root / ase / md / langevin.py @ 20
Historique | Voir | Annoter | Télécharger (4,21 ko)
1 |
"""Langevin dynamics class."""
|
---|---|
2 |
|
3 |
|
4 |
import sys |
5 |
import numpy as np |
6 |
from numpy.random import standard_normal |
7 |
from ase.md.md import MolecularDynamics |
8 |
|
9 |
# For parallel GPAW simulations, the random forces should be distributed.
|
10 |
if '_gpaw' in sys.modules: |
11 |
# http://wiki.fysik.dtu.dk/gpaw
|
12 |
from gpaw.mpi import world as gpaw_world |
13 |
else:
|
14 |
gpaw_world = None
|
15 |
|
16 |
class Langevin(MolecularDynamics): |
17 |
"""Langevin (constant N, V, T) molecular dynamics.
|
18 |
|
19 |
Usage: Langevin(atoms, dt, temperature, friction)
|
20 |
|
21 |
atoms
|
22 |
The list of atoms.
|
23 |
|
24 |
dt
|
25 |
The time step.
|
26 |
|
27 |
temperature
|
28 |
The desired temperature, in energy units.
|
29 |
|
30 |
friction
|
31 |
A friction coefficient, typically 1e-4 to 1e-2.
|
32 |
|
33 |
fixcm
|
34 |
If True, the position and momentum of the center of mass is
|
35 |
kept unperturbed. Default: True.
|
36 |
|
37 |
The temperature and friction are normally scalars, but in principle one
|
38 |
quantity per atom could be specified by giving an array.
|
39 |
|
40 |
This dynamics accesses the atoms using Cartesian coordinates."""
|
41 |
|
42 |
def __init__(self, atoms, timestep, temperature, friction, fixcm=True, |
43 |
trajectory=None, logfile=None, loginterval=1, |
44 |
communicator=gpaw_world): |
45 |
MolecularDynamics.__init__(self, atoms, timestep, trajectory,
|
46 |
logfile, loginterval) |
47 |
self.temp = temperature
|
48 |
self.frict = friction
|
49 |
self.fixcm = fixcm # will the center of mass be held fixed? |
50 |
self.communicator = communicator
|
51 |
self.updatevars()
|
52 |
|
53 |
def set_temperature(self, temperature): |
54 |
self.temp = temperature
|
55 |
self.updatevars()
|
56 |
|
57 |
def set_friction(self, friction): |
58 |
self.frict = friction
|
59 |
self.updatevars()
|
60 |
|
61 |
def set_timestep(self, timestep): |
62 |
self.dt = timestep
|
63 |
self.updatevars()
|
64 |
|
65 |
def updatevars(self): |
66 |
dt = self.dt
|
67 |
# If the friction is an array some other constants must be arrays too.
|
68 |
self._localfrict = hasattr(self.frict, 'shape') |
69 |
lt = self.frict * dt
|
70 |
masses = self.masses
|
71 |
sdpos = dt * np.sqrt(self.temp / masses * (2.0/3.0 - 0.5 * lt) * lt) |
72 |
sdpos.shape = (-1, 1) |
73 |
sdmom = np.sqrt(self.temp * masses * 2.0 * (1.0 - lt) * lt) |
74 |
sdmom.shape = (-1, 1) |
75 |
pmcor = np.sqrt(3.0)/2.0 * (1.0 - 0.125 * lt) |
76 |
cnst = np.sqrt((1.0 - pmcor) * (1.0 + pmcor)) |
77 |
|
78 |
act0 = 1.0 - lt + 0.5 * lt * lt |
79 |
act1 = (1.0 - 0.5 * lt + (1.0/6.0) * lt * lt) |
80 |
act2 = 0.5 - (1.0/6.0) * lt + (1.0/24.0) * lt * lt |
81 |
c1 = act1 * dt / masses |
82 |
c1.shape = (-1, 1) |
83 |
c2 = act2 * dt * dt / masses |
84 |
c2.shape = (-1, 1) |
85 |
c3 = (act1 - act2) * dt |
86 |
c4 = act2 * dt |
87 |
del act1, act2
|
88 |
if self._localfrict: |
89 |
# If the friction is an array, so are these
|
90 |
act0.shape = (-1, 1) |
91 |
c3.shape = (-1, 1) |
92 |
c4.shape = (-1, 1) |
93 |
pmcor.shape = (-1, 1) |
94 |
cnst.shape = (-1, 1) |
95 |
self.sdpos = sdpos
|
96 |
self.sdmom = sdmom
|
97 |
self.c1 = c1
|
98 |
self.c2 = c2
|
99 |
self.act0 = act0
|
100 |
self.c3 = c3
|
101 |
self.c4 = c4
|
102 |
self.pmcor = pmcor
|
103 |
self.cnst = cnst
|
104 |
|
105 |
def step(self, f): |
106 |
atoms = self.atoms
|
107 |
p = self.atoms.get_momenta()
|
108 |
|
109 |
random1 = standard_normal(size=(len(atoms), 3)) |
110 |
random2 = standard_normal(size=(len(atoms), 3)) |
111 |
|
112 |
if self.communicator is not None: |
113 |
self.communicator.broadcast(random1, 0) |
114 |
self.communicator.broadcast(random2, 0) |
115 |
|
116 |
rrnd = self.sdpos * random1
|
117 |
prnd = (self.sdmom * self.pmcor * random1 + |
118 |
self.sdmom * self.cnst * random2) |
119 |
|
120 |
if self.fixcm: |
121 |
rrnd = rrnd - np.sum(rrnd, 0) / len(atoms) |
122 |
prnd = prnd - np.sum(prnd, 0) / len(atoms) |
123 |
n = len(atoms)
|
124 |
rrnd *= np.sqrt(n / (n - 1.0))
|
125 |
prnd *= np.sqrt(n / (n - 1.0))
|
126 |
|
127 |
atoms.set_positions(atoms.get_positions() + |
128 |
self.c1 * p +
|
129 |
self.c2 * f + rrnd)
|
130 |
p *= self.act0
|
131 |
p += self.c3 * f + prnd
|
132 |
atoms.set_momenta(p) |
133 |
|
134 |
f = atoms.get_forces() |
135 |
atoms.set_momenta(p + self.c4 * f)
|
136 |
return f
|