | if v in ncvars: |
| 3184 | 1 | tkerber | log.debug('vars to delete: %s ' % ncvars)
|
| 3185 | 1 | tkerber | log.debug('deleting ncvar: %s' % v)
|
| 3186 | 1 | tkerber | continue #we do not copy this v over |
| 3187 | 1 | tkerber | |
| 3188 | 1 | tkerber | ncvar = oldnc.variables[v] |
| 3189 | 1 | tkerber | tcode = ncvar.typecode() |
| 3190 | 1 | tkerber | #char typecodes do not come out right apparently
|
| 3191 | 1 | tkerber | if tcode == " ": |
| 3192 | 1 | tkerber | tcode = 'c'
|
| 3193 | 1 | tkerber | |
| 3194 | 1 | tkerber | ncvar2 = newnc.createVariable(v, tcode, ncvar.dimensions) |
| 3195 | 1 | tkerber | try:
|
| 3196 | 1 | tkerber | ncvar2[:] = ncvar[:] |
| 3197 | 1 | tkerber | except TypeError: |
| 3198 | 1 | tkerber | #this exception occurs for scalar variables
|
| 3199 | 1 | tkerber | #use getValue and assignValue instead
|
| 3200 | 1 | tkerber | ncvar2.assignValue(ncvar.getValue()) |
| 3201 | 1 | tkerber | |
| 3202 | 1 | tkerber | #and variable attributes
|
| 3203 | 1 | tkerber | #print dir(ncvar)
|
| 3204 | 1 | tkerber | for att in dir(ncvar): |
| 3205 | 1 | tkerber | if att in ['assignValue', 'getValue', 'typecode']: |
| 3206 | 1 | tkerber | continue
|
| 3207 | 1 | tkerber | setattr(ncvar2, att, getattr(ncvar, att)) |
| 3208 | 1 | tkerber | |
| 3209 | 1 | tkerber | oldnc.close() |
| 3210 | 1 | tkerber | newnc.close() |
| 3211 | 1 | tkerber | |
| 3212 | 1 | tkerber | s = 'looking for .nfs files before copying: %s'
|
| 3213 | 1 | tkerber | log.debug(s % glob.glob('.nfs*'))
|
| 3214 | 1 | tkerber | |
| 3215 | 1 | tkerber | #ack!!! this makes .nfsxxx files!!!
|
| 3216 | 1 | tkerber | #os.close(h) #this avoids the stupid .nfsxxx file
|
| 3217 | 1 | tkerber | #import shutil
|
| 3218 | 1 | tkerber | #shutil.move(tempnc,ncf)
|
| 3219 | 1 | tkerber | |
| 3220 | 1 | tkerber | #this seems to avoid making the .nfs files
|
| 3221 | 1 | tkerber | os.system('cp %s %s' % (tempnc, ncf))
|
| 3222 | 1 | tkerber | os.system('rm %s' % tempnc)
|
| 3223 | 1 | tkerber | |
| 3224 | 1 | tkerber | s = 'looking for .nfs files after copying: %s'
|
| 3225 | 1 | tkerber | log.debug(s % glob.glob('.nfs*'))
|
| 3226 | 1 | tkerber | |
| 3227 | 1 | tkerber | def restart(self): |
| 3228 | 1 | tkerber | '''
|
| 3229 | 1 | tkerber | Restart the calculator by deleting nc dimensions that will
|
| 3230 | 1 | tkerber | be rewritten on the next calculation. This is sometimes required
|
| 3231 | 1 | tkerber | when certain dimensions change related to unitcell size changes
|
| 3232 | 1 | tkerber | planewave/densitywave cutoffs and kpt changes. These can cause
|
| 3233 | 1 | tkerber | fortran netcdf errors if the data does not match the pre-defined
|
| 3234 | 1 | tkerber | dimension sizes.
|
| 3235 | 1 | tkerber |
|
| 3236 | 1 | tkerber | also delete all the output from previous calculation.
|
| 3237 | 1 | tkerber | '''
|
| 3238 | 1 | tkerber | |
| 3239 | 1 | tkerber | log.debug('restarting!')
|
| 3240 | 1 | tkerber | |
| 3241 | 1 | tkerber | ncdims = ['number_plane_waves',
|
| 3242 | 1 | tkerber | 'number_IBZ_kpoints',
|
| 3243 | 1 | tkerber | 'softgrid_dim1',
|
| 3244 | 1 | tkerber | 'softgrid_dim2',
|
| 3245 | 1 | tkerber | 'softgrid_dim3',
|
| 3246 | 1 | tkerber | 'hardgrid_dim1',
|
| 3247 | 1 | tkerber | 'hardgrid_dim2',
|
| 3248 | 1 | tkerber | 'hardgrid_dim3',
|
| 3249 | 1 | tkerber | 'max_projectors_per_atom',
|
| 3250 | 1 | tkerber | 'atomdos_energygrid_size',
|
| 3251 | 1 | tkerber | 'atomdos_angular_channels',
|
| 3252 | 1 | tkerber | 'atomdos_radial_orbs']
|
| 3253 | 1 | tkerber | |
| 3254 | 1 | tkerber | ncvars = ['TotalEnergy',
|
| 3255 | 1 | tkerber | 'TotalFreeEnergy',
|
| 3256 | 1 | tkerber | 'EvaluateTotalEnergy',
|
| 3257 | 1 | tkerber | 'DynamicAtomForces',
|
| 3258 | 1 | tkerber | 'FermiLevel',
|
| 3259 | 1 | tkerber | 'EnsembleXCEnergies',
|
| 3260 | 1 | tkerber | 'AtomProjectedDOS_IntegratedDOS',
|
| 3261 | 1 | tkerber | 'AtomProjectedDOS_OrdinalMap',
|
| 3262 | 1 | tkerber | 'NumberPlaneWavesKpoint',
|
| 3263 | 1 | tkerber | 'AtomProjectedDOS_EnergyResolvedDOS',
|
| 3264 | 1 | tkerber | 'AtomProjectedDOS_EnergyGrid',
|
| 3265 | 1 | tkerber | 'EvaluateCorrelationEnergy',
|
| 3266 | 1 | tkerber | 'DynamicAtomVelocities',
|
| 3267 | 1 | tkerber | 'KpointWeight',
|
| 3268 | 1 | tkerber | 'EvaluateExchangeEnergy',
|
| 3269 | 1 | tkerber | 'EffectivePotential',
|
| 3270 | 1 | tkerber | 'TotalStress',
|
| 3271 | 1 | tkerber | 'ChargeDensity',
|
| 3272 | 1 | tkerber | 'WaveFunction',
|
| 3273 | 1 | tkerber | 'WaveFunctionFFTindex',
|
| 3274 | 1 | tkerber | 'NumberOfNLProjectors',
|
| 3275 | 1 | tkerber | 'NLProjectorPsi',
|
| 3276 | 1 | tkerber | 'TypeNLProjector1',
|
| 3277 | 1 | tkerber | 'NumberofNLProjectors',
|
| 3278 | 1 | tkerber | 'PartialCoreDensity',
|
| 3279 | 1 | tkerber | 'ChargeDensity',
|
| 3280 | 1 | tkerber | 'ElectrostaticPotential',
|
| 3281 | 1 | tkerber | 'StructureFactor',
|
| 3282 | 1 | tkerber | 'EigenValues',
|
| 3283 | 1 | tkerber | 'OccupationNumbers']
|
| 3284 | 1 | tkerber | |
| 3285 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 3286 | 1 | tkerber | ncattrs=[], |
| 3287 | 1 | tkerber | ncdims=ncdims, |
| 3288 | 1 | tkerber | ncvars=ncvars) |
| 3289 | 1 | tkerber | |
| 3290 | 1 | tkerber | self.set_status('new') |
| 3291 | 1 | tkerber | self.ready = False |
| 3292 | 1 | tkerber | |
| 3293 | 1 | tkerber | def get_convergence(self): |
| 3294 | 1 | tkerber | 'return convergence settings for Dacapo'
|
| 3295 | 1 | tkerber | |
| 3296 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3297 | 1 | tkerber | vname = 'ConvergenceControl'
|
| 3298 | 1 | tkerber | if vname in nc.variables: |
| 3299 | 1 | tkerber | v = nc.variables[vname] |
| 3300 | 1 | tkerber | convergence = {}
|
| 3301 | 1 | tkerber | if hasattr(v, 'AbsoluteEnergyConvergence'): |
| 3302 | 1 | tkerber | convergence['energy'] = v.AbsoluteEnergyConvergence[0] |
| 3303 | 1 | tkerber | if hasattr(v, 'DensityConvergence'): |
| 3304 | 1 | tkerber | convergence['density'] = v.DensityConvergence[0] |
| 3305 | 1 | tkerber | if hasattr(v, 'OccupationConvergence'): |
| 3306 | 1 | tkerber | convergence['occupation'] = v.OccupationConvergence[0] |
| 3307 | 1 | tkerber | if hasattr(v, 'MaxNumberOfSteps'): |
| 3308 | 1 | tkerber | convergence['maxsteps'] = v.MaxNumberOfSteps[0] |
| 3309 | 1 | tkerber | if hasattr(v, 'CPUTimeLimit'): |
| 3310 | 1 | tkerber | convergence['cputime'] = v.CPUTimeLimit[0] |
| 3311 | 1 | tkerber | else:
|
| 3312 | 1 | tkerber | convergence = None
|
| 3313 | 1 | tkerber | |
| 3314 | 1 | tkerber | nc.close() |
| 3315 | 1 | tkerber | return convergence
|
| 3316 | 1 | tkerber | |
| 3317 | 1 | tkerber | def set_convergence(self, |
| 3318 | 1 | tkerber | energy=0.00001,
|
| 3319 | 1 | tkerber | density=0.0001,
|
| 3320 | 1 | tkerber | occupation=0.001,
|
| 3321 | 1 | tkerber | maxsteps=None,
|
| 3322 | 1 | tkerber | maxtime=None
|
| 3323 | 1 | tkerber | ): |
| 3324 | 1 | tkerber | '''set convergence criteria for stopping the dacapo calculator.
|
| 3325 | 1 | tkerber |
|
| 3326 | 1 | tkerber | :Parameters:
|
| 3327 | 1 | tkerber |
|
| 3328 | 1 | tkerber | energy : float
|
| 3329 | 1 | tkerber | set total energy change (eV) required for stopping
|
| 3330 | 1 | tkerber |
|
| 3331 | 1 | tkerber | density : float
|
| 3332 | 1 | tkerber | set density change required for stopping
|
| 3333 | 1 | tkerber |
|
| 3334 | 1 | tkerber | occupation : float
|
| 3335 | 1 | tkerber | set occupation change required for stopping
|
| 3336 | 1 | tkerber |
|
| 3337 | 1 | tkerber | maxsteps : integer
|
| 3338 | 1 | tkerber | specify maximum number of steps to take
|
| 3339 | 1 | tkerber |
|
| 3340 | 1 | tkerber | maxtime : integer
|
| 3341 | 1 | tkerber | specify maximum number of hours to run.
|
| 3342 | 1 | tkerber |
|
| 3343 | 1 | tkerber | Autopilot not supported here.
|
| 3344 | 1 | tkerber | '''
|
| 3345 | 1 | tkerber | |
| 3346 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 3347 | 1 | tkerber | vname = 'ConvergenceControl'
|
| 3348 | 1 | tkerber | if vname in nc.variables: |
| 3349 | 1 | tkerber | v = nc.variables[vname] |
| 3350 | 1 | tkerber | else:
|
| 3351 | 1 | tkerber | v = nc.createVariable(vname, 'c', ('dim1',)) |
| 3352 | 1 | tkerber | |
| 3353 | 1 | tkerber | if energy is not None: |
| 3354 | 1 | tkerber | v.AbsoluteEnergyConvergence = energy |
| 3355 | 1 | tkerber | if density is not None: |
| 3356 | 1 | tkerber | v.DensityConvergence = density |
| 3357 | 1 | tkerber | if occupation is not None: |
| 3358 | 1 | tkerber | v.OccupationConvergence = occupation |
| 3359 | 1 | tkerber | if maxsteps is not None: |
| 3360 | 1 | tkerber | v.MaxNumberOfSteps = maxsteps |
| 3361 | 1 | tkerber | if maxtime is not None: |
| 3362 | 1 | tkerber | v.CPUTimeLimit = maxtime |
| 3363 | 1 | tkerber | |
| 3364 | 1 | tkerber | nc.sync() |
| 3365 | 1 | tkerber | nc.close() |
| 3366 | 1 | tkerber | |
| 3367 | 1 | tkerber | def get_charge_mixing(self): |
| 3368 | 1 | tkerber | 'return charge mixing parameters'
|
| 3369 | 1 | tkerber | |
| 3370 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3371 | 1 | tkerber | vname = 'ChargeMixing'
|
| 3372 | 1 | tkerber | if vname in nc.variables: |
| 3373 | 1 | tkerber | v = nc.variables[vname] |
| 3374 | 1 | tkerber | charge_mixing = {}
|
| 3375 | 1 | tkerber | if hasattr(v, 'Method'): |
| 3376 | 1 | tkerber | charge_mixing['method'] = v.Method
|
| 3377 | 1 | tkerber | if hasattr(v, 'UpdateCharge'): |
| 3378 | 1 | tkerber | charge_mixing['updatecharge'] = v.UpdateCharge
|
| 3379 | 1 | tkerber | if hasattr(v, 'Pulay_MixingHistory'): |
| 3380 | 1 | tkerber | charge_mixing['mixinghistory'] = v.Pulay_MixingHistory[0] |
| 3381 | 1 | tkerber | if hasattr(v, 'Pulay_DensityMixingCoeff'): |
| 3382 | 1 | tkerber | charge_mixing['mixingcoeff'] = v.Pulay_DensityMixingCoeff[0] |
| 3383 | 1 | tkerber | if hasattr(v, 'Pulay_KerkerPrecondition'): |
| 3384 | 1 | tkerber | charge_mixing['precondition'] = v.Pulay_KerkerPrecondition
|
| 3385 | 1 | tkerber | else:
|
| 3386 | 1 | tkerber | charge_mixing = None
|
| 3387 | 1 | tkerber | |
| 3388 | 1 | tkerber | nc.close() |
| 3389 | 1 | tkerber | return charge_mixing
|
| 3390 | 1 | tkerber | |
| 3391 | 1 | tkerber | def set_charge_mixing(self, |
| 3392 | 1 | tkerber | method='Pulay',
|
| 3393 | 1 | tkerber | mixinghistory=10,
|
| 3394 | 1 | tkerber | mixingcoeff=0.1,
|
| 3395 | 1 | tkerber | precondition='No',
|
| 3396 | 1 | tkerber | updatecharge='Yes'):
|
| 3397 | 1 | tkerber | '''set density mixing method and parameters
|
| 3398 | 1 | tkerber |
|
| 3399 | 1 | tkerber | :Parameters:
|
| 3400 | 1 | tkerber |
|
| 3401 | 1 | tkerber | method : string
|
| 3402 | 1 | tkerber | 'Pulay' for Pulay mixing. only one supported now
|
| 3403 | 1 | tkerber |
|
| 3404 | 1 | tkerber | mixinghistory : integer
|
| 3405 | 1 | tkerber | number of iterations to mix
|
| 3406 | 1 | tkerber | Number of charge residual vectors stored for generating
|
| 3407 | 1 | tkerber | the Pulay estimate on the self-consistent charge density,
|
| 3408 | 1 | tkerber | see Sec. 4.2 in Kresse/Furthmuller:
|
| 3409 | 1 | tkerber | Comp. Mat. Sci. 6 (1996) p34ff
|
| 3410 | 1 | tkerber |
|
| 3411 | 1 | tkerber | mixingcoeff : float
|
| 3412 | 1 | tkerber | Mixing coefficient for Pulay charge mixing, corresponding
|
| 3413 | 1 | tkerber | to A in G$^1$ in Sec. 4.2 in Kresse/Furthmuller:
|
| 3414 | 1 | tkerber | Comp. Mat. Sci. 6 (1996) p34ff
|
| 3415 | 1 | tkerber |
|
| 3416 | 1 | tkerber | precondition : string
|
| 3417 | 1 | tkerber | 'Yes' or 'No'
|
| 3418 | 1 | tkerber |
|
| 3419 | 1 | tkerber | * "Yes" : Kerker preconditiong is used,
|
| 3420 | 1 | tkerber | i.e. q$_0$ is different from zero, see eq. 82
|
| 3421 | 1 | tkerber | in Kresse/Furthmuller: Comp. Mat. Sci. 6 (1996).
|
| 3422 | 1 | tkerber | The value of q$_0$ is fix to give a damping of 20
|
| 3423 | 1 | tkerber | of the lowest q vector.
|
| 3424 | 1 | tkerber |
|
| 3425 | 1 | tkerber | * "No" : q$_0$ is zero and mixing is linear (default).
|
| 3426 | 1 | tkerber |
|
| 3427 | 1 | tkerber | updatecharge : string
|
| 3428 | 1 | tkerber | 'Yes' or 'No'
|
| 3429 | 1 | tkerber |
|
| 3430 | 1 | tkerber | * "Yes" : Perform charge mixing according to
|
| 3431 | 1 | tkerber | ChargeMixing:Method setting
|
| 3432 | 1 | tkerber |
|
| 3433 | 1 | tkerber | * "No" : Freeze charge to initial value.
|
| 3434 | 1 | tkerber | This setting is useful when evaluating the Harris-Foulkes
|
| 3435 | 1 | tkerber | density functional
|
| 3436 | 1 | tkerber |
|
| 3437 | 1 | tkerber | '''
|
| 3438 | 1 | tkerber | |
| 3439 | 1 | tkerber | if method == 'Pulay': |
| 3440 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 3441 | 1 | tkerber | vname = 'ChargeMixing'
|
| 3442 | 1 | tkerber | if vname in nc.variables: |
| 3443 | 1 | tkerber | v = nc.variables[vname] |
| 3444 | 1 | tkerber | else:
|
| 3445 | 1 | tkerber | v = nc.createVariable(vname, 'c', ('dim1',)) |
| 3446 | 1 | tkerber | |
| 3447 | 1 | tkerber | v.Method = 'Pulay'
|
| 3448 | 1 | tkerber | v.UpdateCharge = updatecharge |
| 3449 | 1 | tkerber | v.Pulay_MixingHistory = mixinghistory |
| 3450 | 1 | tkerber | v.Pulay_DensityMixingCoeff = mixingcoeff |
| 3451 | 1 | tkerber | v.Pulay_KerkerPrecondition = precondition |
| 3452 | 1 | tkerber | |
| 3453 | 1 | tkerber | nc.sync() |
| 3454 | 1 | tkerber | nc.close() |
| 3455 | 1 | tkerber | |
| 3456 | 1 | tkerber | self.ready = False |
| 3457 | 1 | tkerber | |
| 3458 | 1 | tkerber | def set_electronic_minimization(self, |
| 3459 | 1 | tkerber | method='eigsolve',
|
| 3460 | 1 | tkerber | diagsperband=2):
|
| 3461 | 1 | tkerber | '''set the eigensolver method
|
| 3462 | 1 | tkerber |
|
| 3463 | 1 | tkerber | Selector for which subroutine to use for electronic
|
| 3464 | 1 | tkerber | minimization
|
| 3465 | 1 | tkerber |
|
| 3466 | 1 | tkerber | Recognized options : "resmin", "eigsolve" and "rmm-diis".
|
| 3467 | 1 | tkerber |
|
| 3468 | 1 | tkerber | * "resmin" : Power method (Lennart Bengtson), can only handle
|
| 3469 | 1 | tkerber | k-point parallization.
|
| 3470 | 1 | tkerber |
|
| 3471 | 1 | tkerber | * "eigsolve : Block Davidson algorithm
|
| 3472 | 1 | tkerber | (Claus Bendtsen et al).
|
| 3473 | 1 | tkerber |
|
| 3474 | 1 | tkerber | * "rmm-diis : Residual minimization
|
| 3475 | 1 | tkerber | method (RMM), using DIIS (direct inversion in the iterate
|
| 3476 | 1 | tkerber | subspace) The implementaion follows closely the algorithm
|
| 3477 | 1 | tkerber | outlined in Kresse and Furthmuller, Comp. Mat. Sci, III.G/III.H
|
| 3478 | 1 | tkerber |
|
| 3479 | 1 | tkerber | :Parameters:
|
| 3480 | 1 | tkerber |
|
| 3481 | 1 | tkerber | method : string
|
| 3482 | 1 | tkerber | should be 'resmin', 'eigsolve' or 'rmm-diis'
|
| 3483 | 1 | tkerber |
|
| 3484 | 1 | tkerber | diagsperband : int
|
| 3485 | 1 | tkerber | The number of diagonalizations per band for
|
| 3486 | 1 | tkerber | electronic minimization algorithms (maps onto internal
|
| 3487 | 1 | tkerber | variable ndiapb). Applies for both
|
| 3488 | 1 | tkerber | ElectronicMinimization:Method = "resmin" and "eigsolve".
|
| 3489 | 1 | tkerber | default value = 2
|
| 3490 | 1 | tkerber | '''
|
| 3491 | 1 | tkerber | |
| 3492 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 3493 | 1 | tkerber | |
| 3494 | 1 | tkerber | vname = 'ElectronicMinimization'
|
| 3495 | 1 | tkerber | if vname in nc.variables: |
| 3496 | 1 | tkerber | v = nc.variables[vname] |
| 3497 | 1 | tkerber | else:
|
| 3498 | 1 | tkerber | log.debug('Creating ElectronicMinimization')
|
| 3499 | 1 | tkerber | v = nc.createVariable(vname, 'c', ('dim1',)) |
| 3500 | 1 | tkerber | |
| 3501 | 1 | tkerber | log.debug('setting method for ElectronicMinimization: % s' % method)
|
| 3502 | 1 | tkerber | v.Method = method |
| 3503 | 1 | tkerber | log.debug('setting DiagonalizationsBand for ElectronicMinimization')
|
| 3504 | 1 | tkerber | if diagsperband is not None: |
| 3505 | 1 | tkerber | v.DiagonalizationsPerBand = diagsperband |
| 3506 | 1 | tkerber | |
| 3507 | 1 | tkerber | log.debug('synchronizing ncfile')
|
| 3508 | 1 | tkerber | nc.sync() |
| 3509 | 1 | tkerber | |
| 3510 | 1 | tkerber | nc.close() |
| 3511 | 1 | tkerber | |
| 3512 | 1 | tkerber | def get_electronic_minimization(self): |
| 3513 | 1 | tkerber | '''get method and diagonalizations per band for electronic
|
| 3514 | 1 | tkerber | minimization algorithms'''
|
| 3515 | 1 | tkerber | |
| 3516 | 1 | tkerber | log.debug('getting electronic minimization parameters')
|
| 3517 | 1 | tkerber | |
| 3518 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 3519 | 1 | tkerber | vname = 'ElectronicMinimization'
|
| 3520 | 1 | tkerber | if vname in nc.variables: |
| 3521 | 1 | tkerber | v = nc.variables[vname] |
| 3522 | 1 | tkerber | method = v.Method |
| 3523 | 1 | tkerber | if hasattr(v, 'DiagonalizationsPerBand'): |
| 3524 | 1 | tkerber | diagsperband = v.DiagonalizationsPerBand[0]
|
| 3525 | 1 | tkerber | else:
|
| 3526 | 1 | tkerber | diagsperband = None
|
| 3527 | 1 | tkerber | else:
|
| 3528 | 1 | tkerber | method = None
|
| 3529 | 1 | tkerber | diagsperband = None
|
| 3530 | 1 | tkerber | nc.close() |
| 3531 | 1 | tkerber | return {'method':method, |
| 3532 | 1 | tkerber | 'diagsperband':diagsperband}
|
| 3533 | 1 | tkerber | |
| 3534 | 1 | tkerber | def get_occupationstatistics(self): |
| 3535 | 1 | tkerber | 'return occupation statistics method'
|
| 3536 | 1 | tkerber | |
| 3537 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3538 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
| 3539 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
| 3540 | 1 | tkerber | if hasattr(v, 'OccupationStatistics'): |
| 3541 | 1 | tkerber | occstat = v.OccupationStatistics |
| 3542 | 1 | tkerber | else:
|
| 3543 | 1 | tkerber | occstat = None
|
| 3544 | 1 | tkerber | else:
|
| 3545 | 1 | tkerber | occstat = None
|
| 3546 | 1 | tkerber | nc.close() |
| 3547 | 1 | tkerber | return occstat
|
| 3548 | 1 | tkerber | |
| 3549 | 1 | tkerber | def set_occupationstatistics(self, method): |
| 3550 | 1 | tkerber | '''
|
| 3551 | 1 | tkerber | set the method used for smearing the occupations.
|
| 3552 | 1 | tkerber |
|
| 3553 | 1 | tkerber | :Parameters:
|
| 3554 | 1 | tkerber |
|
| 3555 | 1 | tkerber | method : string
|
| 3556 | 1 | tkerber | one of 'FermiDirac' or 'MethfesselPaxton'
|
| 3557 | 1 | tkerber | Currently, the Methfessel-Paxton scheme (PRB 40, 3616 (1989).)
|
| 3558 | 1 | tkerber | is implemented to 1th order (which is recommemded by most authors).
|
| 3559 | 1 | tkerber | 'FermiDirac' is the default
|
| 3560 | 1 | tkerber | '''
|
| 3561 | 1 | tkerber | |
| 3562 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
| 3563 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
| 3564 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
| 3565 | 1 | tkerber | v.OccupationStatistics = method |
| 3566 | 1 | tkerber | |
| 3567 | 1 | tkerber | nc.sync() |
| 3568 | 1 | tkerber | nc.close() |
| 3569 | 1 | tkerber | |
| 3570 | 1 | tkerber | def get_fermi_level(self): |
| 3571 | 1 | tkerber | 'return Fermi level'
|
| 3572 | 1 | tkerber | |
| 3573 | 1 | tkerber | if self.calculation_required(): |
| 3574 | 1 | tkerber | self.calculate()
|
| 3575 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3576 | 1 | tkerber | ef = nc.variables['FermiLevel'][-1] |
| 3577 | 1 | tkerber | nc.close() |
| 3578 | 1 | tkerber | return ef
|
| 3579 | 1 | tkerber | |
| 3580 | 1 | tkerber | def get_occupation_numbers(self, kpt=0, spin=0): |
| 3581 | 1 | tkerber | '''return occupancies of eigenstates for a kpt and spin
|
| 3582 | 1 | tkerber |
|
| 3583 | 1 | tkerber | :Parameters:
|
| 3584 | 1 | tkerber |
|
| 3585 | 1 | tkerber | kpt : integer
|
| 3586 | 1 | tkerber | index of the IBZ kpoint you want the occupation of
|
| 3587 | 1 | tkerber |
|
| 3588 | 1 | tkerber | spin : integer
|
| 3589 | 1 | tkerber | 0 or 1
|
| 3590 | 1 | tkerber | '''
|
| 3591 | 1 | tkerber | |
| 3592 | 1 | tkerber | if self.calculation_required(): |
| 3593 | 1 | tkerber | self.calculate()
|
| 3594 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3595 | 1 | tkerber | occ = nc.variables['OccupationNumbers'][:][-1][kpt, spin] |
| 3596 | 1 | tkerber | nc.close() |
| 3597 | 1 | tkerber | return occ
|
| 3598 | 1 | tkerber | |
| 3599 | 1 | tkerber | def get_xc_energies(self, *functional): |
| 3600 | 1 | tkerber | """
|
| 3601 | 1 | tkerber | Get energies for different functionals self-consistent and
|
| 3602 | 1 | tkerber | non-self-consistent.
|
| 3603 | 1 | tkerber |
|
| 3604 | 1 | tkerber | :Parameters:
|
| 3605 | 1 | tkerber |
|
| 3606 | 1 | tkerber | functional : strings
|
| 3607 | 1 | tkerber | some set of 'PZ','VWN','PW91','PBE','revPBE', 'RPBE'
|
| 3608 | 1 | tkerber |
|
| 3609 | 1 | tkerber | This function returns the self-consistent energy and/or
|
| 3610 | 1 | tkerber | energies associated with various functionals.
|
| 3611 | 1 | tkerber | The functionals are currently PZ,VWN,PW91,PBE,revPBE, RPBE.
|
| 3612 | 1 | tkerber | The different energies may be useful for calculating improved
|
| 3613 | 1 | tkerber | adsorption energies as in B. Hammer, L.B. Hansen and
|
| 3614 | 1 | tkerber | J.K. Norskov, Phys. Rev. B 59,7413.
|
| 3615 | 1 | tkerber | Examples:
|
| 3616 | 1 | tkerber | get_xcenergies() #returns all the energies
|
| 3617 | 1 | tkerber | get_xcenergies('PBE') # returns the PBE total energy
|
| 3618 | 1 | tkerber | get_xcenergies('PW91','PBE','revPBE') # returns a
|
| 3619 | 1 | tkerber | # list of energies in the order asked for
|
| 3620 | 1 | tkerber | """
|
| 3621 | 1 | tkerber | |
| 3622 | 1 | tkerber | if self.calculation_required(): |
| 3623 | 1 | tkerber | self.calculate()
|
| 3624 | 1 | tkerber | |
| 3625 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3626 | 1 | tkerber | |
| 3627 | 1 | tkerber | funcenergies = nc.variables['EvaluateTotalEnergy'][:][-1] |
| 3628 | 1 | tkerber | xcfuncs = nc.variables['EvalFunctionalOfDensity_XC'][:]
|
| 3629 | 1 | tkerber | |
| 3630 | 1 | tkerber | nc.close() |
| 3631 | 1 | tkerber | |
| 3632 | 1 | tkerber | xcfuncs = [xc.tostring().strip() for xc in xcfuncs] |
| 3633 | 1 | tkerber | edict = dict(zip(xcfuncs, funcenergies)) |
| 3634 | 1 | tkerber | |
| 3635 | 1 | tkerber | if len(functional) == 0: |
| 3636 | 1 | tkerber | #get all energies by default
|
| 3637 | 1 | tkerber | functional = xcfuncs |
| 3638 | 1 | tkerber | |
| 3639 | 1 | tkerber | return [edict[xc] for xc in functional] |
| 3640 | 1 | tkerber | |
| 3641 | 1 | tkerber | # break of compatibility
|
| 3642 | 1 | tkerber | def get_ados_data(self, |
| 3643 | 1 | tkerber | atoms, |
| 3644 | 1 | tkerber | orbitals, |
| 3645 | 1 | tkerber | cutoff, |
| 3646 | 1 | tkerber | spin): |
| 3647 | 1 | tkerber | '''get atom projected data
|
| 3648 | 1 | tkerber |
|
| 3649 | 1 | tkerber | :Parameters:
|
| 3650 | 1 | tkerber |
|
| 3651 | 1 | tkerber | atoms
|
| 3652 | 1 | tkerber | list of atom indices (integers)
|
| 3653 | 1 | tkerber |
|
| 3654 | 1 | tkerber | orbitals
|
| 3655 | 1 | tkerber | list of strings
|
| 3656 | 1 | tkerber | ['s','p','d'],
|
| 3657 | 1 | tkerber | ['px','py','pz']
|
| 3658 | 1 | tkerber | ['d_zz', 'dxx-yy', 'd_xy', 'd_xz', 'd_yz']
|
| 3659 | 1 | tkerber |
|
| 3660 | 1 | tkerber | cutoff : string
|
| 3661 | 1 | tkerber | cutoff radius you want the results for 'short' or 'infinite'
|
| 3662 | 1 | tkerber |
|
| 3663 | 1 | tkerber | spin
|
| 3664 | 1 | tkerber | : list of integers
|
| 3665 | 1 | tkerber | spin you want the results for
|
| 3666 | 1 | tkerber | [0] or [1] or [0,1] for both
|
| 3667 | 1 | tkerber |
|
| 3668 | 1 | tkerber | returns (egrid, ados)
|
| 3669 | 1 | tkerber | egrid has the fermi level at 0 eV
|
| 3670 | 1 | tkerber | '''
|
| 3671 | 1 | tkerber | |
| 3672 | 1 | tkerber | if self.calculation_required(): |
| 3673 | 1 | tkerber | self.calculate()
|
| 3674 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3675 | 1 | tkerber | omapvar = nc.variables['AtomProjectedDOS_OrdinalMap']
|
| 3676 | 1 | tkerber | omap = omapvar[:] #indices
|
| 3677 | 1 | tkerber | c = omapvar.AngularChannels |
| 3678 | 1 | tkerber | channels = [x.strip() for x in c.split(',')] #channel names |
| 3679 | 1 | tkerber | #this has dimensions(nprojections, nspins, npoints)
|
| 3680 | 1 | tkerber | ados = nc.variables['AtomProjectedDOS_EnergyResolvedDOS'][:]
|
| 3681 | 1 | tkerber | #this is the energy grid for all the atoms
|
| 3682 | 1 | tkerber | egrid = nc.variables['AtomProjectedDOS_EnergyGrid'][:]
|
| 3683 | 1 | tkerber | nc.close() |
| 3684 | 1 | tkerber | |
| 3685 | 1 | tkerber | #it is apparently not necessary to normalize the egrid to
|
| 3686 | 1 | tkerber | #the Fermi level. the data is already for ef = 0.
|
| 3687 | 1 | tkerber | |
| 3688 | 1 | tkerber | #get list of orbitals, replace 'p' and 'd' in needed
|
| 3689 | 1 | tkerber | orbs = [] |
| 3690 | 1 | tkerber | for o in orbitals: |
| 3691 | 1 | tkerber | if o == 'p': |
| 3692 | 1 | tkerber | orbs += ['p_x', 'p_y', 'p_z'] |
| 3693 | 1 | tkerber | elif o == 'd': |
| 3694 | 1 | tkerber | orbs += ['d_zz', 'dxx-yy', 'd_xy', 'd_xz', 'd_yz'] |
| 3695 | 1 | tkerber | else:
|
| 3696 | 1 | tkerber | orbs += [o] |
| 3697 | 1 | tkerber | |
| 3698 | 1 | tkerber | orbinds = [channels.index(x) for x in orbs] |
| 3699 | 1 | tkerber | |
| 3700 | 1 | tkerber | cutdict = {'infinite':0,
|
| 3701 | 1 | tkerber | 'short':1} |
| 3702 | 1 | tkerber | |
| 3703 | 1 | tkerber | icut = cutdict[cutoff] |
| 3704 | 1 | tkerber | |
| 3705 | 1 | tkerber | ydata = np.zeros(len(egrid), np.float)
|
| 3706 | 1 | tkerber | |
| 3707 | 1 | tkerber | for atomind in atoms: |
| 3708 | 1 | tkerber | for oi in orbinds: |
| 3709 | 1 | tkerber | ind = omap[atomind, icut, oi] |
| 3710 | 1 | tkerber | |
| 3711 | 1 | tkerber | for si in spin: |
| 3712 | 1 | tkerber | ydata += ados[ind, si] |
| 3713 | 1 | tkerber | |
| 3714 | 1 | tkerber | return (egrid, ydata)
|
| 3715 | 1 | tkerber | |
| 3716 | 1 | tkerber | def get_all_eigenvalues(self, spin=0): |
| 3717 | 1 | tkerber | '''return all the eigenvalues at all the kpoints for a spin.
|
| 3718 | 1 | tkerber |
|
| 3719 | 1 | tkerber | :Parameters:
|
| 3720 | 1 | tkerber |
|
| 3721 | 1 | tkerber | spin : integer
|
| 3722 | 1 | tkerber | which spin the eigenvalues are for'''
|
| 3723 | 1 | tkerber | |
| 3724 | 1 | tkerber | if self.calculation_required(): |
| 3725 | 1 | tkerber | self.calculate()
|
| 3726 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3727 | 1 | tkerber | ev = nc.variables['EigenValues'][:][-1][:, spin] |
| 3728 | 1 | tkerber | nc.close() |
| 3729 | 1 | tkerber | return ev
|
| 3730 | 1 | tkerber | |
| 3731 | 1 | tkerber | def get_eigenvalues(self, kpt=0, spin=0): |
| 3732 | 1 | tkerber | '''return the eigenvalues for a kpt and spin
|
| 3733 | 1 | tkerber |
|
| 3734 | 1 | tkerber | :Parameters:
|
| 3735 | 1 | tkerber |
|
| 3736 | 1 | tkerber | kpt : integer
|
| 3737 | 1 | tkerber | index of the IBZ kpoint
|
| 3738 | 1 | tkerber |
|
| 3739 | 1 | tkerber | spin : integer
|
| 3740 | 1 | tkerber | which spin the eigenvalues are for'''
|
| 3741 | 1 | tkerber | |
| 3742 | 1 | tkerber | if self.calculation_required(): |
| 3743 | 1 | tkerber | self.calculate()
|
| 3744 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3745 | 1 | tkerber | ev = nc.variables['EigenValues'][:][-1][kpt, spin] |
| 3746 | 1 | tkerber | nc.close() |
| 3747 | 1 | tkerber | return ev
|
| 3748 | 1 | tkerber | |
| 3749 | 1 | tkerber | def get_k_point_weights(self): |
| 3750 | 1 | tkerber | 'return the weights on the IBZ kpoints'
|
| 3751 | 1 | tkerber | |
| 3752 | 1 | tkerber | if self.calculation_required(): |
| 3753 | 1 | tkerber | self.calculate()
|
| 3754 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3755 | 1 | tkerber | kw = nc.variables['KpointWeight'][:]
|
| 3756 | 1 | tkerber | nc.close() |
| 3757 | 1 | tkerber | return kw
|
| 3758 | 1 | tkerber | |
| 3759 | 1 | tkerber | def get_magnetic_moment(self): |
| 3760 | 1 | tkerber | 'calculates the magnetic moment (Bohr-magnetons) of the supercell'
|
| 3761 | 1 | tkerber | |
| 3762 | 1 | tkerber | if not self.get_spin_polarized(): |
| 3763 | 1 | tkerber | return None |
| 3764 | 1 | tkerber | |
| 3765 | 1 | tkerber | if self.calculation_required(): |
| 3766 | 1 | tkerber | self.calculate()
|
| 3767 | 1 | tkerber | |
| 3768 | 1 | tkerber | nibzk = len(self.get_ibz_kpoints()) |
| 3769 | 1 | tkerber | ibzkw = self.get_k_point_weights()
|
| 3770 | 1 | tkerber | spinup, spindn = 0.0, 0.0 |
| 3771 | 1 | tkerber | |
| 3772 | 1 | tkerber | for k in range(nibzk): |
| 3773 | 1 | tkerber | |
| 3774 | 1 | tkerber | spinup += self.get_occupation_numbers(k, 0).sum()*ibzkw[k] |
| 3775 | 1 | tkerber | spindn += self.get_occupation_numbers(k, 1).sum()*ibzkw[k] |
| 3776 | 1 | tkerber | |
| 3777 | 1 | tkerber | return (spinup - spindn)
|
| 3778 | 1 | tkerber | |
| 3779 | 1 | tkerber | def get_number_of_spins(self): |
| 3780 | 1 | tkerber | 'if spin-polarized returns 2, if not returns 1'
|
| 3781 | 1 | tkerber | |
| 3782 | 1 | tkerber | if self.calculation_required(): |
| 3783 | 1 | tkerber | self.calculate()
|
| 3784 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3785 | 1 | tkerber | spv = nc.variables['ElectronicBands']
|
| 3786 | 1 | tkerber | nc.close() |
| 3787 | 1 | tkerber | |
| 3788 | 1 | tkerber | if hasattr(spv, 'SpinPolarization'): |
| 3789 | 1 | tkerber | return spv.SpinPolarization
|
| 3790 | 1 | tkerber | else:
|
| 3791 | 1 | tkerber | return 1 |
| 3792 | 1 | tkerber | |
| 3793 | 1 | tkerber | def get_ibz_kpoints(self): |
| 3794 | 1 | tkerber | 'return list of kpoints in the irreducible brillouin zone'
|
| 3795 | 1 | tkerber | |
| 3796 | 1 | tkerber | if self.calculation_required(): |
| 3797 | 1 | tkerber | self.calculate()
|
| 3798 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3799 | 1 | tkerber | ibz = nc.variables['IBZKpoints'][:]
|
| 3800 | 1 | tkerber | nc.close() |
| 3801 | 1 | tkerber | return ibz
|
| 3802 | 1 | tkerber | |
| 3803 | 1 | tkerber | get_ibz_k_points = get_ibz_kpoints |
| 3804 | 1 | tkerber | |
| 3805 | 1 | tkerber | def get_bz_k_points(self): |
| 3806 | 1 | tkerber | 'return list of kpoints in the Brillouin zone'
|
| 3807 | 1 | tkerber | |
| 3808 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3809 | 1 | tkerber | if 'BZKpoints' in nc.variables: |
| 3810 | 1 | tkerber | bz = nc.variables['BZKpoints'][:]
|
| 3811 | 1 | tkerber | else:
|
| 3812 | 1 | tkerber | bz = None
|
| 3813 | 1 | tkerber | nc.close() |
| 3814 | 1 | tkerber | return bz
|
| 3815 | 1 | tkerber | |
| 3816 | 1 | tkerber | def get_effective_potential(self, spin=1): |
| 3817 | 1 | tkerber | '''
|
| 3818 | 1 | tkerber | returns the realspace local effective potential for the spin.
|
| 3819 | 1 | tkerber | the units of the potential are eV
|
| 3820 | 1 | tkerber |
|
| 3821 | 1 | tkerber | :Parameters:
|
| 3822 | 1 | tkerber |
|
| 3823 | 1 | tkerber | spin : integer
|
| 3824 | 1 | tkerber | specify which spin you want, 0 or 1
|
| 3825 | 1 | tkerber |
|
| 3826 | 1 | tkerber | '''
|
| 3827 | 1 | tkerber | |
| 3828 | 1 | tkerber | if self.calculation_required(): |
| 3829 | 1 | tkerber | self.calculate()
|
| 3830 | 1 | tkerber | |
| 3831 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3832 | 1 | tkerber | efp = np.transpose(nc.variables['EffectivePotential'][:][spin])
|
| 3833 | 1 | tkerber | nc.close() |
| 3834 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
| 3835 | 1 | tkerber | hardgrid = fftgrids['hard']
|
| 3836 | 1 | tkerber | x, y, z = self.get_ucgrid(hardgrid)
|
| 3837 | 1 | tkerber | return (x, y, z, efp)
|
| 3838 | 1 | tkerber | |
| 3839 | 1 | tkerber | def get_electrostatic_potential(self, spin=0): |
| 3840 | 1 | tkerber | '''get electrostatic potential
|
| 3841 | 1 | tkerber |
|
| 3842 | 1 | tkerber | Netcdf documentation::
|
| 3843 | 1 | tkerber |
|
| 3844 | 1 | tkerber | double ElectrostaticPotential(number_of_spin,
|
| 3845 | 1 | tkerber | hardgrid_dim3,
|
| 3846 | 1 | tkerber | hardgrid_dim2,
|
| 3847 | 1 | tkerber | hardgrid_dim1) ;
|
| 3848 | 1 | tkerber | ElectrostaticPotential:
|
| 3849 | 1 | tkerber | Description = "realspace local effective potential" ;
|
| 3850 | 1 | tkerber | unit = "eV" ;
|
| 3851 | 1 | tkerber |
|
| 3852 | 1 | tkerber | '''
|
| 3853 | 1 | tkerber | |
| 3854 | 1 | tkerber | if self.calculation_required(): |
| 3855 | 1 | tkerber | self.calculate()
|
| 3856 | 1 | tkerber | |
| 3857 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3858 | 1 | tkerber | esp = np.transpose(nc.variables['ElectrostaticPotential'][:][spin])
|
| 3859 | 1 | tkerber | nc.close() |
| 3860 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
| 3861 | 1 | tkerber | |
| 3862 | 1 | tkerber | x, y, z = self.get_ucgrid(fftgrids['hard']) |
| 3863 | 1 | tkerber | |
| 3864 | 1 | tkerber | return (x, y, z, esp)
|
| 3865 | 1 | tkerber | |
| 3866 | 1 | tkerber | def get_charge_density(self, spin=0): |
| 3867 | 1 | tkerber | '''
|
| 3868 | 1 | tkerber | return x,y,z,charge density data
|
| 3869 | 1 | tkerber |
|
| 3870 | 1 | tkerber | x,y,z are grids sampling the unit cell
|
| 3871 | 1 | tkerber | cd is the charge density data
|
| 3872 | 1 | tkerber |
|
| 3873 | 1 | tkerber | netcdf documentation::
|
| 3874 | 1 | tkerber |
|
| 3875 | 1 | tkerber | ChargeDensity(number_of_spin,
|
| 3876 | 1 | tkerber | hardgrid_dim3,
|
| 3877 | 1 | tkerber | hardgrid_dim2,
|
| 3878 | 1 | tkerber | hardgrid_dim1)
|
| 3879 | 1 | tkerber | ChargeDensity:Description = "realspace charge density" ;
|
| 3880 | 1 | tkerber | ChargeDensity:unit = "-e/A^3" ;
|
| 3881 | 1 | tkerber |
|
| 3882 | 1 | tkerber | '''
|
| 3883 | 1 | tkerber | |
| 3884 | 1 | tkerber | if self.calculation_required(): |
| 3885 | 1 | tkerber | self.calculate()
|
| 3886 | 1 | tkerber | |
| 3887 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 3888 | 1 | tkerber | |
| 3889 | 1 | tkerber | cd = np.transpose(nc.variables['ChargeDensity'][:][spin])
|
| 3890 | 1 | tkerber | |
| 3891 | 1 | tkerber | #I am not completely sure why this has to be done
|
| 3892 | 1 | tkerber | #it does give units of electrons/ang**3
|
| 3893 | 1 | tkerber | vol = self.get_atoms().get_volume()
|
| 3894 | 1 | tkerber | cd /= vol |
| 3895 | 1 | tkerber | nc.close() |
| 3896 | 1 | tkerber | grids = self.get_fftgrid()
|
| 3897 | 1 | tkerber | |
| 3898 | 1 | tkerber | x, y, z = self.get_ucgrid(grids['hard']) |
| 3899 | 1 | tkerber | return x, y, z, cd
|
| 3900 | 1 | tkerber | |
| 3901 | 1 | tkerber | def get_ucgrid(self, dims): |
| 3902 | 1 | tkerber | '''Return X,Y,Z grids for uniform sampling of the unit cell
|
| 3903 | 1 | tkerber |
|
| 3904 | 1 | tkerber | dims = (n0,n1,n2)
|
| 3905 | 1 | tkerber |
|
| 3906 | 1 | tkerber | n0 points along unitcell vector 0
|
| 3907 | 1 | tkerber | n1 points along unitcell vector 1
|
| 3908 | 1 | tkerber | n2 points along unitcell vector 2
|
| 3909 | 1 | tkerber | '''
|
| 3910 | 1 | tkerber | |
| 3911 | 1 | tkerber | n0, n1, n2 = dims |
| 3912 | 1 | tkerber | |
| 3913 | 1 | tkerber | s0 = 1.0/n0
|
| 3914 | 1 | tkerber | s1 = 1.0/n1
|
| 3915 | 1 | tkerber | s2 = 1.0/n2
|
| 3916 | 1 | tkerber | |
| 3917 | 1 | tkerber | X, Y, Z = np.mgrid[0.0:1.0:s0, |
| 3918 | 1 | tkerber | 0.0:1.0:s1, |
| 3919 | 1 | tkerber | 0.0:1.0:s2] |
| 3920 | 1 | tkerber | |
| 3921 | 1 | tkerber | C = np.column_stack([X.ravel(), |
| 3922 | 1 | tkerber | Y.ravel(), |
| 3923 | 1 | tkerber | Z.ravel()]) |
| 3924 | 1 | tkerber | |
| 3925 | 1 | tkerber | atoms = self.get_atoms()
|
| 3926 | 1 | tkerber | uc = atoms.get_cell() |
| 3927 | 1 | tkerber | real = np.dot(C, uc) |
| 3928 | 1 | tkerber | |
| 3929 | 1 | tkerber | #now convert arrays back to unitcell shape
|
| 3930 | 1 | tkerber | RX = np.reshape(real[:, 0], (n0, n1, n2))
|
| 3931 | 1 | tkerber | RY = np.reshape(real[:, 1], (n0, n1, n2))
|
| 3932 | 1 | tkerber | RZ = np.reshape(real[:, 2], (n0, n1, n2))
|
| 3933 | 1 | tkerber | return (RX, RY, RZ)
|
| 3934 | 1 | tkerber | |
| 3935 | 1 | tkerber | def get_number_of_grid_points(self): |
| 3936 | 1 | tkerber | 'return soft fft grid'
|
| 3937 | 1 | tkerber | |
| 3938 | 1 | tkerber | # needed by ase.dft.wannier
|
| 3939 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
| 3940 | 1 | tkerber | return np.array(fftgrids['soft']) |
| 3941 | 1 | tkerber | |
| 3942 | 1 | tkerber | def get_wannier_localization_matrix(self, nbands, dirG, kpoint, |
| 3943 | 1 | tkerber | nextkpoint, G_I, spin): |
| 3944 | 1 | tkerber | 'return wannier localization matrix'
|
| 3945 | 1 | tkerber | |
| 3946 | 1 | tkerber | if self.calculation_required(): |
| 3947 | 1 | tkerber | self.calculate()
|
| 3948 | 1 | tkerber | |
| 3949 | 1 | tkerber | if not hasattr(self, 'wannier'): |
| 3950 | 1 | tkerber | from utils.wannier import Wannier |
| 3951 | 1 | tkerber | self.wannier = Wannier(self) |
| 3952 | 1 | tkerber | self.wannier.set_bands(nbands)
|
| 3953 | 1 | tkerber | self.wannier.set_spin(spin)
|
| 3954 | 1 | tkerber | locmat = self.wannier.get_zi_bloch_matrix(dirG,
|
| 3955 | 1 | tkerber | kpoint, |
| 3956 | 1 | tkerber | nextkpoint, |
| 3957 | 1 | tkerber | G_I) |
| 3958 | 1 | tkerber | return locmat
|
| 3959 | 1 | tkerber | |
| 3960 | 1 | tkerber | def initial_wannier(self, |
| 3961 | 1 | tkerber | initialwannier, |
| 3962 | 1 | tkerber | kpointgrid, |
| 3963 | 1 | tkerber | fixedstates, |
| 3964 | 1 | tkerber | edf, |
| 3965 | 1 | tkerber | spin): |
| 3966 | 1 | tkerber | 'return initial wannier'
|
| 3967 | 1 | tkerber | |
| 3968 | 1 | tkerber | if self.calculation_required(): |
| 3969 | 1 | tkerber | self.calculate()
|
| 3970 | 1 | tkerber | |
| 3971 | 1 | tkerber | if not hasattr(self, 'wannier'): |
| 3972 | 1 | tkerber | from utils.wannier import Wannier |
| 3973 | 1 | tkerber | self.wannier = Wannier(self) |
| 3974 | 1 | tkerber | |
| 3975 | 1 | tkerber | self.wannier.set_data(initialwannier)
|
| 3976 | 1 | tkerber | self.wannier.set_k_point_grid(kpointgrid)
|
| 3977 | 1 | tkerber | self.wannier.set_spin(spin)
|
| 3978 | 1 | tkerber | |
| 3979 | 1 | tkerber | waves = [[self.get_reciprocal_bloch_function(band=band,
|
| 3980 | 1 | tkerber | kpt=kpt, |
| 3981 | 1 | tkerber | spin=spin) |
| 3982 | 1 | tkerber | for band in range(self.get_nbands())] |
| 3983 | 1 | tkerber | for kpt in range(len(self.get_ibz_k_points()))] |
| 3984 | 1 | tkerber | |
| 3985 | 1 | tkerber | self.wannier.setup_m_matrix(waves, self.get_bz_k_points()) |
| 3986 | 1 | tkerber | |
| 3987 | 1 | tkerber | #lfn is too keep line length below 78 characters
|
| 3988 | 1 | tkerber | lfn = self.wannier.get_list_of_coefficients_and_rotation_matrices
|
| 3989 | 1 | tkerber | c, U = lfn((self.get_nbands(), fixedstates, edf))
|
| 3990 | 1 | tkerber | |
| 3991 | 1 | tkerber | U = np.array(U) |
| 3992 | 1 | tkerber | for k in range(len(c)): |
| 3993 | 1 | tkerber | c[k] = np.array(c[k]) |
| 3994 | 1 | tkerber | return c, U
|
| 3995 | 1 | tkerber | |
| 3996 | 1 | tkerber | def get_dipole_moment(self,atoms=None): |
| 3997 | 1 | tkerber | '''
|
| 3998 | 1 | tkerber | return dipole moment of unit cell
|
| 3999 | 1 | tkerber |
|
| 4000 | 1 | tkerber | Defined by the vector connecting the center of electron charge
|
| 4001 | 1 | tkerber | density to the center of nuclear charge density.
|
| 4002 | 1 | tkerber |
|
| 4003 | 1 | tkerber | Units = eV*angstrom
|
| 4004 | 1 | tkerber |
|
| 4005 | 1 | tkerber | 1 Debye = 0.208194 eV*angstrom
|
| 4006 | 1 | tkerber |
|
| 4007 | 1 | tkerber | '''
|
| 4008 | 1 | tkerber | if self.calculation_required(): |
| 4009 | 1 | tkerber | self.calculate()
|
| 4010 | 1 | tkerber | |
| 4011 | 1 | tkerber | if atoms is None: |
| 4012 | 1 | tkerber | atoms = self.get_atoms()
|
| 4013 | 1 | tkerber | |
| 4014 | 1 | tkerber | #center of electron charge density
|
| 4015 | 1 | tkerber | x, y, z, cd = self.get_charge_density()
|
| 4016 | 1 | tkerber | |
| 4017 | 1 | tkerber | n1, n2, n3 = cd.shape |
| 4018 | 1 | tkerber | nelements = n1*n2*n3 |
| 4019 | 1 | tkerber | voxel_volume = atoms.get_volume()/nelements |
| 4020 | 1 | tkerber | total_electron_charge = -cd.sum()*voxel_volume |
| 4021 | 1 | tkerber | |
| 4022 | 1 | tkerber | |
| 4023 | 1 | tkerber | electron_density_center = np.array([(cd*x).sum(), |
| 4024 | 1 | tkerber | (cd*y).sum(), |
| 4025 | 1 | tkerber | (cd*z).sum()]) |
| 4026 | 1 | tkerber | electron_density_center *= voxel_volume |
| 4027 | 1 | tkerber | electron_density_center /= total_electron_charge |
| 4028 | 1 | tkerber | |
| 4029 | 1 | tkerber | electron_dipole_moment = electron_density_center*total_electron_charge |
| 4030 | 1 | tkerber | electron_dipole_moment *= -1.0 #we need the - here so the two |
| 4031 | 1 | tkerber | #negatives don't cancel
|
| 4032 | 1 | tkerber | # now the ion charge center
|
| 4033 | 1 | tkerber | psps = self.get_pseudopotentials()
|
| 4034 | 1 | tkerber | ion_charge_center = np.array([0.0, 0.0, 0.0]) |
| 4035 | 1 | tkerber | total_ion_charge = 0.0
|
| 4036 | 1 | tkerber | for atom in atoms: |
| 4037 | 1 | tkerber | Z = self.get_psp_nuclear_charge(psps[atom.symbol])
|
| 4038 | 1 | tkerber | total_ion_charge += Z |
| 4039 | 1 | tkerber | pos = atom.get_position() |
| 4040 | 1 | tkerber | ion_charge_center += Z*pos |
| 4041 | 1 | tkerber | |
| 4042 | 1 | tkerber | ion_charge_center /= total_ion_charge |
| 4043 | 1 | tkerber | ion_dipole_moment = ion_charge_center*total_ion_charge |
| 4044 | 1 | tkerber | |
| 4045 | 1 | tkerber | dipole_vector = (ion_dipole_moment + electron_dipole_moment) |
| 4046 | 1 | tkerber | return dipole_vector
|
| 4047 | 1 | tkerber | |
| 4048 | 1 | tkerber | |
| 4049 | 1 | tkerber | def get_reciprocal_bloch_function(self, band=0, kpt=0, spin=0): |
| 4050 | 1 | tkerber | '''return the reciprocal bloch function. Need for Jacapo
|
| 4051 | 1 | tkerber | Wannier class.'''
|
| 4052 | 1 | tkerber | |
| 4053 | 1 | tkerber | if self.calculation_required(): |
| 4054 | 1 | tkerber | self.calculate()
|
| 4055 | 1 | tkerber | |
| 4056 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 4057 | 1 | tkerber | |
| 4058 | 1 | tkerber | # read reciprocal bloch function
|
| 4059 | 1 | tkerber | npw = nc.variables['NumberPlaneWavesKpoint'][:]
|
| 4060 | 1 | tkerber | bf = nc.variables['WaveFunction'][kpt, spin, band]
|
| 4061 | 1 | tkerber | wflist = np.zeros(npw[kpt], np.complex) |
| 4062 | 1 | tkerber | wflist.real = bf[0:npw[kpt], 1] |
| 4063 | 1 | tkerber | wflist.imag = bf[0:npw[kpt], 0] |
| 4064 | 1 | tkerber | |
| 4065 | 1 | tkerber | nc.close() |
| 4066 | 1 | tkerber | |
| 4067 | 1 | tkerber | return wflist
|
| 4068 | 1 | tkerber | |
| 4069 | 1 | tkerber | def get_reciprocal_fft_index(self, kpt=0): |
| 4070 | 1 | tkerber | '''return the Wave Function FFT Index'''
|
| 4071 | 1 | tkerber | |
| 4072 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 4073 | 1 | tkerber | recind = nc.variables['WaveFunctionFFTindex'][kpt, :, :]
|
| 4074 | 1 | tkerber | nc.close() |
| 4075 | 1 | tkerber | return recind
|
| 4076 | 1 | tkerber | |
| 4077 | 1 | tkerber | def get_ensemble_coefficients(self): |
| 4078 | 1 | tkerber | 'returns exchange correlation ensemble coefficients'
|
| 4079 | 1 | tkerber | |
| 4080 | 1 | tkerber | # adapted from ASE/dacapo.py
|
| 4081 | 1 | tkerber | # def GetEnsembleCoefficients(self):
|
| 4082 | 1 | tkerber | # self.Calculate()
|
| 4083 | 1 | tkerber | # E = self.GetPotentialEnergy()
|
| 4084 | 1 | tkerber | # xc = self.GetNetCDFEntry('EnsembleXCEnergies')
|
| 4085 | 1 | tkerber | # Exc = xc[0]
|
| 4086 | 1 | tkerber | # exc_c = self.GetNetCDFEntry('EvaluateCorrelationEnergy')
|
| 4087 | 1 | tkerber | # exc_e = self.GetNetCDFEntry('EvaluateExchangeEnergy')
|
| 4088 | 1 | tkerber | # exc = exc_c + exc_e
|
| 4089 | 1 | tkerber | # if self.GetXCFunctional() == 'RPBE':
|
| 4090 | 1 | tkerber | # Exc = exc[-1][-1]
|
| 4091 | 1 | tkerber | #
|
| 4092 | 1 | tkerber | # E0 = xc[1] # Fx = 0
|
| 4093 | 1 | tkerber | #
|
| 4094 | 1 | tkerber | # diff0 = xc[2] # - Exc
|
| 4095 | 1 | tkerber | # diff1 = xc[3] # - Exc
|
| 4096 | 1 | tkerber | # diff2 = xc[4] # - Exc
|
| 4097 | 1 | tkerber | # coefs = (E + E0 - Exc,diff0-E0 ,diff1-E0,diff2-E0)
|
| 4098 | 1 | tkerber | # print 'ensemble: (%.9f, %.9f, %.9f, %.9f)'% coefs
|
| 4099 | 1 | tkerber | # return num.array(coefs)
|
| 4100 | 1 | tkerber | if self.calculation_required(): |
| 4101 | 1 | tkerber | self.calculate()
|
| 4102 | 1 | tkerber | |
| 4103 | 1 | tkerber | E = self.get_potential_energy()
|
| 4104 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
| 4105 | 1 | tkerber | if 'EnsembleXCEnergies' in nc.variables: |
| 4106 | 1 | tkerber | v = nc.variables['EnsembleXCEnergies']
|
| 4107 | 1 | tkerber | xc = v[:] |
| 4108 | 1 | tkerber | |
| 4109 | 1 | tkerber | EXC = xc[0]
|
| 4110 | 1 | tkerber | |
| 4111 | 1 | tkerber | if 'EvaluateCorrelationEnergy' in nc.variables: |
| 4112 | 1 | tkerber | v = nc.variables['EvaluateCorrelationEnergy']
|
| 4113 | 1 | tkerber | exc_c = v[:] |
| 4114 | 1 | tkerber | |
| 4115 | 1 | tkerber | if 'EvaluateExchangeEnergy' in nc.variables: |
| 4116 | 1 | tkerber | v = nc.variables['EvaluateExchangeEnergy']
|
| 4117 | 1 | tkerber | exc_e = v[:] |
| 4118 | 1 | tkerber | |
| 4119 | 1 | tkerber | exc = exc_c + exc_e |
| 4120 | 1 | tkerber | |
| 4121 | 1 | tkerber | if self.get_xc == 'RPBE': |
| 4122 | 1 | tkerber | EXC = exc[-1][-1] |
| 4123 | 1 | tkerber | |
| 4124 | 1 | tkerber | E0 = xc[1] # Fx = 0 |
| 4125 | 1 | tkerber | |
| 4126 | 1 | tkerber | diff0 = xc[2] # - Exc |
| 4127 | 1 | tkerber | diff1 = xc[3] # - Exc |
| 4128 | 1 | tkerber | diff2 = xc[4] # - Exc |
| 4129 | 1 | tkerber | coefs = (E + E0 - EXC, diff0-E0, diff1-E0, diff2-E0) |
| 4130 | 1 | tkerber | log.info('ensemble: (%.9f, %.9f, %.9f, %.9f)'% coefs)
|
| 4131 | 1 | tkerber | return np.array(coefs)
|
| 4132 | 1 | tkerber | |
| 4133 | 1 | tkerber | def get_pseudo_wave_function(self, band=0, kpt=0, spin=0, pad=True): |
| 4134 | 1 | tkerber | |
| 4135 | 1 | tkerber | '''return the pseudo wavefunction'''
|
| 4136 | 1 | tkerber | |
| 4137 | 1 | tkerber | # pad=True does nothing here.
|
| 4138 | 1 | tkerber | if self.calculation_required(): |
| 4139 | 1 | tkerber | self.calculate()
|
| 4140 | 1 | tkerber | |
| 4141 | 1 | tkerber | ibz = self.get_ibz_kpoints()
|
| 4142 | 1 | tkerber | |
| 4143 | 1 | tkerber | #get the reciprocal bloch function
|
| 4144 | 1 | tkerber | wflist = self.get_reciprocal_bloch_function(band=band,
|
| 4145 | 1 | tkerber | kpt=kpt, |
| 4146 | 1 | tkerber | spin=spin) |
| 4147 | 1 | tkerber | # wflist == Reciprocal Bloch Function
|
| 4148 | 1 | tkerber | |
| 4149 | 1 | tkerber | recind = self. get_reciprocal_fft_index(kpt)
|
| 4150 | 1 | tkerber | grids = self.get_fftgrid()
|
| 4151 | 1 | tkerber | softgrid = grids['soft']
|
| 4152 | 1 | tkerber | |
| 4153 | 1 | tkerber | # GetReciprocalBlochFunctionGrid
|
| 4154 | 1 | tkerber | wfrec = np.zeros((softgrid), np.complex) |
| 4155 | 1 | tkerber | |
| 4156 | 1 | tkerber | for i in xrange(len(wflist)): |
| 4157 | 1 | tkerber | wfrec[recind[0, i]-1, |
| 4158 | 1 | tkerber | recind[1, i]-1, |
| 4159 | 1 | tkerber | recind[2, i]-1] = wflist[i] |
| 4160 | 1 | tkerber | |
| 4161 | 1 | tkerber | # calculate Bloch Function
|
| 4162 | 1 | tkerber | wf = wfrec.copy() |
| 4163 | 1 | tkerber | dim = wf.shape |
| 4164 | 1 | tkerber | for i in range(len(dim)): |
| 4165 | 1 | tkerber | wf = np.fft.fft(wf, dim[i], axis=i) |
| 4166 | 1 | tkerber | |
| 4167 | 1 | tkerber | #now the phase function to get the bloch phase
|
| 4168 | 1 | tkerber | basis = self.get_atoms().get_cell()
|
| 4169 | 1 | tkerber | kpoint = np.dot(ibz[kpt], basis) #coordinates of relevant
|
| 4170 | 1 | tkerber | #kpoint in cartesian
|
| 4171 | 1 | tkerber | #coordinates
|
| 4172 | 1 | tkerber | def phasefunction(coor): |
| 4173 | 1 | tkerber | 'return phasefunction'
|
| 4174 | 1 | tkerber | pf = np.exp(1.0j*np.dot(kpoint, coor))
|
| 4175 | 1 | tkerber | return pf
|
| 4176 | 1 | tkerber | |
| 4177 | 1 | tkerber | # Calculating the Bloch phase at the origin (0,0,0) of the grid
|
| 4178 | 1 | tkerber | origin = np.array([0., 0., 0.]) |
| 4179 | 1 | tkerber | blochphase = phasefunction(origin) |
| 4180 | 1 | tkerber | spatialshape = wf.shape[-len(basis):]
|
| 4181 | 1 | tkerber | gridunitvectors = np.array(map(lambda unitvector, |
| 4182 | 1 | tkerber | shape:unitvector/shape, |
| 4183 | 1 | tkerber | basis, |
| 4184 | 1 | tkerber | spatialshape)) |
| 4185 | 1 | tkerber | |
| 4186 | 1 | tkerber | for dim in range(len(spatialshape)): |
| 4187 | 1 | tkerber | # Multiplying with the phase at the origin
|
| 4188 | 1 | tkerber | deltaphase = phasefunction(gridunitvectors[dim]) |
| 4189 | 1 | tkerber | # and calculating phase difference between each point
|
| 4190 | 1 | tkerber | newphase = np.fromfunction(lambda i, phase=deltaphase:phase**i,
|
| 4191 | 1 | tkerber | (spatialshape[dim],)) |
| 4192 | 1 | tkerber | blochphase = np.multiply.outer(blochphase, newphase) |
| 4193 | 1 | tkerber | |
| 4194 | 1 | tkerber | return blochphase*wf
|
| 4195 | 1 | tkerber | |
| 4196 | 1 | tkerber | def get_wave_function(self, band=0, kpt=0, spin=0): |
| 4197 | 1 | tkerber | '''return the wave function. This is the pseudo wave function
|
| 4198 | 1 | tkerber | divided by volume.'''
|
| 4199 | 1 | tkerber | |
| 4200 | 1 | tkerber | pwf = self.get_pseudo_wave_function(band=band,
|
| 4201 | 1 | tkerber | kpt=kpt, |
| 4202 | 1 | tkerber | spin=spin, |
| 4203 | 1 | tkerber | pad=True)
|
| 4204 | 1 | tkerber | vol = self.get_atoms().get_volume()
|
| 4205 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
| 4206 | 1 | tkerber | softgrid = fftgrids['soft']
|
| 4207 | 1 | tkerber | |
| 4208 | 1 | tkerber | x, y, z = self.get_ucgrid((softgrid))
|
| 4209 | 1 | tkerber | |
| 4210 | 1 | tkerber | return x, y, z, pwf/np.sqrt(vol)
|
| 4211 | 1 | tkerber | |
| 4212 | 1 | tkerber | def strip(self): |
| 4213 | 1 | tkerber | '''remove all large memory nc variables not needed for
|
| 4214 | 1 | tkerber | anything I use very often.
|
| 4215 | 1 | tkerber | '''
|
| 4216 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
| 4217 | 1 | tkerber | ncdims=['max_projectors_per_atom'],
|
| 4218 | 1 | tkerber | ncvars=['WaveFunction',
|
| 4219 | 1 | tkerber | 'WaveFunctionFFTindex',
|
| 4220 | 1 | tkerber | 'NumberOfNLProjectors',
|
| 4221 | 1 | tkerber | 'NLProjectorPsi',
|
| 4222 | 1 | tkerber | 'TypeNLProjector1',
|
| 4223 | 1 | tkerber | 'NumberofNLProjectors',
|
| 4224 | 1 | tkerber | 'PartialCoreDensity',
|
| 4225 | 1 | tkerber | 'ChargeDensity',
|
| 4226 | 1 | tkerber | 'ElectrostaticPotential',
|
| 4227 | 1 | tkerber | 'StructureFactor'])
|
| 4228 | 1 | tkerber | |
| 4229 | 1 | tkerber | # shortcut function names
|
| 4230 | 1 | tkerber | Jacapo.get_cd = Jacapo.get_charge_density |
| 4231 | 1 | tkerber | Jacapo.get_wf = Jacapo.get_wave_function |
| 4232 | 1 | tkerber | Jacapo.get_esp = Jacapo.get_electrostatic_potential |
| 4233 | 1 | tkerber | Jacapo.get_occ = Jacapo.get_occupation_numbers |
| 4234 | 1 | tkerber | Jacapo.get_ef = Jacapo.get_fermi_level |
| 4235 | 1 | tkerber | Jacapo.get_number_of_bands = Jacapo.get_nbands |
| 4236 | 1 | tkerber | Jacapo.set_pseudopotentials = Jacapo.set_psp |