root / ase / test / COCu111.py @ 4
Historique | Voir | Annoter | Télécharger (1,97 ko)
| 1 | 1 | tkerber | from math import sqrt |
|---|---|---|---|
| 2 | 1 | tkerber | from ase import Atoms, Atom |
| 3 | 1 | tkerber | from ase.calculators.emt import EMT |
| 4 | 1 | tkerber | from ase.constraints import FixAtoms |
| 5 | 1 | tkerber | from ase.optimize import QuasiNewton |
| 6 | 1 | tkerber | from ase.neb import NEB |
| 7 | 1 | tkerber | |
| 8 | 1 | tkerber | # Distance between Cu atoms on a (111) surface:
|
| 9 | 1 | tkerber | a = 3.6
|
| 10 | 1 | tkerber | d = a / sqrt(2)
|
| 11 | 1 | tkerber | fcc111 = Atoms(symbols='Cu',
|
| 12 | 1 | tkerber | cell=[(d, 0, 0), |
| 13 | 1 | tkerber | (d / 2, d * sqrt(3) / 2, 0), |
| 14 | 1 | tkerber | (d / 2, d * sqrt(3) / 6, -a / sqrt(3))], |
| 15 | 1 | tkerber | pbc=True)
|
| 16 | 1 | tkerber | slab = fcc111 * (2, 2, 4) |
| 17 | 1 | tkerber | slab.set_cell([2 * d, d * sqrt(3), 1]) |
| 18 | 1 | tkerber | slab.set_pbc((1, 1, 0)) |
| 19 | 1 | tkerber | slab.set_calculator(EMT()) |
| 20 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
| 21 | 1 | tkerber | indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
| 22 | 1 | tkerber | constraint = FixAtoms(indices=indices) |
| 23 | 1 | tkerber | slab.set_constraint(constraint) |
| 24 | 1 | tkerber | dyn = QuasiNewton(slab) |
| 25 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 26 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
| 27 | 1 | tkerber | print Z[0] - Z[1] |
| 28 | 1 | tkerber | print Z[1] - Z[2] |
| 29 | 1 | tkerber | print Z[2] - Z[3] |
| 30 | 1 | tkerber | |
| 31 | 1 | tkerber | b = 1.2
|
| 32 | 1 | tkerber | h = 1.5
|
| 33 | 1 | tkerber | slab += Atom('C', (d / 2, -b / 2, h)) |
| 34 | 1 | tkerber | slab += Atom('O', (d / 2, +b / 2, h)) |
| 35 | 1 | tkerber | s = slab.copy() |
| 36 | 1 | tkerber | dyn = QuasiNewton(slab) |
| 37 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 38 | 1 | tkerber | #view(slab)
|
| 39 | 1 | tkerber | |
| 40 | 1 | tkerber | # Make band:
|
| 41 | 1 | tkerber | images = [slab] |
| 42 | 1 | tkerber | for i in range(6): |
| 43 | 1 | tkerber | image = slab.copy() |
| 44 | 1 | tkerber | image.set_constraint(constraint) |
| 45 | 1 | tkerber | image.set_calculator(EMT()) |
| 46 | 1 | tkerber | images.append(image) |
| 47 | 1 | tkerber | image[-2].position = image[-1].position |
| 48 | 1 | tkerber | image[-1].x = d
|
| 49 | 1 | tkerber | image[-1].y = d / sqrt(3) |
| 50 | 1 | tkerber | dyn = QuasiNewton(images[-1])
|
| 51 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 52 | 1 | tkerber | neb = NEB(images, climb=not True) |
| 53 | 1 | tkerber | |
| 54 | 1 | tkerber | # Set constraints and calculator:
|
| 55 | 1 | tkerber | |
| 56 | 1 | tkerber | # Displace last image:
|
| 57 | 1 | tkerber | |
| 58 | 1 | tkerber | # Relax height of Ag atom for initial and final states:
|
| 59 | 1 | tkerber | |
| 60 | 1 | tkerber | # Interpolate positions between initial and final states:
|
| 61 | 1 | tkerber | neb.interpolate() |
| 62 | 1 | tkerber | |
| 63 | 1 | tkerber | for image in images: |
| 64 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
| 65 | 1 | tkerber | |
| 66 | 1 | tkerber | #dyn = MDMin(neb, dt=0.4)
|
| 67 | 1 | tkerber | #dyn = FIRE(neb, dt=0.01)
|
| 68 | 1 | tkerber | dyn = QuasiNewton(neb, maxstep=0.04, trajectory='mep.traj') |
| 69 | 1 | tkerber | #from ase.optimize.oldqn import GoodOldQuasiNewton
|
| 70 | 1 | tkerber | #dyn = GoodOldQuasiNewton(neb)
|
| 71 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 72 | 1 | tkerber | |
| 73 | 1 | tkerber | for image in images: |
| 74 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
| 75 | 1 | tkerber | |
| 76 | 1 | tkerber | if display:
|
| 77 | 1 | tkerber | import os |
| 78 | 1 | tkerber | error = os.system('ag mep.traj@-7:')
|
| 79 | 1 | tkerber | assert error == 0 |