root / ase / md / langevin.py @ 20
Historique | Voir | Annoter | Télécharger (4,21 ko)
1 | 1 | tkerber | """Langevin dynamics class."""
|
---|---|---|---|
2 | 1 | tkerber | |
3 | 1 | tkerber | |
4 | 1 | tkerber | import sys |
5 | 1 | tkerber | import numpy as np |
6 | 1 | tkerber | from numpy.random import standard_normal |
7 | 1 | tkerber | from ase.md.md import MolecularDynamics |
8 | 1 | tkerber | |
9 | 1 | tkerber | # For parallel GPAW simulations, the random forces should be distributed.
|
10 | 1 | tkerber | if '_gpaw' in sys.modules: |
11 | 1 | tkerber | # http://wiki.fysik.dtu.dk/gpaw
|
12 | 1 | tkerber | from gpaw.mpi import world as gpaw_world |
13 | 1 | tkerber | else:
|
14 | 1 | tkerber | gpaw_world = None
|
15 | 1 | tkerber | |
16 | 1 | tkerber | class Langevin(MolecularDynamics): |
17 | 1 | tkerber | """Langevin (constant N, V, T) molecular dynamics.
|
18 | 1 | tkerber |
|
19 | 1 | tkerber | Usage: Langevin(atoms, dt, temperature, friction)
|
20 | 1 | tkerber |
|
21 | 1 | tkerber | atoms
|
22 | 1 | tkerber | The list of atoms.
|
23 | 1 | tkerber |
|
24 | 1 | tkerber | dt
|
25 | 1 | tkerber | The time step.
|
26 | 1 | tkerber |
|
27 | 1 | tkerber | temperature
|
28 | 1 | tkerber | The desired temperature, in energy units.
|
29 | 1 | tkerber |
|
30 | 1 | tkerber | friction
|
31 | 1 | tkerber | A friction coefficient, typically 1e-4 to 1e-2.
|
32 | 1 | tkerber |
|
33 | 1 | tkerber | fixcm
|
34 | 1 | tkerber | If True, the position and momentum of the center of mass is
|
35 | 1 | tkerber | kept unperturbed. Default: True.
|
36 | 1 | tkerber |
|
37 | 1 | tkerber | The temperature and friction are normally scalars, but in principle one
|
38 | 1 | tkerber | quantity per atom could be specified by giving an array.
|
39 | 1 | tkerber |
|
40 | 1 | tkerber | This dynamics accesses the atoms using Cartesian coordinates."""
|
41 | 1 | tkerber | |
42 | 1 | tkerber | def __init__(self, atoms, timestep, temperature, friction, fixcm=True, |
43 | 1 | tkerber | trajectory=None, logfile=None, loginterval=1, |
44 | 1 | tkerber | communicator=gpaw_world): |
45 | 1 | tkerber | MolecularDynamics.__init__(self, atoms, timestep, trajectory,
|
46 | 1 | tkerber | logfile, loginterval) |
47 | 1 | tkerber | self.temp = temperature
|
48 | 1 | tkerber | self.frict = friction
|
49 | 1 | tkerber | self.fixcm = fixcm # will the center of mass be held fixed? |
50 | 1 | tkerber | self.communicator = communicator
|
51 | 1 | tkerber | self.updatevars()
|
52 | 1 | tkerber | |
53 | 1 | tkerber | def set_temperature(self, temperature): |
54 | 1 | tkerber | self.temp = temperature
|
55 | 1 | tkerber | self.updatevars()
|
56 | 1 | tkerber | |
57 | 1 | tkerber | def set_friction(self, friction): |
58 | 1 | tkerber | self.frict = friction
|
59 | 1 | tkerber | self.updatevars()
|
60 | 1 | tkerber | |
61 | 1 | tkerber | def set_timestep(self, timestep): |
62 | 1 | tkerber | self.dt = timestep
|
63 | 1 | tkerber | self.updatevars()
|
64 | 1 | tkerber | |
65 | 1 | tkerber | def updatevars(self): |
66 | 1 | tkerber | dt = self.dt
|
67 | 1 | tkerber | # If the friction is an array some other constants must be arrays too.
|
68 | 1 | tkerber | self._localfrict = hasattr(self.frict, 'shape') |
69 | 1 | tkerber | lt = self.frict * dt
|
70 | 1 | tkerber | masses = self.masses
|
71 | 1 | tkerber | sdpos = dt * np.sqrt(self.temp / masses * (2.0/3.0 - 0.5 * lt) * lt) |
72 | 1 | tkerber | sdpos.shape = (-1, 1) |
73 | 1 | tkerber | sdmom = np.sqrt(self.temp * masses * 2.0 * (1.0 - lt) * lt) |
74 | 1 | tkerber | sdmom.shape = (-1, 1) |
75 | 1 | tkerber | pmcor = np.sqrt(3.0)/2.0 * (1.0 - 0.125 * lt) |
76 | 1 | tkerber | cnst = np.sqrt((1.0 - pmcor) * (1.0 + pmcor)) |
77 | 1 | tkerber | |
78 | 1 | tkerber | act0 = 1.0 - lt + 0.5 * lt * lt |
79 | 1 | tkerber | act1 = (1.0 - 0.5 * lt + (1.0/6.0) * lt * lt) |
80 | 1 | tkerber | act2 = 0.5 - (1.0/6.0) * lt + (1.0/24.0) * lt * lt |
81 | 1 | tkerber | c1 = act1 * dt / masses |
82 | 1 | tkerber | c1.shape = (-1, 1) |
83 | 1 | tkerber | c2 = act2 * dt * dt / masses |
84 | 1 | tkerber | c2.shape = (-1, 1) |
85 | 1 | tkerber | c3 = (act1 - act2) * dt |
86 | 1 | tkerber | c4 = act2 * dt |
87 | 1 | tkerber | del act1, act2
|
88 | 1 | tkerber | if self._localfrict: |
89 | 1 | tkerber | # If the friction is an array, so are these
|
90 | 1 | tkerber | act0.shape = (-1, 1) |
91 | 1 | tkerber | c3.shape = (-1, 1) |
92 | 1 | tkerber | c4.shape = (-1, 1) |
93 | 1 | tkerber | pmcor.shape = (-1, 1) |
94 | 1 | tkerber | cnst.shape = (-1, 1) |
95 | 1 | tkerber | self.sdpos = sdpos
|
96 | 1 | tkerber | self.sdmom = sdmom
|
97 | 1 | tkerber | self.c1 = c1
|
98 | 1 | tkerber | self.c2 = c2
|
99 | 1 | tkerber | self.act0 = act0
|
100 | 1 | tkerber | self.c3 = c3
|
101 | 1 | tkerber | self.c4 = c4
|
102 | 1 | tkerber | self.pmcor = pmcor
|
103 | 1 | tkerber | self.cnst = cnst
|
104 | 1 | tkerber | |
105 | 1 | tkerber | def step(self, f): |
106 | 1 | tkerber | atoms = self.atoms
|
107 | 1 | tkerber | p = self.atoms.get_momenta()
|
108 | 1 | tkerber | |
109 | 1 | tkerber | random1 = standard_normal(size=(len(atoms), 3)) |
110 | 1 | tkerber | random2 = standard_normal(size=(len(atoms), 3)) |
111 | 1 | tkerber | |
112 | 1 | tkerber | if self.communicator is not None: |
113 | 1 | tkerber | self.communicator.broadcast(random1, 0) |
114 | 1 | tkerber | self.communicator.broadcast(random2, 0) |
115 | 1 | tkerber | |
116 | 1 | tkerber | rrnd = self.sdpos * random1
|
117 | 1 | tkerber | prnd = (self.sdmom * self.pmcor * random1 + |
118 | 1 | tkerber | self.sdmom * self.cnst * random2) |
119 | 1 | tkerber | |
120 | 1 | tkerber | if self.fixcm: |
121 | 1 | tkerber | rrnd = rrnd - np.sum(rrnd, 0) / len(atoms) |
122 | 1 | tkerber | prnd = prnd - np.sum(prnd, 0) / len(atoms) |
123 | 1 | tkerber | n = len(atoms)
|
124 | 1 | tkerber | rrnd *= np.sqrt(n / (n - 1.0))
|
125 | 1 | tkerber | prnd *= np.sqrt(n / (n - 1.0))
|
126 | 1 | tkerber | |
127 | 1 | tkerber | atoms.set_positions(atoms.get_positions() + |
128 | 1 | tkerber | self.c1 * p +
|
129 | 1 | tkerber | self.c2 * f + rrnd)
|
130 | 1 | tkerber | p *= self.act0
|
131 | 1 | tkerber | p += self.c3 * f + prnd
|
132 | 1 | tkerber | atoms.set_momenta(p) |
133 | 1 | tkerber | |
134 | 1 | tkerber | f = atoms.get_forces() |
135 | 1 | tkerber | atoms.set_momenta(p + self.c4 * f)
|
136 | 1 | tkerber | return f |