Statistiques
| Révision :

root / ase / test / Ag-Cu100.py @ 1

Historique | Voir | Annoter | Télécharger (1,59 ko)

1
from math import sqrt
2
from ase import Atom, Atoms
3
from ase.neb import NEB
4
from ase.constraints import FixAtoms
5
from ase.vibrations import Vibrations
6
from ase.calculators.emt import EMT
7
from ase.optimize import QuasiNewton
8

    
9
# Distance between Cu atoms on a (100) surface:
10
d = 3.6 / sqrt(2)
11
initial = Atoms('Cu',
12
                positions=[(0, 0, 0)],
13
                cell=(d, d, 1.0),
14
                pbc=(True, True, False))
15
initial *= (2, 2, 1)  # 2x2 (100) surface-cell
16

    
17
# Approximate height of Ag atom on Cu(100) surfece:
18
h0 = 2.0
19
initial += Atom('Ag', (d / 2, d / 2, h0))
20

    
21
if 0:
22
    view(initial)
23

    
24
# Make band:
25
images = [initial.copy() for i in range(6)]
26
neb = NEB(images, climb=True)
27

    
28
# Set constraints and calculator:
29
constraint = FixAtoms(range(len(initial) - 1))
30
for image in images:
31
    image.set_calculator(EMT())
32
    image.set_constraint(constraint)
33

    
34
# Displace last image:
35
images[-1].positions[-1] += (d, 0, 0)
36
#images[-1].positions[-1] += (d, d, 0)
37

    
38
# Relax height of Ag atom for initial and final states:
39
dyn1 = QuasiNewton(images[0])
40
dyn1.run(fmax=0.01)
41
dyn2 = QuasiNewton(images[-1])
42
dyn2.run(fmax=0.01)
43

    
44
# Interpolate positions between initial and final states:
45
neb.interpolate()
46

    
47
for image in images:
48
    print image.positions[-1], image.get_potential_energy()
49

    
50
#dyn = MDMin(neb, dt=0.4)
51
#dyn = FIRE(neb, dt=0.4)
52
dyn = QuasiNewton(neb, trajectory='mep.traj')
53
dyn.run(fmax=0.05)
54

    
55
for image in images:
56
    print image.positions[-1], image.get_potential_energy()
57

    
58
a = images[0]
59
vib = Vibrations(a, [4])
60
vib.run()
61
print vib.get_frequencies()
62
vib.summary()
63
print vib.get_mode(-1)
64
vib.write_mode(-1, nimages=20)