root / ase / test / COCu111.py @ 4
Historique | Voir | Annoter | Télécharger (1,97 ko)
| 1 |
from math import sqrt |
|---|---|
| 2 |
from ase import Atoms, Atom |
| 3 |
from ase.calculators.emt import EMT |
| 4 |
from ase.constraints import FixAtoms |
| 5 |
from ase.optimize import QuasiNewton |
| 6 |
from ase.neb import NEB |
| 7 |
|
| 8 |
# Distance between Cu atoms on a (111) surface:
|
| 9 |
a = 3.6
|
| 10 |
d = a / sqrt(2)
|
| 11 |
fcc111 = Atoms(symbols='Cu',
|
| 12 |
cell=[(d, 0, 0), |
| 13 |
(d / 2, d * sqrt(3) / 2, 0), |
| 14 |
(d / 2, d * sqrt(3) / 6, -a / sqrt(3))], |
| 15 |
pbc=True)
|
| 16 |
slab = fcc111 * (2, 2, 4) |
| 17 |
slab.set_cell([2 * d, d * sqrt(3), 1]) |
| 18 |
slab.set_pbc((1, 1, 0)) |
| 19 |
slab.set_calculator(EMT()) |
| 20 |
Z = slab.get_positions()[:, 2]
|
| 21 |
indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
| 22 |
constraint = FixAtoms(indices=indices) |
| 23 |
slab.set_constraint(constraint) |
| 24 |
dyn = QuasiNewton(slab) |
| 25 |
dyn.run(fmax=0.05)
|
| 26 |
Z = slab.get_positions()[:, 2]
|
| 27 |
print Z[0] - Z[1] |
| 28 |
print Z[1] - Z[2] |
| 29 |
print Z[2] - Z[3] |
| 30 |
|
| 31 |
b = 1.2
|
| 32 |
h = 1.5
|
| 33 |
slab += Atom('C', (d / 2, -b / 2, h)) |
| 34 |
slab += Atom('O', (d / 2, +b / 2, h)) |
| 35 |
s = slab.copy() |
| 36 |
dyn = QuasiNewton(slab) |
| 37 |
dyn.run(fmax=0.05)
|
| 38 |
#view(slab)
|
| 39 |
|
| 40 |
# Make band:
|
| 41 |
images = [slab] |
| 42 |
for i in range(6): |
| 43 |
image = slab.copy() |
| 44 |
image.set_constraint(constraint) |
| 45 |
image.set_calculator(EMT()) |
| 46 |
images.append(image) |
| 47 |
image[-2].position = image[-1].position |
| 48 |
image[-1].x = d
|
| 49 |
image[-1].y = d / sqrt(3) |
| 50 |
dyn = QuasiNewton(images[-1])
|
| 51 |
dyn.run(fmax=0.05)
|
| 52 |
neb = NEB(images, climb=not True) |
| 53 |
|
| 54 |
# Set constraints and calculator:
|
| 55 |
|
| 56 |
# Displace last image:
|
| 57 |
|
| 58 |
# Relax height of Ag atom for initial and final states:
|
| 59 |
|
| 60 |
# Interpolate positions between initial and final states:
|
| 61 |
neb.interpolate() |
| 62 |
|
| 63 |
for image in images: |
| 64 |
print image.positions[-1], image.get_potential_energy() |
| 65 |
|
| 66 |
#dyn = MDMin(neb, dt=0.4)
|
| 67 |
#dyn = FIRE(neb, dt=0.01)
|
| 68 |
dyn = QuasiNewton(neb, maxstep=0.04, trajectory='mep.traj') |
| 69 |
#from ase.optimize.oldqn import GoodOldQuasiNewton
|
| 70 |
#dyn = GoodOldQuasiNewton(neb)
|
| 71 |
dyn.run(fmax=0.05)
|
| 72 |
|
| 73 |
for image in images: |
| 74 |
print image.positions[-1], image.get_potential_energy() |
| 75 |
|
| 76 |
if display:
|
| 77 |
import os |
| 78 |
error = os.system('ag mep.traj@-7:')
|
| 79 |
assert error == 0 |