root / ase / lattice / orthorhombic.py @ 14
Historique | Voir | Annoter | Télécharger (5,3 ko)
| 1 |
"""Function-like objects creating orthorhombic lattices.
|
|---|---|
| 2 |
|
| 3 |
The following lattice creators are defined:
|
| 4 |
SimleOrthorhombic
|
| 5 |
BaseCenteredOrthorhombic
|
| 6 |
BodyCenteredOrthorhombic
|
| 7 |
FaceCenteredOrthorhombic
|
| 8 |
"""
|
| 9 |
|
| 10 |
from ase.lattice.bravais import Bravais |
| 11 |
import numpy as np |
| 12 |
from ase.data import reference_states as _refstate |
| 13 |
|
| 14 |
|
| 15 |
class SimpleOrthorhombicFactory(Bravais): |
| 16 |
"A factory for creating simple orthorhombic lattices."
|
| 17 |
|
| 18 |
# The name of the crystal structure in ChemicalElements
|
| 19 |
xtal_name = "orthorhombic"
|
| 20 |
|
| 21 |
# The natural basis vectors of the crystal structure
|
| 22 |
int_basis = np.array([[1, 0, 0], |
| 23 |
[0, 1, 0], |
| 24 |
[0, 0, 1]]) |
| 25 |
basis_factor = 1.0
|
| 26 |
|
| 27 |
# Converts the natural basis back to the crystallographic basis
|
| 28 |
inverse_basis = np.array([[1, 0, 0], |
| 29 |
[0, 1, 0], |
| 30 |
[0, 0, 1]]) |
| 31 |
inverse_basis_factor = 1.0
|
| 32 |
|
| 33 |
def get_lattice_constant(self): |
| 34 |
"Get the lattice constant of an element with orhtorhombic crystal structure."
|
| 35 |
if _refstate[self.atomicnumber]['symmetry'].lower() != self.xtal_name: |
| 36 |
raise ValueError, (("Cannot guess the %s lattice constant of" |
| 37 |
+ " an element with crystal structure %s.")
|
| 38 |
% (self.xtal_name,
|
| 39 |
_refstate[self.atomicnumber]['symmetry'])) |
| 40 |
return _refstate[self.atomicnumber].copy() |
| 41 |
|
| 42 |
def make_crystal_basis(self): |
| 43 |
"Make the basis matrix for the crystal unit cell and the system unit cell."
|
| 44 |
lattice = self.latticeconstant
|
| 45 |
if type(lattice) == type({}): |
| 46 |
a = lattice['a']
|
| 47 |
try:
|
| 48 |
b = lattice['b']
|
| 49 |
except KeyError: |
| 50 |
b = a * lattice['b/a']
|
| 51 |
try:
|
| 52 |
c = lattice['c']
|
| 53 |
except KeyError: |
| 54 |
c = a * lattice['c/a']
|
| 55 |
else:
|
| 56 |
if len(lattice) == 3: |
| 57 |
(a,b,c) = lattice |
| 58 |
else:
|
| 59 |
raise ValueError, "Improper lattice constants for orthorhombic crystal." |
| 60 |
|
| 61 |
lattice = np.array([[a,0,0],[0,b,0],[0,0,c]]) |
| 62 |
self.latticeconstant = lattice
|
| 63 |
self.miller_basis = lattice
|
| 64 |
self.crystal_basis = (self.basis_factor * |
| 65 |
np.dot(self.int_basis, lattice))
|
| 66 |
self.basis = np.dot(self.directions, self.crystal_basis) |
| 67 |
self.check_basis_volume()
|
| 68 |
|
| 69 |
def check_basis_volume(self): |
| 70 |
"Check the volume of the unit cell."
|
| 71 |
vol1 = abs(np.linalg.det(self.basis)) |
| 72 |
vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) |
| 73 |
if self.bravais_basis is not None: |
| 74 |
vol2 /= len(self.bravais_basis) |
| 75 |
if abs(vol1-vol2) > 1e-5: |
| 76 |
print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 77 |
|
| 78 |
SimpleOrthorhombic = SimpleOrthorhombicFactory() |
| 79 |
|
| 80 |
class BaseCenteredOrthorhombicFactory(SimpleOrthorhombicFactory): |
| 81 |
"A factory for creating base-centered orthorhombic lattices."
|
| 82 |
|
| 83 |
# The natural basis vectors of the crystal structure
|
| 84 |
int_basis = np.array([[1, -1, 0], |
| 85 |
[1, 1, 0], |
| 86 |
[0, 0, 2]]) |
| 87 |
basis_factor = 0.5
|
| 88 |
|
| 89 |
# Converts the natural basis back to the crystallographic basis
|
| 90 |
inverse_basis = np.array([[1, 1, 0], |
| 91 |
[-1, 1, 0], |
| 92 |
[0, 0, 1]]) |
| 93 |
inverse_basis_factor = 1.0
|
| 94 |
|
| 95 |
def check_basis_volume(self): |
| 96 |
"Check the volume of the unit cell."
|
| 97 |
vol1 = abs(np.linalg.det(self.basis)) |
| 98 |
vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) / 2.0 |
| 99 |
if abs(vol1-vol2) > 1e-5: |
| 100 |
print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 101 |
|
| 102 |
BaseCenteredOrthorhombic = BaseCenteredOrthorhombicFactory() |
| 103 |
|
| 104 |
class BodyCenteredOrthorhombicFactory(SimpleOrthorhombicFactory): |
| 105 |
"A factory for creating body-centered orthorhombic lattices."
|
| 106 |
|
| 107 |
int_basis = np.array([[-1, 1, 1], |
| 108 |
[1, -1, 1], |
| 109 |
[1, 1, -1]]) |
| 110 |
basis_factor = 0.5
|
| 111 |
inverse_basis = np.array([[0, 1, 1], |
| 112 |
[1, 0, 1], |
| 113 |
[1, 1, 0]]) |
| 114 |
inverse_basis_factor = 1.0
|
| 115 |
|
| 116 |
def check_basis_volume(self): |
| 117 |
"Check the volume of the unit cell."
|
| 118 |
vol1 = abs(np.linalg.det(self.basis)) |
| 119 |
vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) / 2.0 |
| 120 |
if abs(vol1-vol2) > 1e-5: |
| 121 |
print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 122 |
|
| 123 |
BodyCenteredOrthorhombic = BodyCenteredOrthorhombicFactory() |
| 124 |
class FaceCenteredOrthorhombicFactory(SimpleOrthorhombicFactory): |
| 125 |
"A factory for creating face-centered orthorhombic lattices."
|
| 126 |
|
| 127 |
int_basis = np.array([[0, 1, 1], |
| 128 |
[1, 0, 1], |
| 129 |
[1, 1, 0]]) |
| 130 |
basis_factor = 0.5
|
| 131 |
inverse_basis = np.array([[-1, 1, 1], |
| 132 |
[1, -1, 1], |
| 133 |
[1, 1, -1]]) |
| 134 |
inverse_basis_factor = 1.0
|
| 135 |
|
| 136 |
def check_basis_volume(self): |
| 137 |
"Check the volume of the unit cell."
|
| 138 |
vol1 = abs(np.linalg.det(self.basis)) |
| 139 |
vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) / 4.0 |
| 140 |
if abs(vol1-vol2) > 1e-5: |
| 141 |
print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 142 |
|
| 143 |
FaceCenteredOrthorhombic = FaceCenteredOrthorhombicFactory() |
| 144 |
|