root / ase / lattice / orthorhombic.py @ 14
Historique | Voir | Annoter | Télécharger (5,3 ko)
| 1 | 1 | tkerber | """Function-like objects creating orthorhombic lattices.
|
|---|---|---|---|
| 2 | 1 | tkerber |
|
| 3 | 1 | tkerber | The following lattice creators are defined:
|
| 4 | 1 | tkerber | SimleOrthorhombic
|
| 5 | 1 | tkerber | BaseCenteredOrthorhombic
|
| 6 | 1 | tkerber | BodyCenteredOrthorhombic
|
| 7 | 1 | tkerber | FaceCenteredOrthorhombic
|
| 8 | 1 | tkerber | """
|
| 9 | 1 | tkerber | |
| 10 | 1 | tkerber | from ase.lattice.bravais import Bravais |
| 11 | 1 | tkerber | import numpy as np |
| 12 | 1 | tkerber | from ase.data import reference_states as _refstate |
| 13 | 1 | tkerber | |
| 14 | 1 | tkerber | |
| 15 | 1 | tkerber | class SimpleOrthorhombicFactory(Bravais): |
| 16 | 1 | tkerber | "A factory for creating simple orthorhombic lattices."
|
| 17 | 1 | tkerber | |
| 18 | 1 | tkerber | # The name of the crystal structure in ChemicalElements
|
| 19 | 1 | tkerber | xtal_name = "orthorhombic"
|
| 20 | 1 | tkerber | |
| 21 | 1 | tkerber | # The natural basis vectors of the crystal structure
|
| 22 | 1 | tkerber | int_basis = np.array([[1, 0, 0], |
| 23 | 1 | tkerber | [0, 1, 0], |
| 24 | 1 | tkerber | [0, 0, 1]]) |
| 25 | 1 | tkerber | basis_factor = 1.0
|
| 26 | 1 | tkerber | |
| 27 | 1 | tkerber | # Converts the natural basis back to the crystallographic basis
|
| 28 | 1 | tkerber | inverse_basis = np.array([[1, 0, 0], |
| 29 | 1 | tkerber | [0, 1, 0], |
| 30 | 1 | tkerber | [0, 0, 1]]) |
| 31 | 1 | tkerber | inverse_basis_factor = 1.0
|
| 32 | 1 | tkerber | |
| 33 | 1 | tkerber | def get_lattice_constant(self): |
| 34 | 1 | tkerber | "Get the lattice constant of an element with orhtorhombic crystal structure."
|
| 35 | 1 | tkerber | if _refstate[self.atomicnumber]['symmetry'].lower() != self.xtal_name: |
| 36 | 1 | tkerber | raise ValueError, (("Cannot guess the %s lattice constant of" |
| 37 | 1 | tkerber | + " an element with crystal structure %s.")
|
| 38 | 1 | tkerber | % (self.xtal_name,
|
| 39 | 1 | tkerber | _refstate[self.atomicnumber]['symmetry'])) |
| 40 | 1 | tkerber | return _refstate[self.atomicnumber].copy() |
| 41 | 1 | tkerber | |
| 42 | 1 | tkerber | def make_crystal_basis(self): |
| 43 | 1 | tkerber | "Make the basis matrix for the crystal unit cell and the system unit cell."
|
| 44 | 1 | tkerber | lattice = self.latticeconstant
|
| 45 | 1 | tkerber | if type(lattice) == type({}): |
| 46 | 1 | tkerber | a = lattice['a']
|
| 47 | 1 | tkerber | try:
|
| 48 | 1 | tkerber | b = lattice['b']
|
| 49 | 1 | tkerber | except KeyError: |
| 50 | 1 | tkerber | b = a * lattice['b/a']
|
| 51 | 1 | tkerber | try:
|
| 52 | 1 | tkerber | c = lattice['c']
|
| 53 | 1 | tkerber | except KeyError: |
| 54 | 1 | tkerber | c = a * lattice['c/a']
|
| 55 | 1 | tkerber | else:
|
| 56 | 1 | tkerber | if len(lattice) == 3: |
| 57 | 1 | tkerber | (a,b,c) = lattice |
| 58 | 1 | tkerber | else:
|
| 59 | 1 | tkerber | raise ValueError, "Improper lattice constants for orthorhombic crystal." |
| 60 | 1 | tkerber | |
| 61 | 1 | tkerber | lattice = np.array([[a,0,0],[0,b,0],[0,0,c]]) |
| 62 | 1 | tkerber | self.latticeconstant = lattice
|
| 63 | 1 | tkerber | self.miller_basis = lattice
|
| 64 | 1 | tkerber | self.crystal_basis = (self.basis_factor * |
| 65 | 1 | tkerber | np.dot(self.int_basis, lattice))
|
| 66 | 1 | tkerber | self.basis = np.dot(self.directions, self.crystal_basis) |
| 67 | 1 | tkerber | self.check_basis_volume()
|
| 68 | 1 | tkerber | |
| 69 | 1 | tkerber | def check_basis_volume(self): |
| 70 | 1 | tkerber | "Check the volume of the unit cell."
|
| 71 | 1 | tkerber | vol1 = abs(np.linalg.det(self.basis)) |
| 72 | 1 | tkerber | vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) |
| 73 | 1 | tkerber | if self.bravais_basis is not None: |
| 74 | 1 | tkerber | vol2 /= len(self.bravais_basis) |
| 75 | 1 | tkerber | if abs(vol1-vol2) > 1e-5: |
| 76 | 1 | tkerber | print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 77 | 1 | tkerber | |
| 78 | 1 | tkerber | SimpleOrthorhombic = SimpleOrthorhombicFactory() |
| 79 | 1 | tkerber | |
| 80 | 1 | tkerber | class BaseCenteredOrthorhombicFactory(SimpleOrthorhombicFactory): |
| 81 | 1 | tkerber | "A factory for creating base-centered orthorhombic lattices."
|
| 82 | 1 | tkerber | |
| 83 | 1 | tkerber | # The natural basis vectors of the crystal structure
|
| 84 | 1 | tkerber | int_basis = np.array([[1, -1, 0], |
| 85 | 1 | tkerber | [1, 1, 0], |
| 86 | 1 | tkerber | [0, 0, 2]]) |
| 87 | 1 | tkerber | basis_factor = 0.5
|
| 88 | 1 | tkerber | |
| 89 | 1 | tkerber | # Converts the natural basis back to the crystallographic basis
|
| 90 | 1 | tkerber | inverse_basis = np.array([[1, 1, 0], |
| 91 | 1 | tkerber | [-1, 1, 0], |
| 92 | 1 | tkerber | [0, 0, 1]]) |
| 93 | 1 | tkerber | inverse_basis_factor = 1.0
|
| 94 | 1 | tkerber | |
| 95 | 1 | tkerber | def check_basis_volume(self): |
| 96 | 1 | tkerber | "Check the volume of the unit cell."
|
| 97 | 1 | tkerber | vol1 = abs(np.linalg.det(self.basis)) |
| 98 | 1 | tkerber | vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) / 2.0 |
| 99 | 1 | tkerber | if abs(vol1-vol2) > 1e-5: |
| 100 | 1 | tkerber | print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 101 | 1 | tkerber | |
| 102 | 1 | tkerber | BaseCenteredOrthorhombic = BaseCenteredOrthorhombicFactory() |
| 103 | 1 | tkerber | |
| 104 | 1 | tkerber | class BodyCenteredOrthorhombicFactory(SimpleOrthorhombicFactory): |
| 105 | 1 | tkerber | "A factory for creating body-centered orthorhombic lattices."
|
| 106 | 1 | tkerber | |
| 107 | 1 | tkerber | int_basis = np.array([[-1, 1, 1], |
| 108 | 1 | tkerber | [1, -1, 1], |
| 109 | 1 | tkerber | [1, 1, -1]]) |
| 110 | 1 | tkerber | basis_factor = 0.5
|
| 111 | 1 | tkerber | inverse_basis = np.array([[0, 1, 1], |
| 112 | 1 | tkerber | [1, 0, 1], |
| 113 | 1 | tkerber | [1, 1, 0]]) |
| 114 | 1 | tkerber | inverse_basis_factor = 1.0
|
| 115 | 1 | tkerber | |
| 116 | 1 | tkerber | def check_basis_volume(self): |
| 117 | 1 | tkerber | "Check the volume of the unit cell."
|
| 118 | 1 | tkerber | vol1 = abs(np.linalg.det(self.basis)) |
| 119 | 1 | tkerber | vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) / 2.0 |
| 120 | 1 | tkerber | if abs(vol1-vol2) > 1e-5: |
| 121 | 1 | tkerber | print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 122 | 1 | tkerber | |
| 123 | 1 | tkerber | BodyCenteredOrthorhombic = BodyCenteredOrthorhombicFactory() |
| 124 | 1 | tkerber | class FaceCenteredOrthorhombicFactory(SimpleOrthorhombicFactory): |
| 125 | 1 | tkerber | "A factory for creating face-centered orthorhombic lattices."
|
| 126 | 1 | tkerber | |
| 127 | 1 | tkerber | int_basis = np.array([[0, 1, 1], |
| 128 | 1 | tkerber | [1, 0, 1], |
| 129 | 1 | tkerber | [1, 1, 0]]) |
| 130 | 1 | tkerber | basis_factor = 0.5
|
| 131 | 1 | tkerber | inverse_basis = np.array([[-1, 1, 1], |
| 132 | 1 | tkerber | [1, -1, 1], |
| 133 | 1 | tkerber | [1, 1, -1]]) |
| 134 | 1 | tkerber | inverse_basis_factor = 1.0
|
| 135 | 1 | tkerber | |
| 136 | 1 | tkerber | def check_basis_volume(self): |
| 137 | 1 | tkerber | "Check the volume of the unit cell."
|
| 138 | 1 | tkerber | vol1 = abs(np.linalg.det(self.basis)) |
| 139 | 1 | tkerber | vol2 = self.calc_num_atoms() * np.linalg.det(self.latticeconstant) / 4.0 |
| 140 | 1 | tkerber | if abs(vol1-vol2) > 1e-5: |
| 141 | 1 | tkerber | print "WARNING: Got volume %f, expected %f" % (vol1, vol2) |
| 142 | 1 | tkerber | |
| 143 | 1 | tkerber | FaceCenteredOrthorhombic = FaceCenteredOrthorhombicFactory() |