Statistiques
| Révision :

root / ase / test / Ag-Cu100.py @ 1

Historique | Voir | Annoter | Télécharger (1,59 ko)

1 1 tkerber
from math import sqrt
2 1 tkerber
from ase import Atom, Atoms
3 1 tkerber
from ase.neb import NEB
4 1 tkerber
from ase.constraints import FixAtoms
5 1 tkerber
from ase.vibrations import Vibrations
6 1 tkerber
from ase.calculators.emt import EMT
7 1 tkerber
from ase.optimize import QuasiNewton
8 1 tkerber
9 1 tkerber
# Distance between Cu atoms on a (100) surface:
10 1 tkerber
d = 3.6 / sqrt(2)
11 1 tkerber
initial = Atoms('Cu',
12 1 tkerber
                positions=[(0, 0, 0)],
13 1 tkerber
                cell=(d, d, 1.0),
14 1 tkerber
                pbc=(True, True, False))
15 1 tkerber
initial *= (2, 2, 1)  # 2x2 (100) surface-cell
16 1 tkerber
17 1 tkerber
# Approximate height of Ag atom on Cu(100) surfece:
18 1 tkerber
h0 = 2.0
19 1 tkerber
initial += Atom('Ag', (d / 2, d / 2, h0))
20 1 tkerber
21 1 tkerber
if 0:
22 1 tkerber
    view(initial)
23 1 tkerber
24 1 tkerber
# Make band:
25 1 tkerber
images = [initial.copy() for i in range(6)]
26 1 tkerber
neb = NEB(images, climb=True)
27 1 tkerber
28 1 tkerber
# Set constraints and calculator:
29 1 tkerber
constraint = FixAtoms(range(len(initial) - 1))
30 1 tkerber
for image in images:
31 1 tkerber
    image.set_calculator(EMT())
32 1 tkerber
    image.set_constraint(constraint)
33 1 tkerber
34 1 tkerber
# Displace last image:
35 1 tkerber
images[-1].positions[-1] += (d, 0, 0)
36 1 tkerber
#images[-1].positions[-1] += (d, d, 0)
37 1 tkerber
38 1 tkerber
# Relax height of Ag atom for initial and final states:
39 1 tkerber
dyn1 = QuasiNewton(images[0])
40 1 tkerber
dyn1.run(fmax=0.01)
41 1 tkerber
dyn2 = QuasiNewton(images[-1])
42 1 tkerber
dyn2.run(fmax=0.01)
43 1 tkerber
44 1 tkerber
# Interpolate positions between initial and final states:
45 1 tkerber
neb.interpolate()
46 1 tkerber
47 1 tkerber
for image in images:
48 1 tkerber
    print image.positions[-1], image.get_potential_energy()
49 1 tkerber
50 1 tkerber
#dyn = MDMin(neb, dt=0.4)
51 1 tkerber
#dyn = FIRE(neb, dt=0.4)
52 1 tkerber
dyn = QuasiNewton(neb, trajectory='mep.traj')
53 1 tkerber
dyn.run(fmax=0.05)
54 1 tkerber
55 1 tkerber
for image in images:
56 1 tkerber
    print image.positions[-1], image.get_potential_energy()
57 1 tkerber
58 1 tkerber
a = images[0]
59 1 tkerber
vib = Vibrations(a, [4])
60 1 tkerber
vib.run()
61 1 tkerber
print vib.get_frequencies()
62 1 tkerber
vib.summary()
63 1 tkerber
print vib.get_mode(-1)
64 1 tkerber
vib.write_mode(-1, nimages=20)