Statistiques
| Révision :

root / ase / examples / Pt_island.py @ 1

Historique | Voir | Annoter | Télécharger (2,16 ko)

1
import numpy as np
2
from math import sqrt
3
from ase import Atom, Atoms
4
from ase.optimize import QuasiNewton, FIRE
5
from ase.constraints import FixAtoms
6
from ase.neb import NEB
7
from ase.io import write, PickleTrajectory
8
from ase.calculators.emt import ASAP
9

    
10
# Distance between Cu atoms on a (100) surface:
11
d = 2.74
12
h1 = d * sqrt(3) / 2
13
h2 = d * sqrt(2.0 / 3)
14
initial = Atoms(symbols='Pt',
15
                positions=[(0, 0, 0)],#(1.37,0.79,2.24),(2.74,1.58,4.48),(0,0,6.72),(1.37,0.79,8.96),(2.74,1.58,11.2)],
16
                cell=([(d,0,0),(d/2,h1,0),(d/2,h1/3,-h2)]),
17
                pbc=(True, True, True))
18
initial *= (7, 8, 6)  # 5x5 (100) surface-cell
19
cell = initial.get_cell()
20
cell[2] = (0, 0, 22)
21
initial.set_cell(cell)
22
#initial.set_pbc((True,True,False))
23
# Approximate height of Ag atom on Cu(100) surfece:
24
h0 = 2.2373
25
initial += Atom('Pt', (10.96, 11.074, h0))
26
initial += Atom('Pt', (13.7, 11.074, h0))
27
initial += Atom('Pt', (9.59, 8.701, h0))
28
initial += Atom('Pt', (12.33, 8.701, h0))
29
initial += Atom('Pt', (15.07, 8.701, h0))
30
initial += Atom('Pt', (10.96, 6.328, h0))
31
initial += Atom('Pt', (13.7, 6.328, h0))
32

    
33
if 0:
34
    view(initial)
35

    
36
# Make band:
37
images = [initial.copy() for i in range(7)]
38
neb = NEB(images)
39

    
40
# Set constraints and calculator:
41
indices = np.compress(initial.positions[:, 2] < -5.0, range(len(initial)))
42
constraint = FixAtoms(indices)
43
for image in images:
44
    image.set_calculator(ASAP())
45
    image.constraints.append(constraint)
46

    
47
# Displace last image:
48
for i in xrange(1,8,1):
49
    images[-1].positions[-i] += (d/2, -h1/3, 0)
50

    
51
write('initial.traj', images[0])
52
# Relax height of Ag atom for initial and final states:
53
for image in [images[0], images[-1]]:
54
    QuasiNewton(image).run(fmax=0.01)
55

    
56
if 0:
57
    write('initial.pckl', image[0])
58
    write('finial.pckl', image[-1])
59
# Interpolate positions between initial and final states:
60
neb.interpolate()
61

    
62
for image in images:
63
    print image.positions[-1], image.get_potential_energy()
64

    
65
traj = PickleTrajectory('mep.traj', 'w')
66

    
67
dyn = FIRE(neb, dt=0.1)
68
#dyn = MDMin(neb, dt=0.1)
69
#dyn = QuasiNewton(neb)
70
dyn.attach(neb.writer(traj))
71
dyn.run(fmax=0.01,steps=150)
72

    
73
for image in images:
74
    print image.positions[-1], image.get_potential_energy()