root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 121
Historique | Voir | Annoter | Télécharger (30,53 ko)
1 |
r""" |
---|---|
2 |
Sage core functions needed for the implementation of SLZ. |
3 |
|
4 |
AUTHORS: |
5 |
- S.T. (2013-08): initial version |
6 |
|
7 |
Examples: |
8 |
|
9 |
TODO:: |
10 |
""" |
11 |
print "sageSLZ loading..." |
12 |
# |
13 |
def slz_check_htr_value(function, htrValue, lowerBound, upperBound, precision, \ |
14 |
degree, targetHardnessToRound, alpha): |
15 |
""" |
16 |
Check an Hard-to-round value. |
17 |
""" |
18 |
polyApproxPrec = targetHardnessToRound + 1 |
19 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
20 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
21 |
RRR = htrValue.parent() |
22 |
# |
23 |
## Compute the scaled function. |
24 |
fff = slz_compute_scaled_function(f, lowerBound, upperBound, precision)[0] |
25 |
print "Scaled function:", fff |
26 |
# |
27 |
## Compute the scaling. |
28 |
boundsIntervalRifSa = RealIntervalField(precision) |
29 |
domainBoundsInterval = boundsIntervalRifSa(lowerBound, upperBound) |
30 |
scalingExpressions = \ |
31 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
32 |
# |
33 |
## Get the polynomials, bounds, etc. for all the interval. |
34 |
resultListOfTuplesOfSo = \ |
35 |
slz_get_intervals_and_polynomials(f, degree, lowerBound, upperBound, \ |
36 |
precision, internalSollyaPrec,\ |
37 |
2^-(polyApproxPrec)) |
38 |
# |
39 |
## We only want one interval. |
40 |
if len(resultListOfTuplesOfSo) > 1: |
41 |
print "Too many intervals! Aborting!" |
42 |
exit |
43 |
# |
44 |
## Get the first tuple of Sollya objects as Sage objects. |
45 |
firstTupleSa = \ |
46 |
slz_interval_and_polynomial_to_sage(resultListOfTuplesOfSo[0]) |
47 |
pobyso_set_canonical_on() |
48 |
# |
49 |
print "Floatting point polynomial:", firstTupleSa[0] |
50 |
print "with coefficients precision:", firstTupleSa[0].base_ring().prec() |
51 |
# |
52 |
## From a polynomial over a real ring, create a polynomial over the |
53 |
# rationals ring. |
54 |
rationalPolynomial = \ |
55 |
slz_float_poly_of_float_to_rat_poly_of_rat(firstTupleSa[0]) |
56 |
print "Rational polynomial:", rationalPolynomial |
57 |
# |
58 |
## Create a polynomial over the rationals that will take integer |
59 |
# variables instead of rational. |
60 |
rationalPolynomialOfIntegers = \ |
61 |
slz_rat_poly_of_rat_to_rat_poly_of_int(rationalPolynomial, precision) |
62 |
print "Type:", type(rationalPolynomialOfIntegers) |
63 |
print "Rational polynomial of integers:", rationalPolynomialOfIntegers |
64 |
# |
65 |
## Check the rational polynomial of integers variables. |
66 |
# (check against the scaled function). |
67 |
toIntegerFactor = 2^(precision-1) |
68 |
intervalCenterAsIntegerSa = int(firstTupleSa[3] * toIntegerFactor) |
69 |
print "Interval center as integer:", intervalCenterAsIntegerSa |
70 |
lowerBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[0] * \ |
71 |
toIntegerFactor) - intervalCenterAsIntegerSa |
72 |
upperBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[1] * \ |
73 |
toIntegerFactor) - intervalCenterAsIntegerSa |
74 |
print "Lower bound as integer:", lowerBoundAsIntegerSa |
75 |
print "Upper bound as integer:", upperBoundAsIntegerSa |
76 |
print "Image of the lower bound by the scaled function", \ |
77 |
fff(firstTupleSa[2].endpoints()[0]) |
78 |
print "Image of the lower bound by the approximation polynomial of ints:", \ |
79 |
RRR(rationalPolynomialOfIntegers(lowerBoundAsIntegerSa)) |
80 |
print "Image of the center by the scaled function", fff(firstTupleSa[3]) |
81 |
print "Image of the center by the approximation polynomial of ints:", \ |
82 |
RRR(rationalPolynomialOfIntegers(0)) |
83 |
print "Image of the upper bound by the scaled function", \ |
84 |
fff(firstTupleSa[2].endpoints()[1]) |
85 |
print "Image of the upper bound by the approximation polynomial of ints:", \ |
86 |
RRR(rationalPolynomialOfIntegers(upperBoundAsIntegerSa)) |
87 |
|
88 |
# End slz_check_htr_value. |
89 |
# |
90 |
def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
91 |
""" |
92 |
For given "real number", compute the bounds of the binade it belongs to. |
93 |
|
94 |
NOTE:: |
95 |
When number >= 2^(emax+1), we return the "fake" binade |
96 |
[2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
97 |
with interval [-infinity, -2^(emax+1)]. |
98 |
|
99 |
""" |
100 |
# Check the parameters. |
101 |
# RealNumbers only. |
102 |
classTree = [number.__class__] + number.mro() |
103 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
104 |
return None |
105 |
# Non zero negative integers only for emin. |
106 |
if emin >= 0 or int(emin) != emin: |
107 |
return None |
108 |
# Non zero positive integers only for emax. |
109 |
if emax <= 0 or int(emax) != emax: |
110 |
return None |
111 |
precision = number.precision() |
112 |
RF = RealField(precision) |
113 |
# A more precise RealField is needed to avoid unwanted rounding effects |
114 |
# when computing number.log2(). |
115 |
RRF = RealField(max(2048, 2 * precision)) |
116 |
# number = 0 special case, the binade bounds are |
117 |
# [0, 2^emin - 2^(emin-precision)] |
118 |
if number == 0: |
119 |
return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
120 |
# Begin general case |
121 |
l2 = RRF(number).abs().log2() |
122 |
# Another special one: beyond largest representable -> "Fake" binade. |
123 |
if l2 >= emax + 1: |
124 |
if number > 0: |
125 |
return (RF(2^(emax+1)), RRR(+infinity) ) |
126 |
else: |
127 |
return (RF(-infinity), -RF(2^(emax+1))) |
128 |
offset = int(l2) |
129 |
# number.abs() >= 1. |
130 |
if l2 >= 0: |
131 |
if number >= 0: |
132 |
lb = RF(2^offset) |
133 |
ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
134 |
else: #number < 0 |
135 |
lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
136 |
ub = -RF(2^offset) |
137 |
else: # log2 < 0, number.abs() < 1. |
138 |
if l2 < emin: # Denormal |
139 |
# print "Denormal:", l2 |
140 |
if number >= 0: |
141 |
lb = RF(0) |
142 |
ub = RF(2^(emin)) - RF(2^(emin-precision)) |
143 |
else: # number <= 0 |
144 |
lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
145 |
ub = RF(0) |
146 |
elif l2 > emin: # Normal number other than +/-2^emin. |
147 |
if number >= 0: |
148 |
if int(l2) == l2: |
149 |
lb = RF(2^(offset)) |
150 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
151 |
else: |
152 |
lb = RF(2^(offset-1)) |
153 |
ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
154 |
else: # number < 0 |
155 |
if int(l2) == l2: # Binade limit. |
156 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
157 |
ub = -RF(2^(offset)) |
158 |
else: |
159 |
lb = -RF(2^(offset) - 2^(-precision+offset)) |
160 |
ub = -RF(2^(offset-1)) |
161 |
else: # l2== emin, number == +/-2^emin |
162 |
if number >= 0: |
163 |
lb = RF(2^(offset)) |
164 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
165 |
else: # number < 0 |
166 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
167 |
ub = -RF(2^(offset)) |
168 |
return (lb, ub) |
169 |
# End slz_compute_binade_bounds |
170 |
# |
171 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
172 |
upperBoundSa, approxPrecSa, |
173 |
sollyaPrecSa=None): |
174 |
""" |
175 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
176 |
a polynomial that approximates the function on a an interval starting |
177 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
178 |
approximates with the expected precision. |
179 |
The interval upper bound is lowered until the expected approximation |
180 |
precision is reached. |
181 |
The polynomial, the bounds, the center of the interval and the error |
182 |
are returned. |
183 |
""" |
184 |
RRR = lowerBoundSa.parent() |
185 |
intervalShrinkConstFactorSa = RRR('0.5') |
186 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
187 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
188 |
currentUpperBoundSa = upperBoundSa |
189 |
currentLowerBoundSa = lowerBoundSa |
190 |
# What we want here is the polynomial without the variable change, |
191 |
# since our actual variable will be x-intervalCenter defined over the |
192 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
193 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
194 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
195 |
currentRangeSo, |
196 |
absoluteErrorTypeSo) |
197 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
198 |
while maxErrorSa > approxPrecSa: |
199 |
#print "++Approximation error:", maxErrorSa |
200 |
sollya_lib_clear_obj(polySo) |
201 |
sollya_lib_clear_obj(intervalCenterSo) |
202 |
sollya_lib_clear_obj(maxErrorSo) |
203 |
shrinkFactorSa = RRR('5')/(maxErrorSa/approxPrecSa).log2().abs() |
204 |
#shrinkFactorSa = 1.5/(maxErrorSa/approxPrecSa) |
205 |
#errorRatioSa = approxPrecSa/maxErrorSa |
206 |
#print "Error ratio: ", errorRatioSa |
207 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
208 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
209 |
#print "Fixed" |
210 |
else: |
211 |
actualShrinkFactorSa = shrinkFactorSa |
212 |
#print "Computed",shrinkFactorSa,maxErrorSa |
213 |
#print shrinkFactorSa, maxErrorSa |
214 |
#print "Shrink factor", actualShrinkFactorSa |
215 |
currentUpperBoundSa = currentLowerBoundSa + \ |
216 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
217 |
actualShrinkFactorSa |
218 |
#print "Current upper bound:", currentUpperBoundSa |
219 |
sollya_lib_clear_obj(currentRangeSo) |
220 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
221 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
222 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
223 |
print "Can't find an interval." |
224 |
print "Use either or both a higher polynomial degree or a higher", |
225 |
print "internal precision." |
226 |
print "Aborting!" |
227 |
return (None, None, None, None) |
228 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
229 |
currentUpperBoundSa) |
230 |
# print "New interval:", |
231 |
# pobyso_autoprint(currentRangeSo) |
232 |
#print "Second Taylor expansion call." |
233 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
234 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
235 |
currentRangeSo, |
236 |
absoluteErrorTypeSo) |
237 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
238 |
#print "Max errorSo:", |
239 |
#pobyso_autoprint(maxErrorSo) |
240 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
241 |
#print "Max errorSa:", maxErrorSa |
242 |
#print "Sollya prec:", |
243 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
244 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
245 |
return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
246 |
# End slz_compute_polynomial_and_interval |
247 |
|
248 |
def slz_compute_reduced_polynomials(reducedMatrix, |
249 |
knownMonomials, |
250 |
var1, |
251 |
var1Bound, |
252 |
var2, |
253 |
var2Bound): |
254 |
""" |
255 |
From a reduced matrix, holding the coefficients, from a monomials list, |
256 |
from the bounds of each variable, compute the corresponding polynomials |
257 |
scaled back by dividing by the "right" powers of the variables bounds. |
258 |
|
259 |
The elements in knownMonomials must be of the "right" polynomial type. |
260 |
They set the polynomial type of the output polynomials list. |
261 |
""" |
262 |
|
263 |
# TODO: check input arguments. |
264 |
reducedPolynomials = [] |
265 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
266 |
for matrixRow in reducedMatrix.rows(): |
267 |
currentPolynomial = 0 |
268 |
for colIndex in xrange(0, len(knownMonomials)): |
269 |
currentCoefficient = matrixRow[colIndex] |
270 |
if currentCoefficient != 0: |
271 |
#print "Current coefficient:", currentCoefficient |
272 |
currentMonomial = knownMonomials[colIndex] |
273 |
parentRing = currentMonomial.parent() |
274 |
#print "Monomial as multivariate polynomial:", \ |
275 |
#currentMonomial, type(currentMonomial) |
276 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
277 |
#print "Degree in var", var1, ":", degreeInVar1 |
278 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
279 |
#print "Degree in var", var2, ":", degreeInVar2 |
280 |
if degreeInVar1 > 0: |
281 |
currentCoefficient = \ |
282 |
currentCoefficient / var1Bound^degreeInVar1 |
283 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
284 |
#print "Current coefficient(1)", currentCoefficient |
285 |
if degreeInVar2 > 0: |
286 |
currentCoefficient = \ |
287 |
currentCoefficient / var2Bound^degreeInVar2 |
288 |
#print "Current coefficient(2)", currentCoefficient |
289 |
#print "Current reduced monomial:", (currentCoefficient * \ |
290 |
# currentMonomial) |
291 |
currentPolynomial += (currentCoefficient * currentMonomial) |
292 |
#print "Current polynomial:", currentPolynomial |
293 |
# End if |
294 |
# End for colIndex. |
295 |
#print "Type of the current polynomial:", type(currentPolynomial) |
296 |
reducedPolynomials.append(currentPolynomial) |
297 |
return reducedPolynomials |
298 |
# End slz_compute_reduced_polynomials. |
299 |
|
300 |
def slz_compute_scaled_function(functionSa, |
301 |
lowerBoundSa, |
302 |
upperBoundSa, |
303 |
floatingPointPrecSa): |
304 |
""" |
305 |
From a function, compute the scaled function whose domain |
306 |
is included in [1, 2) and whose image is also included in [1,2). |
307 |
Return a tuple: |
308 |
[0]: the scaled function |
309 |
[1]: the scaled domain lower bound |
310 |
[2]: the scaled domain upper bound |
311 |
[3]: the scaled image lower bound |
312 |
[4]: the scaled image upper bound |
313 |
""" |
314 |
x = functionSa.variables()[0] |
315 |
# Reassert f as a function (an not a mere expression). |
316 |
|
317 |
# Scalling the domain -> [1,2[. |
318 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
319 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
320 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
321 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
322 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
323 |
print "f: ", f |
324 |
ff = f.subs({x : domainScalingExpressionSa}) |
325 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
326 |
domainScalingFunction(x) = invDomainScalingExpressionSa |
327 |
scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
328 |
scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
329 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
330 |
# |
331 |
# Scalling the image -> [1,2[. |
332 |
flbSa = f(lowerBoundSa).n() |
333 |
fubSa = f(upperBoundSa).n() |
334 |
if flbSa <= fubSa: # Increasing |
335 |
imageBinadeBottomSa = floor(flbSa.log2()) |
336 |
else: # Decreasing |
337 |
imageBinadeBottomSa = floor(fubSa.log2()) |
338 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
339 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
340 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
341 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
342 |
iis = invImageScalingExpressionSa.function(x) |
343 |
fff = iis.subs({x:ff}) |
344 |
print "fff:", fff, |
345 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
346 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
347 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
348 |
|
349 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
350 |
# Create a polynomial over the rationals. |
351 |
polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
352 |
return(polynomialRing(polyOfFloat)) |
353 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
354 |
|
355 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
356 |
lowerBoundSa, |
357 |
upperBoundSa, floatingPointPrecSa, |
358 |
internalSollyaPrecSa, approxPrecSa): |
359 |
""" |
360 |
Under the assumption that: |
361 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
362 |
- lowerBound and upperBound belong to the same binade. |
363 |
from a: |
364 |
- function; |
365 |
- a degree |
366 |
- a pair of bounds; |
367 |
- the floating-point precision we work on; |
368 |
- the internal Sollya precision; |
369 |
- the requested approximation error |
370 |
The initial interval is, possibly, splitted into smaller intervals. |
371 |
It return a list of tuples, each made of: |
372 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
373 |
- a second polynomial (with a changed variable f(x) = q(x)) |
374 |
- the approximation interval; |
375 |
- the center, x0, of the interval; |
376 |
- the corresponding approximation error. |
377 |
TODO: fix endless looping for some parameters sets. |
378 |
""" |
379 |
resultArray = [] |
380 |
# Set Sollya to the necessary internal precision. |
381 |
precChangedSa = False |
382 |
currentSollyaPrecSo = pobyso_get_prec_so() |
383 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
384 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
385 |
pobyso_set_prec_sa_so(internalSollyaPrecSa) |
386 |
precChangedSa = True |
387 |
# |
388 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
389 |
# Scaled function: [1=,2] -> [1,2]. |
390 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
391 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
392 |
slz_compute_scaled_function(functionSa, \ |
393 |
lowerBoundSa, \ |
394 |
upperBoundSa, \ |
395 |
floatingPointPrecSa) |
396 |
# |
397 |
print "Approximation precision: ", RR(approxPrecSa) |
398 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
399 |
functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
400 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
401 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
402 |
scaledUpperBoundSa) |
403 |
# Compute the first Taylor expansion. |
404 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
405 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
406 |
scaledLowerBoundSa, scaledUpperBoundSa, |
407 |
approxPrecSa, internalSollyaPrecSa) |
408 |
if polySo is None: |
409 |
print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
410 |
if precChangedSa: |
411 |
pobyso_set_prec_so_so(currentSollyaPrecSo) |
412 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
413 |
sollya_lib_clear_obj(functionSo) |
414 |
sollya_lib_clear_obj(degreeSo) |
415 |
sollya_lib_clear_obj(scaledBoundsSo) |
416 |
return None |
417 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
418 |
upperBoundSa.parent().precision())) |
419 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
420 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
421 |
#print "First approximation error:", errorSa |
422 |
# If the error and interval are OK a the first try, just return. |
423 |
if boundsSa.endpoints()[1] >= scaledUpperBoundSa: |
424 |
# Change variable stuff in Sollya x -> x0-x. |
425 |
changeVarExpressionSo = sollya_lib_build_function_sub( \ |
426 |
sollya_lib_build_function_free_variable(), \ |
427 |
sollya_lib_copy_obj(intervalCenterSo)) |
428 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
429 |
sollya_lib_clear_obj(changeVarExpressionSo) |
430 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
431 |
intervalCenterSo, maxErrorSo)) |
432 |
if internalSollyaPrecSa != currentSollyaPrecSa: |
433 |
pobyso_set_prec_sa_so(currentSollyaPrecSa) |
434 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
435 |
sollya_lib_clear_obj(functionSo) |
436 |
sollya_lib_clear_obj(degreeSo) |
437 |
sollya_lib_clear_obj(scaledBoundsSo) |
438 |
#print "Approximation error:", errorSa |
439 |
return resultArray |
440 |
# The returned interval upper bound does not reach the requested upper |
441 |
# upper bound: compute the next upper bound. |
442 |
# The following ratio is always >= 1 |
443 |
currentErrorRatio = approxPrecSa / errorSa |
444 |
# Starting point for the next upper bound. |
445 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
446 |
boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
447 |
# Compute the increment. |
448 |
if currentErrorRatio > RR('1000'): # ]1.5, infinity[ |
449 |
currentScaledUpperBoundSa += \ |
450 |
currentErrorRatio * boundsWidthSa * 2 |
451 |
else: # [1, 1.5] |
452 |
currentScaledUpperBoundSa += \ |
453 |
(RR('1.0') + currentErrorRatio.log() / 500) * boundsWidthSa |
454 |
# Take into account the original interval upper bound. |
455 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
456 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
457 |
# Compute the other expansions. |
458 |
while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
459 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
460 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
461 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
462 |
currentScaledLowerBoundSa, |
463 |
currentScaledUpperBoundSa, |
464 |
approxPrecSa, |
465 |
internalSollyaPrecSa) |
466 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
467 |
if errorSa < approxPrecSa: |
468 |
# Change variable stuff |
469 |
#print "Approximation error:", errorSa |
470 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
471 |
sollya_lib_build_function_free_variable(), |
472 |
sollya_lib_copy_obj(intervalCenterSo)) |
473 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
474 |
sollya_lib_clear_obj(changeVarExpressionSo) |
475 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
476 |
intervalCenterSo, maxErrorSo)) |
477 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
478 |
# Compute the next upper bound. |
479 |
# The following ratio is always >= 1 |
480 |
currentErrorRatio = approxPrecSa / errorSa |
481 |
# Starting point for the next upper bound. |
482 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
483 |
boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
484 |
# Compute the increment. |
485 |
if currentErrorRatio > RR('1000'): # ]1.5, infinity[ |
486 |
currentScaledUpperBoundSa += \ |
487 |
currentErrorRatio * boundsWidthSa * 2 |
488 |
else: # [1, 1.5] |
489 |
currentScaledUpperBoundSa += \ |
490 |
(RR('1.0') + currentErrorRatio.log()/500) * boundsWidthSa |
491 |
#print "currentErrorRatio:", currentErrorRatio |
492 |
#print "currentScaledUpperBoundSa", currentScaledUpperBoundSa |
493 |
# Test for insufficient precision. |
494 |
if currentScaledUpperBoundSa == scaledLowerBoundSa: |
495 |
print "Can't shrink the interval anymore!" |
496 |
print "You should consider increasing the Sollya internal precision" |
497 |
print "or the polynomial degree." |
498 |
print "Giving up!" |
499 |
if internalSollyaPrecSa != currentSollyaPrecSa: |
500 |
pobyso_set_prec_sa_so(currentSollyaPrecSa) |
501 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
502 |
sollya_lib_clear_obj(functionSo) |
503 |
sollya_lib_clear_obj(degreeSo) |
504 |
sollya_lib_clear_obj(scaledBoundsSo) |
505 |
return None |
506 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
507 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
508 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
509 |
pobyso_set_prec_so_so(currentSollyaPrecSo) |
510 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
511 |
sollya_lib_clear_obj(functionSo) |
512 |
sollya_lib_clear_obj(degreeSo) |
513 |
sollya_lib_clear_obj(scaledBoundsSo) |
514 |
return(resultArray) |
515 |
# End slz_get_intervals_and_polynomials |
516 |
|
517 |
|
518 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
519 |
""" |
520 |
Compute the scaling expression to map an interval that span at most |
521 |
a single binade to [1, 2) and the inverse expression as well. |
522 |
Not very sure that the transformation makes sense for negative numbers. |
523 |
""" |
524 |
# The scaling offset is only used for negative numbers. |
525 |
if abs(boundsInterval.endpoints()[0]) < 1: |
526 |
if boundsInterval.endpoints()[0] >= 0: |
527 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
528 |
invScalingCoeff = 1/scalingCoeff |
529 |
return((scalingCoeff * expVar, |
530 |
invScalingCoeff * expVar)) |
531 |
else: |
532 |
scalingCoeff = \ |
533 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
534 |
scalingOffset = -3 * scalingCoeff |
535 |
return((scalingCoeff * expVar + scalingOffset, |
536 |
1/scalingCoeff * expVar + 3)) |
537 |
else: |
538 |
if boundsInterval.endpoints()[0] >= 0: |
539 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
540 |
scalingOffset = 0 |
541 |
return((scalingCoeff * expVar, |
542 |
1/scalingCoeff * expVar)) |
543 |
else: |
544 |
scalingCoeff = \ |
545 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
546 |
scalingOffset = -3 * scalingCoeff |
547 |
#scalingOffset = 0 |
548 |
return((scalingCoeff * expVar + scalingOffset, |
549 |
1/scalingCoeff * expVar + 3)) |
550 |
|
551 |
|
552 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
553 |
""" |
554 |
Compute the Sage version of the Taylor polynomial and it's |
555 |
companion data (interval, center...) |
556 |
The input parameter is a five elements tuple: |
557 |
- [0]: the polyomial (without variable change), as polynomial over a |
558 |
real ring; |
559 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
560 |
over a real ring; |
561 |
- [2]: the interval (as Sollya range); |
562 |
- [3]: the interval center; |
563 |
- [4]: the approximation error. |
564 |
|
565 |
The function return a 5 elements tuple: formed with all the |
566 |
input elements converted into their Sollya counterpart. |
567 |
""" |
568 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
569 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
570 |
intervalSa = \ |
571 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
572 |
centerSa = \ |
573 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
574 |
errorSa = \ |
575 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
576 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
577 |
# End slz_interval_and_polynomial_to_sage |
578 |
|
579 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
580 |
precision, |
581 |
targetHardnessToRound, |
582 |
variable1, |
583 |
variable2): |
584 |
""" |
585 |
Creates a new multivariate polynomial with integer coefficients for use |
586 |
with the Coppersmith method. |
587 |
A the same time it computes : |
588 |
- 2^K (N); |
589 |
- 2^k (bound on the second variable) |
590 |
- lcm |
591 |
|
592 |
:param ratPolyOfInt: a polynomial with rational coefficients and integer |
593 |
variables. |
594 |
:param precision: the precision of the floating-point coefficients. |
595 |
:param targetHardnessToRound: the hardness to round we want to check. |
596 |
:param variable1: the first variable of the polynomial (an expression). |
597 |
:param variable2: the second variable of the polynomial (an expression). |
598 |
|
599 |
:returns: a 4 elements tuple: |
600 |
- the polynomial; |
601 |
- the modulus (N); |
602 |
- the t bound; |
603 |
- the lcm used to compute the integral coefficients and the |
604 |
module. |
605 |
""" |
606 |
# Create a new integer polynomial ring. |
607 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
608 |
# Coefficients are issued in the increasing power order. |
609 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
610 |
# Print the reversed list for debugging. |
611 |
print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
612 |
# Build the list of number we compute the lcm of. |
613 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
614 |
coefficientDenominators.append(2^precision) |
615 |
coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
616 |
leastCommonMultiple = lcm(coefficientDenominators) |
617 |
# Compute the expression corresponding to the new polynomial |
618 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
619 |
#print coefficientNumerators |
620 |
polynomialExpression = 0 |
621 |
power = 0 |
622 |
# Iterate over two lists at the same time, stop when the shorter is |
623 |
# exhausted. |
624 |
for numerator, denominator in \ |
625 |
zip(coefficientNumerators, coefficientDenominators): |
626 |
multiplicator = leastCommonMultiple / denominator |
627 |
newCoefficient = numerator * multiplicator |
628 |
polynomialExpression += newCoefficient * variable1^power |
629 |
power +=1 |
630 |
polynomialExpression += - variable2 |
631 |
return (IP(polynomialExpression), |
632 |
leastCommonMultiple / 2^precision, # 2^K or N. |
633 |
leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
634 |
leastCommonMultiple) # If we want to make test computations. |
635 |
|
636 |
# End slz_ratPoly_of_int_to_poly_for_coppersmith |
637 |
|
638 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
639 |
precision): |
640 |
""" |
641 |
Makes a variable substitution into the input polynomial so that the output |
642 |
polynomial can take integer arguments. |
643 |
All variables of the input polynomial "have precision p". That is to say |
644 |
that they are rationals with denominator == 2^(precision - 1): |
645 |
x = y/2^(precision - 1). |
646 |
We "incorporate" these denominators into the coefficients with, |
647 |
respectively, the "right" power. |
648 |
""" |
649 |
polynomialField = ratPolyOfRat.parent() |
650 |
polynomialVariable = ratPolyOfRat.variables()[0] |
651 |
#print "The polynomial field is:", polynomialField |
652 |
return \ |
653 |
polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
654 |
polynomialVariable/2^(precision-1)})) |
655 |
|
656 |
# Return a tuple: |
657 |
# - the bivariate integer polynomial in (i,j); |
658 |
# - 2^K |
659 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
660 |
|
661 |
|
662 |
print "\t...sageSLZ loaded" |