root / ase / examples / Pt_island.py @ 1
Historique | Voir | Annoter | Télécharger (2,16 ko)
1 | 1 | tkerber | import numpy as np |
---|---|---|---|
2 | 1 | tkerber | from math import sqrt |
3 | 1 | tkerber | from ase import Atom, Atoms |
4 | 1 | tkerber | from ase.optimize import QuasiNewton, FIRE |
5 | 1 | tkerber | from ase.constraints import FixAtoms |
6 | 1 | tkerber | from ase.neb import NEB |
7 | 1 | tkerber | from ase.io import write, PickleTrajectory |
8 | 1 | tkerber | from ase.calculators.emt import ASAP |
9 | 1 | tkerber | |
10 | 1 | tkerber | # Distance between Cu atoms on a (100) surface:
|
11 | 1 | tkerber | d = 2.74
|
12 | 1 | tkerber | h1 = d * sqrt(3) / 2 |
13 | 1 | tkerber | h2 = d * sqrt(2.0 / 3) |
14 | 1 | tkerber | initial = Atoms(symbols='Pt',
|
15 | 1 | tkerber | positions=[(0, 0, 0)],#(1.37,0.79,2.24),(2.74,1.58,4.48),(0,0,6.72),(1.37,0.79,8.96),(2.74,1.58,11.2)], |
16 | 1 | tkerber | cell=([(d,0,0),(d/2,h1,0),(d/2,h1/3,-h2)]), |
17 | 1 | tkerber | pbc=(True, True, True)) |
18 | 1 | tkerber | initial *= (7, 8, 6) # 5x5 (100) surface-cell |
19 | 1 | tkerber | cell = initial.get_cell() |
20 | 1 | tkerber | cell[2] = (0, 0, 22) |
21 | 1 | tkerber | initial.set_cell(cell) |
22 | 1 | tkerber | #initial.set_pbc((True,True,False))
|
23 | 1 | tkerber | # Approximate height of Ag atom on Cu(100) surfece:
|
24 | 1 | tkerber | h0 = 2.2373
|
25 | 1 | tkerber | initial += Atom('Pt', (10.96, 11.074, h0)) |
26 | 1 | tkerber | initial += Atom('Pt', (13.7, 11.074, h0)) |
27 | 1 | tkerber | initial += Atom('Pt', (9.59, 8.701, h0)) |
28 | 1 | tkerber | initial += Atom('Pt', (12.33, 8.701, h0)) |
29 | 1 | tkerber | initial += Atom('Pt', (15.07, 8.701, h0)) |
30 | 1 | tkerber | initial += Atom('Pt', (10.96, 6.328, h0)) |
31 | 1 | tkerber | initial += Atom('Pt', (13.7, 6.328, h0)) |
32 | 1 | tkerber | |
33 | 1 | tkerber | if 0: |
34 | 1 | tkerber | view(initial) |
35 | 1 | tkerber | |
36 | 1 | tkerber | # Make band:
|
37 | 1 | tkerber | images = [initial.copy() for i in range(7)] |
38 | 1 | tkerber | neb = NEB(images) |
39 | 1 | tkerber | |
40 | 1 | tkerber | # Set constraints and calculator:
|
41 | 1 | tkerber | indices = np.compress(initial.positions[:, 2] < -5.0, range(len(initial))) |
42 | 1 | tkerber | constraint = FixAtoms(indices) |
43 | 1 | tkerber | for image in images: |
44 | 1 | tkerber | image.set_calculator(ASAP()) |
45 | 1 | tkerber | image.constraints.append(constraint) |
46 | 1 | tkerber | |
47 | 1 | tkerber | # Displace last image:
|
48 | 1 | tkerber | for i in xrange(1,8,1): |
49 | 1 | tkerber | images[-1].positions[-i] += (d/2, -h1/3, 0) |
50 | 1 | tkerber | |
51 | 1 | tkerber | write('initial.traj', images[0]) |
52 | 1 | tkerber | # Relax height of Ag atom for initial and final states:
|
53 | 1 | tkerber | for image in [images[0], images[-1]]: |
54 | 1 | tkerber | QuasiNewton(image).run(fmax=0.01)
|
55 | 1 | tkerber | |
56 | 1 | tkerber | if 0: |
57 | 1 | tkerber | write('initial.pckl', image[0]) |
58 | 1 | tkerber | write('finial.pckl', image[-1]) |
59 | 1 | tkerber | # Interpolate positions between initial and final states:
|
60 | 1 | tkerber | neb.interpolate() |
61 | 1 | tkerber | |
62 | 1 | tkerber | for image in images: |
63 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
64 | 1 | tkerber | |
65 | 1 | tkerber | traj = PickleTrajectory('mep.traj', 'w') |
66 | 1 | tkerber | |
67 | 1 | tkerber | dyn = FIRE(neb, dt=0.1)
|
68 | 1 | tkerber | #dyn = MDMin(neb, dt=0.1)
|
69 | 1 | tkerber | #dyn = QuasiNewton(neb)
|
70 | 1 | tkerber | dyn.attach(neb.writer(traj)) |
71 | 1 | tkerber | dyn.run(fmax=0.01,steps=150) |
72 | 1 | tkerber | |
73 | 1 | tkerber | for image in images: |
74 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |