root / ase / optimize / fmin_bfgs.py @ 5
Historique | Voir | Annoter | Télécharger (15,47 ko)
| 1 |
#__docformat__ = "restructuredtext en"
|
|---|---|
| 2 |
# ******NOTICE***************
|
| 3 |
# optimize.py module by Travis E. Oliphant
|
| 4 |
#
|
| 5 |
# You may copy and use this module as you see fit with no
|
| 6 |
# guarantee implied provided you keep this notice in all copies.
|
| 7 |
# *****END NOTICE************
|
| 8 |
|
| 9 |
import numpy |
| 10 |
from numpy import atleast_1d, eye, mgrid, argmin, zeros, shape, empty, \ |
| 11 |
squeeze, vectorize, asarray, absolute, sqrt, Inf, asfarray, isinf |
| 12 |
from ase.utils.linesearch import LineSearch |
| 13 |
|
| 14 |
# These have been copied from Numeric's MLab.py
|
| 15 |
# I don't think they made the transition to scipy_core
|
| 16 |
|
| 17 |
# Copied and modified from scipy_optimize
|
| 18 |
abs = absolute |
| 19 |
import __builtin__ |
| 20 |
pymin = __builtin__.min |
| 21 |
pymax = __builtin__.max |
| 22 |
__version__="0.7"
|
| 23 |
_epsilon = sqrt(numpy.finfo(float).eps)
|
| 24 |
|
| 25 |
def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, |
| 26 |
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, |
| 27 |
retall=0, callback=None, maxstep=0.2): |
| 28 |
"""Minimize a function using the BFGS algorithm.
|
| 29 |
|
| 30 |
Parameters:
|
| 31 |
|
| 32 |
f : callable f(x,*args)
|
| 33 |
Objective function to be minimized.
|
| 34 |
x0 : ndarray
|
| 35 |
Initial guess.
|
| 36 |
fprime : callable f'(x,*args)
|
| 37 |
Gradient of f.
|
| 38 |
args : tuple
|
| 39 |
Extra arguments passed to f and fprime.
|
| 40 |
gtol : float
|
| 41 |
Gradient norm must be less than gtol before succesful termination.
|
| 42 |
norm : float
|
| 43 |
Order of norm (Inf is max, -Inf is min)
|
| 44 |
epsilon : int or ndarray
|
| 45 |
If fprime is approximated, use this value for the step size.
|
| 46 |
callback : callable
|
| 47 |
An optional user-supplied function to call after each
|
| 48 |
iteration. Called as callback(xk), where xk is the
|
| 49 |
current parameter vector.
|
| 50 |
|
| 51 |
Returns: (xopt, {fopt, gopt, Hopt, func_calls, grad_calls, warnflag}, <allvecs>)
|
| 52 |
|
| 53 |
xopt : ndarray
|
| 54 |
Parameters which minimize f, i.e. f(xopt) == fopt.
|
| 55 |
fopt : float
|
| 56 |
Minimum value.
|
| 57 |
gopt : ndarray
|
| 58 |
Value of gradient at minimum, f'(xopt), which should be near 0.
|
| 59 |
Bopt : ndarray
|
| 60 |
Value of 1/f''(xopt), i.e. the inverse hessian matrix.
|
| 61 |
func_calls : int
|
| 62 |
Number of function_calls made.
|
| 63 |
grad_calls : int
|
| 64 |
Number of gradient calls made.
|
| 65 |
warnflag : integer
|
| 66 |
1 : Maximum number of iterations exceeded.
|
| 67 |
2 : Gradient and/or function calls not changing.
|
| 68 |
allvecs : list
|
| 69 |
Results at each iteration. Only returned if retall is True.
|
| 70 |
|
| 71 |
*Other Parameters*:
|
| 72 |
maxiter : int
|
| 73 |
Maximum number of iterations to perform.
|
| 74 |
full_output : bool
|
| 75 |
If True,return fopt, func_calls, grad_calls, and warnflag
|
| 76 |
in addition to xopt.
|
| 77 |
disp : bool
|
| 78 |
Print convergence message if True.
|
| 79 |
retall : bool
|
| 80 |
Return a list of results at each iteration if True.
|
| 81 |
|
| 82 |
Notes:
|
| 83 |
|
| 84 |
Optimize the function, f, whose gradient is given by fprime
|
| 85 |
using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
|
| 86 |
and Shanno (BFGS) See Wright, and Nocedal 'Numerical
|
| 87 |
Optimization', 1999, pg. 198.
|
| 88 |
|
| 89 |
*See Also*:
|
| 90 |
|
| 91 |
scikits.openopt : SciKit which offers a unified syntax to call
|
| 92 |
this and other solvers.
|
| 93 |
|
| 94 |
"""
|
| 95 |
x0 = asarray(x0).squeeze() |
| 96 |
if x0.ndim == 0: |
| 97 |
x0.shape = (1,)
|
| 98 |
if maxiter is None: |
| 99 |
maxiter = len(x0)*200 |
| 100 |
func_calls, f = wrap_function(f, args) |
| 101 |
if fprime is None: |
| 102 |
grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon)) |
| 103 |
else:
|
| 104 |
grad_calls, myfprime = wrap_function(fprime, args) |
| 105 |
gfk = myfprime(x0) |
| 106 |
k = 0
|
| 107 |
N = len(x0)
|
| 108 |
I = numpy.eye(N,dtype=int)
|
| 109 |
Hk = I |
| 110 |
old_fval = f(x0) |
| 111 |
old_old_fval = old_fval + 5000
|
| 112 |
xk = x0 |
| 113 |
if retall:
|
| 114 |
allvecs = [x0] |
| 115 |
sk = [2*gtol]
|
| 116 |
warnflag = 0
|
| 117 |
gnorm = vecnorm(gfk,ord=norm) |
| 118 |
while (gnorm > gtol) and (k < maxiter): |
| 119 |
pk = -numpy.dot(Hk,gfk) |
| 120 |
ls = LineSearch() |
| 121 |
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
| 122 |
ls._line_search(f,myfprime,xk,pk,gfk, |
| 123 |
old_fval,old_old_fval,maxstep=maxstep) |
| 124 |
if alpha_k is None: # line search failed try different one. |
| 125 |
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
| 126 |
line_search(f,myfprime,xk,pk,gfk, |
| 127 |
old_fval,old_old_fval) |
| 128 |
if alpha_k is None: |
| 129 |
# This line search also failed to find a better solution.
|
| 130 |
warnflag = 2
|
| 131 |
break
|
| 132 |
xkp1 = xk + alpha_k * pk |
| 133 |
if retall:
|
| 134 |
allvecs.append(xkp1) |
| 135 |
sk = xkp1 - xk |
| 136 |
xk = xkp1 |
| 137 |
if gfkp1 is None: |
| 138 |
gfkp1 = myfprime(xkp1) |
| 139 |
|
| 140 |
yk = gfkp1 - gfk |
| 141 |
gfk = gfkp1 |
| 142 |
if callback is not None: |
| 143 |
callback(xk) |
| 144 |
k += 1
|
| 145 |
gnorm = vecnorm(gfk,ord=norm) |
| 146 |
if (gnorm <= gtol):
|
| 147 |
break
|
| 148 |
|
| 149 |
try: # this was handled in numeric, let it remaines for more safety |
| 150 |
rhok = 1.0 / (numpy.dot(yk,sk))
|
| 151 |
except ZeroDivisionError: |
| 152 |
rhok = 1000.0
|
| 153 |
print "Divide-by-zero encountered: rhok assumed large" |
| 154 |
if isinf(rhok): # this is patch for numpy |
| 155 |
rhok = 1000.0
|
| 156 |
print "Divide-by-zero encountered: rhok assumed large" |
| 157 |
A1 = I - sk[:,numpy.newaxis] * yk[numpy.newaxis,:] * rhok |
| 158 |
A2 = I - yk[:,numpy.newaxis] * sk[numpy.newaxis,:] * rhok |
| 159 |
Hk = numpy.dot(A1,numpy.dot(Hk,A2)) + rhok * sk[:,numpy.newaxis] \ |
| 160 |
* sk[numpy.newaxis,:] |
| 161 |
|
| 162 |
if disp or full_output: |
| 163 |
fval = old_fval |
| 164 |
if warnflag == 2: |
| 165 |
if disp:
|
| 166 |
print "Warning: Desired error not necessarily achieved" \ |
| 167 |
"due to precision loss"
|
| 168 |
print " Current function value: %f" % fval |
| 169 |
print " Iterations: %d" % k |
| 170 |
print " Function evaluations: %d" % func_calls[0] |
| 171 |
print " Gradient evaluations: %d" % grad_calls[0] |
| 172 |
|
| 173 |
elif k >= maxiter:
|
| 174 |
warnflag = 1
|
| 175 |
if disp:
|
| 176 |
print "Warning: Maximum number of iterations has been exceeded" |
| 177 |
print " Current function value: %f" % fval |
| 178 |
print " Iterations: %d" % k |
| 179 |
print " Function evaluations: %d" % func_calls[0] |
| 180 |
print " Gradient evaluations: %d" % grad_calls[0] |
| 181 |
else:
|
| 182 |
if disp:
|
| 183 |
print "Optimization terminated successfully." |
| 184 |
print " Current function value: %f" % fval |
| 185 |
print " Iterations: %d" % k |
| 186 |
print " Function evaluations: %d" % func_calls[0] |
| 187 |
print " Gradient evaluations: %d" % grad_calls[0] |
| 188 |
|
| 189 |
if full_output:
|
| 190 |
retlist = xk, fval, gfk, Hk, func_calls[0], grad_calls[0], warnflag |
| 191 |
if retall:
|
| 192 |
retlist += (allvecs,) |
| 193 |
else:
|
| 194 |
retlist = xk |
| 195 |
if retall:
|
| 196 |
retlist = (xk, allvecs) |
| 197 |
|
| 198 |
return retlist
|
| 199 |
|
| 200 |
def vecnorm(x, ord=2): |
| 201 |
if ord == Inf:
|
| 202 |
return numpy.amax(abs(x)) |
| 203 |
elif ord == -Inf:
|
| 204 |
return numpy.amin(abs(x)) |
| 205 |
else:
|
| 206 |
return numpy.sum(abs(x)**ord,axis=0)**(1.0/ord) |
| 207 |
|
| 208 |
def wrap_function(function, args): |
| 209 |
ncalls = [0]
|
| 210 |
def function_wrapper(x): |
| 211 |
ncalls[0] += 1 |
| 212 |
return function(x, *args)
|
| 213 |
return ncalls, function_wrapper
|
| 214 |
|
| 215 |
def _cubicmin(a,fa,fpa,b,fb,c,fc): |
| 216 |
# finds the minimizer for a cubic polynomial that goes through the
|
| 217 |
# points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
|
| 218 |
#
|
| 219 |
# if no minimizer can be found return None
|
| 220 |
#
|
| 221 |
# f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
|
| 222 |
|
| 223 |
C = fpa |
| 224 |
D = fa |
| 225 |
db = b-a |
| 226 |
dc = c-a |
| 227 |
if (db == 0) or (dc == 0) or (b==c): return None |
| 228 |
denom = (db*dc)**2 * (db-dc)
|
| 229 |
d1 = empty((2,2)) |
| 230 |
d1[0,0] = dc**2 |
| 231 |
d1[0,1] = -db**2 |
| 232 |
d1[1,0] = -dc**3 |
| 233 |
d1[1,1] = db**3 |
| 234 |
[A,B] = numpy.dot(d1,asarray([fb-fa-C*db,fc-fa-C*dc]).flatten()) |
| 235 |
A /= denom |
| 236 |
B /= denom |
| 237 |
radical = B*B-3*A*C
|
| 238 |
if radical < 0: return None |
| 239 |
if (A == 0): return None |
| 240 |
xmin = a + (-B + sqrt(radical))/(3*A)
|
| 241 |
return xmin
|
| 242 |
|
| 243 |
def _quadmin(a,fa,fpa,b,fb): |
| 244 |
# finds the minimizer for a quadratic polynomial that goes through
|
| 245 |
# the points (a,fa), (b,fb) with derivative at a of fpa
|
| 246 |
# f(x) = B*(x-a)^2 + C*(x-a) + D
|
| 247 |
D = fa |
| 248 |
C = fpa |
| 249 |
db = b-a*1.0
|
| 250 |
if (db==0): return None |
| 251 |
B = (fb-D-C*db)/(db*db) |
| 252 |
if (B <= 0): return None |
| 253 |
xmin = a - C / (2.0*B)
|
| 254 |
return xmin
|
| 255 |
|
| 256 |
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, |
| 257 |
phi, derphi, phi0, derphi0, c1, c2): |
| 258 |
maxiter = 10
|
| 259 |
i = 0
|
| 260 |
delta1 = 0.2 # cubic interpolant check |
| 261 |
delta2 = 0.1 # quadratic interpolant check |
| 262 |
phi_rec = phi0 |
| 263 |
a_rec = 0
|
| 264 |
while 1: |
| 265 |
# interpolate to find a trial step length between a_lo and a_hi
|
| 266 |
# Need to choose interpolation here. Use cubic interpolation and then if the
|
| 267 |
# result is within delta * dalpha or outside of the interval bounded by a_lo or a_hi
|
| 268 |
# then use quadratic interpolation, if the result is still too close, then use bisection
|
| 269 |
|
| 270 |
dalpha = a_hi-a_lo; |
| 271 |
if dalpha < 0: a,b = a_hi,a_lo |
| 272 |
else: a,b = a_lo, a_hi
|
| 273 |
|
| 274 |
# minimizer of cubic interpolant
|
| 275 |
# (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
|
| 276 |
# if the result is too close to the end points (or out of the interval)
|
| 277 |
# then use quadratic interpolation with phi_lo, derphi_lo and phi_hi
|
| 278 |
# if the result is stil too close to the end points (or out of the interval)
|
| 279 |
# then use bisection
|
| 280 |
|
| 281 |
if (i > 0): |
| 282 |
cchk = delta1*dalpha |
| 283 |
a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec) |
| 284 |
if (i==0) or (a_j is None) or (a_j > b-cchk) or (a_j < a+cchk): |
| 285 |
qchk = delta2*dalpha |
| 286 |
a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) |
| 287 |
if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): |
| 288 |
a_j = a_lo + 0.5*dalpha
|
| 289 |
# print "Using bisection."
|
| 290 |
# else: print "Using quadratic."
|
| 291 |
# else: print "Using cubic."
|
| 292 |
|
| 293 |
# Check new value of a_j
|
| 294 |
|
| 295 |
phi_aj = phi(a_j) |
| 296 |
if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): |
| 297 |
phi_rec = phi_hi |
| 298 |
a_rec = a_hi |
| 299 |
a_hi = a_j |
| 300 |
phi_hi = phi_aj |
| 301 |
else:
|
| 302 |
derphi_aj = derphi(a_j) |
| 303 |
if abs(derphi_aj) <= -c2*derphi0: |
| 304 |
a_star = a_j |
| 305 |
val_star = phi_aj |
| 306 |
valprime_star = derphi_aj |
| 307 |
break
|
| 308 |
if derphi_aj*(a_hi - a_lo) >= 0: |
| 309 |
phi_rec = phi_hi |
| 310 |
a_rec = a_hi |
| 311 |
a_hi = a_lo |
| 312 |
phi_hi = phi_lo |
| 313 |
else:
|
| 314 |
phi_rec = phi_lo |
| 315 |
a_rec = a_lo |
| 316 |
a_lo = a_j |
| 317 |
phi_lo = phi_aj |
| 318 |
derphi_lo = derphi_aj |
| 319 |
i += 1
|
| 320 |
if (i > maxiter):
|
| 321 |
a_star = a_j |
| 322 |
val_star = phi_aj |
| 323 |
valprime_star = None
|
| 324 |
break
|
| 325 |
return a_star, val_star, valprime_star
|
| 326 |
|
| 327 |
def line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval, |
| 328 |
args=(), c1=1e-4, c2=0.9, amax=50): |
| 329 |
"""Find alpha that satisfies strong Wolfe conditions.
|
| 330 |
|
| 331 |
Parameters:
|
| 332 |
|
| 333 |
f : callable f(x,*args)
|
| 334 |
Objective function.
|
| 335 |
myfprime : callable f'(x,*args)
|
| 336 |
Objective function gradient (can be None).
|
| 337 |
xk : ndarray
|
| 338 |
Starting point.
|
| 339 |
pk : ndarray
|
| 340 |
Search direction.
|
| 341 |
gfk : ndarray
|
| 342 |
Gradient value for x=xk (xk being the current parameter
|
| 343 |
estimate).
|
| 344 |
args : tuple
|
| 345 |
Additional arguments passed to objective function.
|
| 346 |
c1 : float
|
| 347 |
Parameter for Armijo condition rule.
|
| 348 |
c2 : float
|
| 349 |
Parameter for curvature condition rule.
|
| 350 |
|
| 351 |
Returns:
|
| 352 |
|
| 353 |
alpha0 : float
|
| 354 |
Alpha for which ``x_new = x0 + alpha * pk``.
|
| 355 |
fc : int
|
| 356 |
Number of function evaluations made.
|
| 357 |
gc : int
|
| 358 |
Number of gradient evaluations made.
|
| 359 |
|
| 360 |
Notes:
|
| 361 |
|
| 362 |
Uses the line search algorithm to enforce strong Wolfe
|
| 363 |
conditions. See Wright and Nocedal, 'Numerical Optimization',
|
| 364 |
1999, pg. 59-60.
|
| 365 |
|
| 366 |
For the zoom phase it uses an algorithm by [...].
|
| 367 |
|
| 368 |
"""
|
| 369 |
|
| 370 |
global _ls_fc, _ls_gc, _ls_ingfk
|
| 371 |
_ls_fc = 0
|
| 372 |
_ls_gc = 0
|
| 373 |
_ls_ingfk = None
|
| 374 |
def phi(alpha): |
| 375 |
global _ls_fc
|
| 376 |
_ls_fc += 1
|
| 377 |
return f(xk+alpha*pk,*args)
|
| 378 |
|
| 379 |
if isinstance(myfprime,type(())): |
| 380 |
def phiprime(alpha): |
| 381 |
global _ls_fc, _ls_ingfk
|
| 382 |
_ls_fc += len(xk)+1 |
| 383 |
eps = myfprime[1]
|
| 384 |
fprime = myfprime[0]
|
| 385 |
newargs = (f,eps) + args |
| 386 |
_ls_ingfk = fprime(xk+alpha*pk,*newargs) # store for later use
|
| 387 |
return numpy.dot(_ls_ingfk,pk)
|
| 388 |
else:
|
| 389 |
fprime = myfprime |
| 390 |
def phiprime(alpha): |
| 391 |
global _ls_gc, _ls_ingfk
|
| 392 |
_ls_gc += 1
|
| 393 |
_ls_ingfk = fprime(xk+alpha*pk,*args) # store for later use
|
| 394 |
return numpy.dot(_ls_ingfk,pk)
|
| 395 |
|
| 396 |
alpha0 = 0
|
| 397 |
phi0 = old_fval |
| 398 |
derphi0 = numpy.dot(gfk,pk) |
| 399 |
|
| 400 |
alpha1 = pymin(1.0,1.01*2*(phi0-old_old_fval)/derphi0) |
| 401 |
|
| 402 |
if alpha1 == 0: |
| 403 |
# This shouldn't happen. Perhaps the increment has slipped below
|
| 404 |
# machine precision? For now, set the return variables skip the
|
| 405 |
# useless while loop, and raise warnflag=2 due to possible imprecision.
|
| 406 |
alpha_star = None
|
| 407 |
fval_star = old_fval |
| 408 |
old_fval = old_old_fval |
| 409 |
fprime_star = None
|
| 410 |
|
| 411 |
phi_a1 = phi(alpha1) |
| 412 |
#derphi_a1 = phiprime(alpha1) evaluated below
|
| 413 |
|
| 414 |
phi_a0 = phi0 |
| 415 |
derphi_a0 = derphi0 |
| 416 |
|
| 417 |
i = 1
|
| 418 |
maxiter = 10
|
| 419 |
while 1: # bracketing phase |
| 420 |
if alpha1 == 0: |
| 421 |
break
|
| 422 |
if (phi_a1 > phi0 + c1*alpha1*derphi0) or \ |
| 423 |
((phi_a1 >= phi_a0) and (i > 1)): |
| 424 |
alpha_star, fval_star, fprime_star = \ |
| 425 |
zoom(alpha0, alpha1, phi_a0, |
| 426 |
phi_a1, derphi_a0, phi, phiprime, |
| 427 |
phi0, derphi0, c1, c2) |
| 428 |
break
|
| 429 |
|
| 430 |
derphi_a1 = phiprime(alpha1) |
| 431 |
if (abs(derphi_a1) <= -c2*derphi0): |
| 432 |
alpha_star = alpha1 |
| 433 |
fval_star = phi_a1 |
| 434 |
fprime_star = derphi_a1 |
| 435 |
break
|
| 436 |
|
| 437 |
if (derphi_a1 >= 0): |
| 438 |
alpha_star, fval_star, fprime_star = \ |
| 439 |
zoom(alpha1, alpha0, phi_a1, |
| 440 |
phi_a0, derphi_a1, phi, phiprime, |
| 441 |
phi0, derphi0, c1, c2) |
| 442 |
break
|
| 443 |
|
| 444 |
alpha2 = 2 * alpha1 # increase by factor of two on each iteration |
| 445 |
i = i + 1
|
| 446 |
alpha0 = alpha1 |
| 447 |
alpha1 = alpha2 |
| 448 |
phi_a0 = phi_a1 |
| 449 |
phi_a1 = phi(alpha1) |
| 450 |
derphi_a0 = derphi_a1 |
| 451 |
|
| 452 |
# stopping test if lower function not found
|
| 453 |
if (i > maxiter):
|
| 454 |
alpha_star = alpha1 |
| 455 |
fval_star = phi_a1 |
| 456 |
fprime_star = None
|
| 457 |
break
|
| 458 |
|
| 459 |
if fprime_star is not None: |
| 460 |
# fprime_star is a number (derphi) -- so use the most recently
|
| 461 |
# calculated gradient used in computing it derphi = gfk*pk
|
| 462 |
# this is the gradient at the next step no need to compute it
|
| 463 |
# again in the outer loop.
|
| 464 |
fprime_star = _ls_ingfk |
| 465 |
|
| 466 |
return alpha_star, _ls_fc, _ls_gc, fval_star, old_fval, fprime_star
|
| 467 |
|
| 468 |
def approx_fprime(xk,f,epsilon,*args): |
| 469 |
f0 = f(*((xk,)+args)) |
| 470 |
grad = numpy.zeros((len(xk),), float) |
| 471 |
ei = numpy.zeros((len(xk),), float) |
| 472 |
for k in range(len(xk)): |
| 473 |
ei[k] = epsilon |
| 474 |
grad[k] = (f(*((xk+ei,)+args)) - f0)/epsilon |
| 475 |
ei[k] = 0.0
|
| 476 |
return grad
|
| 477 |
|