root / ase / optimize / fmin_bfgs.py @ 5
Historique | Voir | Annoter | Télécharger (15,47 ko)
| 1 | 1 | tkerber | #__docformat__ = "restructuredtext en"
|
|---|---|---|---|
| 2 | 1 | tkerber | # ******NOTICE***************
|
| 3 | 1 | tkerber | # optimize.py module by Travis E. Oliphant
|
| 4 | 1 | tkerber | #
|
| 5 | 1 | tkerber | # You may copy and use this module as you see fit with no
|
| 6 | 1 | tkerber | # guarantee implied provided you keep this notice in all copies.
|
| 7 | 1 | tkerber | # *****END NOTICE************
|
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | import numpy |
| 10 | 1 | tkerber | from numpy import atleast_1d, eye, mgrid, argmin, zeros, shape, empty, \ |
| 11 | 1 | tkerber | squeeze, vectorize, asarray, absolute, sqrt, Inf, asfarray, isinf |
| 12 | 1 | tkerber | from ase.utils.linesearch import LineSearch |
| 13 | 1 | tkerber | |
| 14 | 1 | tkerber | # These have been copied from Numeric's MLab.py
|
| 15 | 1 | tkerber | # I don't think they made the transition to scipy_core
|
| 16 | 1 | tkerber | |
| 17 | 1 | tkerber | # Copied and modified from scipy_optimize
|
| 18 | 1 | tkerber | abs = absolute |
| 19 | 1 | tkerber | import __builtin__ |
| 20 | 1 | tkerber | pymin = __builtin__.min |
| 21 | 1 | tkerber | pymax = __builtin__.max |
| 22 | 1 | tkerber | __version__="0.7"
|
| 23 | 1 | tkerber | _epsilon = sqrt(numpy.finfo(float).eps)
|
| 24 | 1 | tkerber | |
| 25 | 1 | tkerber | def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, |
| 26 | 1 | tkerber | epsilon=_epsilon, maxiter=None, full_output=0, disp=1, |
| 27 | 1 | tkerber | retall=0, callback=None, maxstep=0.2): |
| 28 | 1 | tkerber | """Minimize a function using the BFGS algorithm.
|
| 29 | 1 | tkerber |
|
| 30 | 1 | tkerber | Parameters:
|
| 31 | 1 | tkerber |
|
| 32 | 1 | tkerber | f : callable f(x,*args)
|
| 33 | 1 | tkerber | Objective function to be minimized.
|
| 34 | 1 | tkerber | x0 : ndarray
|
| 35 | 1 | tkerber | Initial guess.
|
| 36 | 1 | tkerber | fprime : callable f'(x,*args)
|
| 37 | 1 | tkerber | Gradient of f.
|
| 38 | 1 | tkerber | args : tuple
|
| 39 | 1 | tkerber | Extra arguments passed to f and fprime.
|
| 40 | 1 | tkerber | gtol : float
|
| 41 | 1 | tkerber | Gradient norm must be less than gtol before succesful termination.
|
| 42 | 1 | tkerber | norm : float
|
| 43 | 1 | tkerber | Order of norm (Inf is max, -Inf is min)
|
| 44 | 1 | tkerber | epsilon : int or ndarray
|
| 45 | 1 | tkerber | If fprime is approximated, use this value for the step size.
|
| 46 | 1 | tkerber | callback : callable
|
| 47 | 1 | tkerber | An optional user-supplied function to call after each
|
| 48 | 1 | tkerber | iteration. Called as callback(xk), where xk is the
|
| 49 | 1 | tkerber | current parameter vector.
|
| 50 | 1 | tkerber |
|
| 51 | 1 | tkerber | Returns: (xopt, {fopt, gopt, Hopt, func_calls, grad_calls, warnflag}, <allvecs>)
|
| 52 | 1 | tkerber |
|
| 53 | 1 | tkerber | xopt : ndarray
|
| 54 | 1 | tkerber | Parameters which minimize f, i.e. f(xopt) == fopt.
|
| 55 | 1 | tkerber | fopt : float
|
| 56 | 1 | tkerber | Minimum value.
|
| 57 | 1 | tkerber | gopt : ndarray
|
| 58 | 1 | tkerber | Value of gradient at minimum, f'(xopt), which should be near 0.
|
| 59 | 1 | tkerber | Bopt : ndarray
|
| 60 | 1 | tkerber | Value of 1/f''(xopt), i.e. the inverse hessian matrix.
|
| 61 | 1 | tkerber | func_calls : int
|
| 62 | 1 | tkerber | Number of function_calls made.
|
| 63 | 1 | tkerber | grad_calls : int
|
| 64 | 1 | tkerber | Number of gradient calls made.
|
| 65 | 1 | tkerber | warnflag : integer
|
| 66 | 1 | tkerber | 1 : Maximum number of iterations exceeded.
|
| 67 | 1 | tkerber | 2 : Gradient and/or function calls not changing.
|
| 68 | 1 | tkerber | allvecs : list
|
| 69 | 1 | tkerber | Results at each iteration. Only returned if retall is True.
|
| 70 | 1 | tkerber |
|
| 71 | 1 | tkerber | *Other Parameters*:
|
| 72 | 1 | tkerber | maxiter : int
|
| 73 | 1 | tkerber | Maximum number of iterations to perform.
|
| 74 | 1 | tkerber | full_output : bool
|
| 75 | 1 | tkerber | If True,return fopt, func_calls, grad_calls, and warnflag
|
| 76 | 1 | tkerber | in addition to xopt.
|
| 77 | 1 | tkerber | disp : bool
|
| 78 | 1 | tkerber | Print convergence message if True.
|
| 79 | 1 | tkerber | retall : bool
|
| 80 | 1 | tkerber | Return a list of results at each iteration if True.
|
| 81 | 1 | tkerber |
|
| 82 | 1 | tkerber | Notes:
|
| 83 | 1 | tkerber |
|
| 84 | 1 | tkerber | Optimize the function, f, whose gradient is given by fprime
|
| 85 | 1 | tkerber | using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
|
| 86 | 1 | tkerber | and Shanno (BFGS) See Wright, and Nocedal 'Numerical
|
| 87 | 1 | tkerber | Optimization', 1999, pg. 198.
|
| 88 | 1 | tkerber |
|
| 89 | 1 | tkerber | *See Also*:
|
| 90 | 1 | tkerber |
|
| 91 | 1 | tkerber | scikits.openopt : SciKit which offers a unified syntax to call
|
| 92 | 1 | tkerber | this and other solvers.
|
| 93 | 1 | tkerber |
|
| 94 | 1 | tkerber | """
|
| 95 | 1 | tkerber | x0 = asarray(x0).squeeze() |
| 96 | 1 | tkerber | if x0.ndim == 0: |
| 97 | 1 | tkerber | x0.shape = (1,)
|
| 98 | 1 | tkerber | if maxiter is None: |
| 99 | 1 | tkerber | maxiter = len(x0)*200 |
| 100 | 1 | tkerber | func_calls, f = wrap_function(f, args) |
| 101 | 1 | tkerber | if fprime is None: |
| 102 | 1 | tkerber | grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon)) |
| 103 | 1 | tkerber | else:
|
| 104 | 1 | tkerber | grad_calls, myfprime = wrap_function(fprime, args) |
| 105 | 1 | tkerber | gfk = myfprime(x0) |
| 106 | 1 | tkerber | k = 0
|
| 107 | 1 | tkerber | N = len(x0)
|
| 108 | 1 | tkerber | I = numpy.eye(N,dtype=int)
|
| 109 | 1 | tkerber | Hk = I |
| 110 | 1 | tkerber | old_fval = f(x0) |
| 111 | 1 | tkerber | old_old_fval = old_fval + 5000
|
| 112 | 1 | tkerber | xk = x0 |
| 113 | 1 | tkerber | if retall:
|
| 114 | 1 | tkerber | allvecs = [x0] |
| 115 | 1 | tkerber | sk = [2*gtol]
|
| 116 | 1 | tkerber | warnflag = 0
|
| 117 | 1 | tkerber | gnorm = vecnorm(gfk,ord=norm) |
| 118 | 1 | tkerber | while (gnorm > gtol) and (k < maxiter): |
| 119 | 1 | tkerber | pk = -numpy.dot(Hk,gfk) |
| 120 | 1 | tkerber | ls = LineSearch() |
| 121 | 1 | tkerber | alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
| 122 | 1 | tkerber | ls._line_search(f,myfprime,xk,pk,gfk, |
| 123 | 1 | tkerber | old_fval,old_old_fval,maxstep=maxstep) |
| 124 | 1 | tkerber | if alpha_k is None: # line search failed try different one. |
| 125 | 1 | tkerber | alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
| 126 | 1 | tkerber | line_search(f,myfprime,xk,pk,gfk, |
| 127 | 1 | tkerber | old_fval,old_old_fval) |
| 128 | 1 | tkerber | if alpha_k is None: |
| 129 | 1 | tkerber | # This line search also failed to find a better solution.
|
| 130 | 1 | tkerber | warnflag = 2
|
| 131 | 1 | tkerber | break
|
| 132 | 1 | tkerber | xkp1 = xk + alpha_k * pk |
| 133 | 1 | tkerber | if retall:
|
| 134 | 1 | tkerber | allvecs.append(xkp1) |
| 135 | 1 | tkerber | sk = xkp1 - xk |
| 136 | 1 | tkerber | xk = xkp1 |
| 137 | 1 | tkerber | if gfkp1 is None: |
| 138 | 1 | tkerber | gfkp1 = myfprime(xkp1) |
| 139 | 1 | tkerber | |
| 140 | 1 | tkerber | yk = gfkp1 - gfk |
| 141 | 1 | tkerber | gfk = gfkp1 |
| 142 | 1 | tkerber | if callback is not None: |
| 143 | 1 | tkerber | callback(xk) |
| 144 | 1 | tkerber | k += 1
|
| 145 | 1 | tkerber | gnorm = vecnorm(gfk,ord=norm) |
| 146 | 1 | tkerber | if (gnorm <= gtol):
|
| 147 | 1 | tkerber | break
|
| 148 | 1 | tkerber | |
| 149 | 1 | tkerber | try: # this was handled in numeric, let it remaines for more safety |
| 150 | 1 | tkerber | rhok = 1.0 / (numpy.dot(yk,sk))
|
| 151 | 1 | tkerber | except ZeroDivisionError: |
| 152 | 1 | tkerber | rhok = 1000.0
|
| 153 | 1 | tkerber | print "Divide-by-zero encountered: rhok assumed large" |
| 154 | 1 | tkerber | if isinf(rhok): # this is patch for numpy |
| 155 | 1 | tkerber | rhok = 1000.0
|
| 156 | 1 | tkerber | print "Divide-by-zero encountered: rhok assumed large" |
| 157 | 1 | tkerber | A1 = I - sk[:,numpy.newaxis] * yk[numpy.newaxis,:] * rhok |
| 158 | 1 | tkerber | A2 = I - yk[:,numpy.newaxis] * sk[numpy.newaxis,:] * rhok |
| 159 | 1 | tkerber | Hk = numpy.dot(A1,numpy.dot(Hk,A2)) + rhok * sk[:,numpy.newaxis] \ |
| 160 | 1 | tkerber | * sk[numpy.newaxis,:] |
| 161 | 1 | tkerber | |
| 162 | 1 | tkerber | if disp or full_output: |
| 163 | 1 | tkerber | fval = old_fval |
| 164 | 1 | tkerber | if warnflag == 2: |
| 165 | 1 | tkerber | if disp:
|
| 166 | 1 | tkerber | print "Warning: Desired error not necessarily achieved" \ |
| 167 | 1 | tkerber | "due to precision loss"
|
| 168 | 1 | tkerber | print " Current function value: %f" % fval |
| 169 | 1 | tkerber | print " Iterations: %d" % k |
| 170 | 1 | tkerber | print " Function evaluations: %d" % func_calls[0] |
| 171 | 1 | tkerber | print " Gradient evaluations: %d" % grad_calls[0] |
| 172 | 1 | tkerber | |
| 173 | 1 | tkerber | elif k >= maxiter:
|
| 174 | 1 | tkerber | warnflag = 1
|
| 175 | 1 | tkerber | if disp:
|
| 176 | 1 | tkerber | print "Warning: Maximum number of iterations has been exceeded" |
| 177 | 1 | tkerber | print " Current function value: %f" % fval |
| 178 | 1 | tkerber | print " Iterations: %d" % k |
| 179 | 1 | tkerber | print " Function evaluations: %d" % func_calls[0] |
| 180 | 1 | tkerber | print " Gradient evaluations: %d" % grad_calls[0] |
| 181 | 1 | tkerber | else:
|
| 182 | 1 | tkerber | if disp:
|
| 183 | 1 | tkerber | print "Optimization terminated successfully." |
| 184 | 1 | tkerber | print " Current function value: %f" % fval |
| 185 | 1 | tkerber | print " Iterations: %d" % k |
| 186 | 1 | tkerber | print " Function evaluations: %d" % func_calls[0] |
| 187 | 1 | tkerber | print " Gradient evaluations: %d" % grad_calls[0] |
| 188 | 1 | tkerber | |
| 189 | 1 | tkerber | if full_output:
|
| 190 | 1 | tkerber | retlist = xk, fval, gfk, Hk, func_calls[0], grad_calls[0], warnflag |
| 191 | 1 | tkerber | if retall:
|
| 192 | 1 | tkerber | retlist += (allvecs,) |
| 193 | 1 | tkerber | else:
|
| 194 | 1 | tkerber | retlist = xk |
| 195 | 1 | tkerber | if retall:
|
| 196 | 1 | tkerber | retlist = (xk, allvecs) |
| 197 | 1 | tkerber | |
| 198 | 1 | tkerber | return retlist
|
| 199 | 1 | tkerber | |
| 200 | 1 | tkerber | def vecnorm(x, ord=2): |
| 201 | 1 | tkerber | if ord == Inf:
|
| 202 | 1 | tkerber | return numpy.amax(abs(x)) |
| 203 | 1 | tkerber | elif ord == -Inf:
|
| 204 | 1 | tkerber | return numpy.amin(abs(x)) |
| 205 | 1 | tkerber | else:
|
| 206 | 1 | tkerber | return numpy.sum(abs(x)**ord,axis=0)**(1.0/ord) |
| 207 | 1 | tkerber | |
| 208 | 1 | tkerber | def wrap_function(function, args): |
| 209 | 1 | tkerber | ncalls = [0]
|
| 210 | 1 | tkerber | def function_wrapper(x): |
| 211 | 1 | tkerber | ncalls[0] += 1 |
| 212 | 1 | tkerber | return function(x, *args)
|
| 213 | 1 | tkerber | return ncalls, function_wrapper
|
| 214 | 1 | tkerber | |
| 215 | 1 | tkerber | def _cubicmin(a,fa,fpa,b,fb,c,fc): |
| 216 | 1 | tkerber | # finds the minimizer for a cubic polynomial that goes through the
|
| 217 | 1 | tkerber | # points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
|
| 218 | 1 | tkerber | #
|
| 219 | 1 | tkerber | # if no minimizer can be found return None
|
| 220 | 1 | tkerber | #
|
| 221 | 1 | tkerber | # f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
|
| 222 | 1 | tkerber | |
| 223 | 1 | tkerber | C = fpa |
| 224 | 1 | tkerber | D = fa |
| 225 | 1 | tkerber | db = b-a |
| 226 | 1 | tkerber | dc = c-a |
| 227 | 1 | tkerber | if (db == 0) or (dc == 0) or (b==c): return None |
| 228 | 1 | tkerber | denom = (db*dc)**2 * (db-dc)
|
| 229 | 1 | tkerber | d1 = empty((2,2)) |
| 230 | 1 | tkerber | d1[0,0] = dc**2 |
| 231 | 1 | tkerber | d1[0,1] = -db**2 |
| 232 | 1 | tkerber | d1[1,0] = -dc**3 |
| 233 | 1 | tkerber | d1[1,1] = db**3 |
| 234 | 1 | tkerber | [A,B] = numpy.dot(d1,asarray([fb-fa-C*db,fc-fa-C*dc]).flatten()) |
| 235 | 1 | tkerber | A /= denom |
| 236 | 1 | tkerber | B /= denom |
| 237 | 1 | tkerber | radical = B*B-3*A*C
|
| 238 | 1 | tkerber | if radical < 0: return None |
| 239 | 1 | tkerber | if (A == 0): return None |
| 240 | 1 | tkerber | xmin = a + (-B + sqrt(radical))/(3*A)
|
| 241 | 1 | tkerber | return xmin
|
| 242 | 1 | tkerber | |
| 243 | 1 | tkerber | def _quadmin(a,fa,fpa,b,fb): |
| 244 | 1 | tkerber | # finds the minimizer for a quadratic polynomial that goes through
|
| 245 | 1 | tkerber | # the points (a,fa), (b,fb) with derivative at a of fpa
|
| 246 | 1 | tkerber | # f(x) = B*(x-a)^2 + C*(x-a) + D
|
| 247 | 1 | tkerber | D = fa |
| 248 | 1 | tkerber | C = fpa |
| 249 | 1 | tkerber | db = b-a*1.0
|
| 250 | 1 | tkerber | if (db==0): return None |
| 251 | 1 | tkerber | B = (fb-D-C*db)/(db*db) |
| 252 | 1 | tkerber | if (B <= 0): return None |
| 253 | 1 | tkerber | xmin = a - C / (2.0*B)
|
| 254 | 1 | tkerber | return xmin
|
| 255 | 1 | tkerber | |
| 256 | 1 | tkerber | def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, |
| 257 | 1 | tkerber | phi, derphi, phi0, derphi0, c1, c2): |
| 258 | 1 | tkerber | maxiter = 10
|
| 259 | 1 | tkerber | i = 0
|
| 260 | 1 | tkerber | delta1 = 0.2 # cubic interpolant check |
| 261 | 1 | tkerber | delta2 = 0.1 # quadratic interpolant check |
| 262 | 1 | tkerber | phi_rec = phi0 |
| 263 | 1 | tkerber | a_rec = 0
|
| 264 | 1 | tkerber | while 1: |
| 265 | 1 | tkerber | # interpolate to find a trial step length between a_lo and a_hi
|
| 266 | 1 | tkerber | # Need to choose interpolation here. Use cubic interpolation and then if the
|
| 267 | 1 | tkerber | # result is within delta * dalpha or outside of the interval bounded by a_lo or a_hi
|
| 268 | 1 | tkerber | # then use quadratic interpolation, if the result is still too close, then use bisection
|
| 269 | 1 | tkerber | |
| 270 | 1 | tkerber | dalpha = a_hi-a_lo; |
| 271 | 1 | tkerber | if dalpha < 0: a,b = a_hi,a_lo |
| 272 | 1 | tkerber | else: a,b = a_lo, a_hi
|
| 273 | 1 | tkerber | |
| 274 | 1 | tkerber | # minimizer of cubic interpolant
|
| 275 | 1 | tkerber | # (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
|
| 276 | 1 | tkerber | # if the result is too close to the end points (or out of the interval)
|
| 277 | 1 | tkerber | # then use quadratic interpolation with phi_lo, derphi_lo and phi_hi
|
| 278 | 1 | tkerber | # if the result is stil too close to the end points (or out of the interval)
|
| 279 | 1 | tkerber | # then use bisection
|
| 280 | 1 | tkerber | |
| 281 | 1 | tkerber | if (i > 0): |
| 282 | 1 | tkerber | cchk = delta1*dalpha |
| 283 | 1 | tkerber | a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec) |
| 284 | 1 | tkerber | if (i==0) or (a_j is None) or (a_j > b-cchk) or (a_j < a+cchk): |
| 285 | 1 | tkerber | qchk = delta2*dalpha |
| 286 | 1 | tkerber | a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) |
| 287 | 1 | tkerber | if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): |
| 288 | 1 | tkerber | a_j = a_lo + 0.5*dalpha
|
| 289 | 1 | tkerber | # print "Using bisection."
|
| 290 | 1 | tkerber | # else: print "Using quadratic."
|
| 291 | 1 | tkerber | # else: print "Using cubic."
|
| 292 | 1 | tkerber | |
| 293 | 1 | tkerber | # Check new value of a_j
|
| 294 | 1 | tkerber | |
| 295 | 1 | tkerber | phi_aj = phi(a_j) |
| 296 | 1 | tkerber | if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): |
| 297 | 1 | tkerber | phi_rec = phi_hi |
| 298 | 1 | tkerber | a_rec = a_hi |
| 299 | 1 | tkerber | a_hi = a_j |
| 300 | 1 | tkerber | phi_hi = phi_aj |
| 301 | 1 | tkerber | else:
|
| 302 | 1 | tkerber | derphi_aj = derphi(a_j) |
| 303 | 1 | tkerber | if abs(derphi_aj) <= -c2*derphi0: |
| 304 | 1 | tkerber | a_star = a_j |
| 305 | 1 | tkerber | val_star = phi_aj |
| 306 | 1 | tkerber | valprime_star = derphi_aj |
| 307 | 1 | tkerber | break
|
| 308 | 1 | tkerber | if derphi_aj*(a_hi - a_lo) >= 0: |
| 309 | 1 | tkerber | phi_rec = phi_hi |
| 310 | 1 | tkerber | a_rec = a_hi |
| 311 | 1 | tkerber | a_hi = a_lo |
| 312 | 1 | tkerber | phi_hi = phi_lo |
| 313 | 1 | tkerber | else:
|
| 314 | 1 | tkerber | phi_rec = phi_lo |
| 315 | 1 | tkerber | a_rec = a_lo |
| 316 | 1 | tkerber | a_lo = a_j |
| 317 | 1 | tkerber | phi_lo = phi_aj |
| 318 | 1 | tkerber | derphi_lo = derphi_aj |
| 319 | 1 | tkerber | i += 1
|
| 320 | 1 | tkerber | if (i > maxiter):
|
| 321 | 1 | tkerber | a_star = a_j |
| 322 | 1 | tkerber | val_star = phi_aj |
| 323 | 1 | tkerber | valprime_star = None
|
| 324 | 1 | tkerber | break
|
| 325 | 1 | tkerber | return a_star, val_star, valprime_star
|
| 326 | 1 | tkerber | |
| 327 | 1 | tkerber | def line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval, |
| 328 | 1 | tkerber | args=(), c1=1e-4, c2=0.9, amax=50): |
| 329 | 1 | tkerber | """Find alpha that satisfies strong Wolfe conditions.
|
| 330 | 1 | tkerber |
|
| 331 | 1 | tkerber | Parameters:
|
| 332 | 1 | tkerber |
|
| 333 | 1 | tkerber | f : callable f(x,*args)
|
| 334 | 1 | tkerber | Objective function.
|
| 335 | 1 | tkerber | myfprime : callable f'(x,*args)
|
| 336 | 1 | tkerber | Objective function gradient (can be None).
|
| 337 | 1 | tkerber | xk : ndarray
|
| 338 | 1 | tkerber | Starting point.
|
| 339 | 1 | tkerber | pk : ndarray
|
| 340 | 1 | tkerber | Search direction.
|
| 341 | 1 | tkerber | gfk : ndarray
|
| 342 | 1 | tkerber | Gradient value for x=xk (xk being the current parameter
|
| 343 | 1 | tkerber | estimate).
|
| 344 | 1 | tkerber | args : tuple
|
| 345 | 1 | tkerber | Additional arguments passed to objective function.
|
| 346 | 1 | tkerber | c1 : float
|
| 347 | 1 | tkerber | Parameter for Armijo condition rule.
|
| 348 | 1 | tkerber | c2 : float
|
| 349 | 1 | tkerber | Parameter for curvature condition rule.
|
| 350 | 1 | tkerber |
|
| 351 | 1 | tkerber | Returns:
|
| 352 | 1 | tkerber |
|
| 353 | 1 | tkerber | alpha0 : float
|
| 354 | 1 | tkerber | Alpha for which ``x_new = x0 + alpha * pk``.
|
| 355 | 1 | tkerber | fc : int
|
| 356 | 1 | tkerber | Number of function evaluations made.
|
| 357 | 1 | tkerber | gc : int
|
| 358 | 1 | tkerber | Number of gradient evaluations made.
|
| 359 | 1 | tkerber |
|
| 360 | 1 | tkerber | Notes:
|
| 361 | 1 | tkerber |
|
| 362 | 1 | tkerber | Uses the line search algorithm to enforce strong Wolfe
|
| 363 | 1 | tkerber | conditions. See Wright and Nocedal, 'Numerical Optimization',
|
| 364 | 1 | tkerber | 1999, pg. 59-60.
|
| 365 | 1 | tkerber |
|
| 366 | 1 | tkerber | For the zoom phase it uses an algorithm by [...].
|
| 367 | 1 | tkerber |
|
| 368 | 1 | tkerber | """
|
| 369 | 1 | tkerber | |
| 370 | 1 | tkerber | global _ls_fc, _ls_gc, _ls_ingfk
|
| 371 | 1 | tkerber | _ls_fc = 0
|
| 372 | 1 | tkerber | _ls_gc = 0
|
| 373 | 1 | tkerber | _ls_ingfk = None
|
| 374 | 1 | tkerber | def phi(alpha): |
| 375 | 1 | tkerber | global _ls_fc
|
| 376 | 1 | tkerber | _ls_fc += 1
|
| 377 | 1 | tkerber | return f(xk+alpha*pk,*args)
|
| 378 | 1 | tkerber | |
| 379 | 1 | tkerber | if isinstance(myfprime,type(())): |
| 380 | 1 | tkerber | def phiprime(alpha): |
| 381 | 1 | tkerber | global _ls_fc, _ls_ingfk
|
| 382 | 1 | tkerber | _ls_fc += len(xk)+1 |
| 383 | 1 | tkerber | eps = myfprime[1]
|
| 384 | 1 | tkerber | fprime = myfprime[0]
|
| 385 | 1 | tkerber | newargs = (f,eps) + args |
| 386 | 1 | tkerber | _ls_ingfk = fprime(xk+alpha*pk,*newargs) # store for later use
|
| 387 | 1 | tkerber | return numpy.dot(_ls_ingfk,pk)
|
| 388 | 1 | tkerber | else:
|
| 389 | 1 | tkerber | fprime = myfprime |
| 390 | 1 | tkerber | def phiprime(alpha): |
| 391 | 1 | tkerber | global _ls_gc, _ls_ingfk
|
| 392 | 1 | tkerber | _ls_gc += 1
|
| 393 | 1 | tkerber | _ls_ingfk = fprime(xk+alpha*pk,*args) # store for later use
|
| 394 | 1 | tkerber | return numpy.dot(_ls_ingfk,pk)
|
| 395 | 1 | tkerber | |
| 396 | 1 | tkerber | alpha0 = 0
|
| 397 | 1 | tkerber | phi0 = old_fval |
| 398 | 1 | tkerber | derphi0 = numpy.dot(gfk,pk) |
| 399 | 1 | tkerber | |
| 400 | 1 | tkerber | alpha1 = pymin(1.0,1.01*2*(phi0-old_old_fval)/derphi0) |
| 401 | 1 | tkerber | |
| 402 | 1 | tkerber | if alpha1 == 0: |
| 403 | 1 | tkerber | # This shouldn't happen. Perhaps the increment has slipped below
|
| 404 | 1 | tkerber | # machine precision? For now, set the return variables skip the
|
| 405 | 1 | tkerber | # useless while loop, and raise warnflag=2 due to possible imprecision.
|
| 406 | 1 | tkerber | alpha_star = None
|
| 407 | 1 | tkerber | fval_star = old_fval |
| 408 | 1 | tkerber | old_fval = old_old_fval |
| 409 | 1 | tkerber | fprime_star = None
|
| 410 | 1 | tkerber | |
| 411 | 1 | tkerber | phi_a1 = phi(alpha1) |
| 412 | 1 | tkerber | #derphi_a1 = phiprime(alpha1) evaluated below
|
| 413 | 1 | tkerber | |
| 414 | 1 | tkerber | phi_a0 = phi0 |
| 415 | 1 | tkerber | derphi_a0 = derphi0 |
| 416 | 1 | tkerber | |
| 417 | 1 | tkerber | i = 1
|
| 418 | 1 | tkerber | maxiter = 10
|
| 419 | 1 | tkerber | while 1: # bracketing phase |
| 420 | 1 | tkerber | if alpha1 == 0: |
| 421 | 1 | tkerber | break
|
| 422 | 1 | tkerber | if (phi_a1 > phi0 + c1*alpha1*derphi0) or \ |
| 423 | 1 | tkerber | ((phi_a1 >= phi_a0) and (i > 1)): |
| 424 | 1 | tkerber | alpha_star, fval_star, fprime_star = \ |
| 425 | 1 | tkerber | zoom(alpha0, alpha1, phi_a0, |
| 426 | 1 | tkerber | phi_a1, derphi_a0, phi, phiprime, |
| 427 | 1 | tkerber | phi0, derphi0, c1, c2) |
| 428 | 1 | tkerber | break
|
| 429 | 1 | tkerber | |
| 430 | 1 | tkerber | derphi_a1 = phiprime(alpha1) |
| 431 | 1 | tkerber | if (abs(derphi_a1) <= -c2*derphi0): |
| 432 | 1 | tkerber | alpha_star = alpha1 |
| 433 | 1 | tkerber | fval_star = phi_a1 |
| 434 | 1 | tkerber | fprime_star = derphi_a1 |
| 435 | 1 | tkerber | break
|
| 436 | 1 | tkerber | |
| 437 | 1 | tkerber | if (derphi_a1 >= 0): |
| 438 | 1 | tkerber | alpha_star, fval_star, fprime_star = \ |
| 439 | 1 | tkerber | zoom(alpha1, alpha0, phi_a1, |
| 440 | 1 | tkerber | phi_a0, derphi_a1, phi, phiprime, |
| 441 | 1 | tkerber | phi0, derphi0, c1, c2) |
| 442 | 1 | tkerber | break
|
| 443 | 1 | tkerber | |
| 444 | 1 | tkerber | alpha2 = 2 * alpha1 # increase by factor of two on each iteration |
| 445 | 1 | tkerber | i = i + 1
|
| 446 | 1 | tkerber | alpha0 = alpha1 |
| 447 | 1 | tkerber | alpha1 = alpha2 |
| 448 | 1 | tkerber | phi_a0 = phi_a1 |
| 449 | 1 | tkerber | phi_a1 = phi(alpha1) |
| 450 | 1 | tkerber | derphi_a0 = derphi_a1 |
| 451 | 1 | tkerber | |
| 452 | 1 | tkerber | # stopping test if lower function not found
|
| 453 | 1 | tkerber | if (i > maxiter):
|
| 454 | 1 | tkerber | alpha_star = alpha1 |
| 455 | 1 | tkerber | fval_star = phi_a1 |
| 456 | 1 | tkerber | fprime_star = None
|
| 457 | 1 | tkerber | break
|
| 458 | 1 | tkerber | |
| 459 | 1 | tkerber | if fprime_star is not None: |
| 460 | 1 | tkerber | # fprime_star is a number (derphi) -- so use the most recently
|
| 461 | 1 | tkerber | # calculated gradient used in computing it derphi = gfk*pk
|
| 462 | 1 | tkerber | # this is the gradient at the next step no need to compute it
|
| 463 | 1 | tkerber | # again in the outer loop.
|
| 464 | 1 | tkerber | fprime_star = _ls_ingfk |
| 465 | 1 | tkerber | |
| 466 | 1 | tkerber | return alpha_star, _ls_fc, _ls_gc, fval_star, old_fval, fprime_star
|
| 467 | 1 | tkerber | |
| 468 | 1 | tkerber | def approx_fprime(xk,f,epsilon,*args): |
| 469 | 1 | tkerber | f0 = f(*((xk,)+args)) |
| 470 | 1 | tkerber | grad = numpy.zeros((len(xk),), float) |
| 471 | 1 | tkerber | ei = numpy.zeros((len(xk),), float) |
| 472 | 1 | tkerber | for k in range(len(xk)): |
| 473 | 1 | tkerber | ei[k] = epsilon |
| 474 | 1 | tkerber | grad[k] = (f(*((xk+ei,)+args)) - f0)/epsilon |
| 475 | 1 | tkerber | ei[k] = 0.0
|
| 476 | 1 | tkerber | return grad
|