root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 121
Historique | Voir | Annoter | Télécharger (30,53 ko)
1 | 115 | storres | r""" |
---|---|---|---|
2 | 115 | storres | Sage core functions needed for the implementation of SLZ. |
3 | 90 | storres | |
4 | 115 | storres | AUTHORS: |
5 | 115 | storres | - S.T. (2013-08): initial version |
6 | 90 | storres | |
7 | 115 | storres | Examples: |
8 | 119 | storres | |
9 | 119 | storres | TODO:: |
10 | 90 | storres | """ |
11 | 87 | storres | print "sageSLZ loading..." |
12 | 115 | storres | # |
13 | 115 | storres | def slz_check_htr_value(function, htrValue, lowerBound, upperBound, precision, \ |
14 | 115 | storres | degree, targetHardnessToRound, alpha): |
15 | 115 | storres | """ |
16 | 115 | storres | Check an Hard-to-round value. |
17 | 115 | storres | """ |
18 | 115 | storres | polyApproxPrec = targetHardnessToRound + 1 |
19 | 115 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
20 | 115 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
21 | 115 | storres | RRR = htrValue.parent() |
22 | 115 | storres | # |
23 | 115 | storres | ## Compute the scaled function. |
24 | 115 | storres | fff = slz_compute_scaled_function(f, lowerBound, upperBound, precision)[0] |
25 | 115 | storres | print "Scaled function:", fff |
26 | 115 | storres | # |
27 | 115 | storres | ## Compute the scaling. |
28 | 115 | storres | boundsIntervalRifSa = RealIntervalField(precision) |
29 | 115 | storres | domainBoundsInterval = boundsIntervalRifSa(lowerBound, upperBound) |
30 | 115 | storres | scalingExpressions = \ |
31 | 115 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
32 | 115 | storres | # |
33 | 115 | storres | ## Get the polynomials, bounds, etc. for all the interval. |
34 | 115 | storres | resultListOfTuplesOfSo = \ |
35 | 115 | storres | slz_get_intervals_and_polynomials(f, degree, lowerBound, upperBound, \ |
36 | 115 | storres | precision, internalSollyaPrec,\ |
37 | 115 | storres | 2^-(polyApproxPrec)) |
38 | 115 | storres | # |
39 | 115 | storres | ## We only want one interval. |
40 | 115 | storres | if len(resultListOfTuplesOfSo) > 1: |
41 | 115 | storres | print "Too many intervals! Aborting!" |
42 | 115 | storres | exit |
43 | 115 | storres | # |
44 | 115 | storres | ## Get the first tuple of Sollya objects as Sage objects. |
45 | 115 | storres | firstTupleSa = \ |
46 | 115 | storres | slz_interval_and_polynomial_to_sage(resultListOfTuplesOfSo[0]) |
47 | 115 | storres | pobyso_set_canonical_on() |
48 | 115 | storres | # |
49 | 115 | storres | print "Floatting point polynomial:", firstTupleSa[0] |
50 | 115 | storres | print "with coefficients precision:", firstTupleSa[0].base_ring().prec() |
51 | 115 | storres | # |
52 | 115 | storres | ## From a polynomial over a real ring, create a polynomial over the |
53 | 115 | storres | # rationals ring. |
54 | 115 | storres | rationalPolynomial = \ |
55 | 115 | storres | slz_float_poly_of_float_to_rat_poly_of_rat(firstTupleSa[0]) |
56 | 115 | storres | print "Rational polynomial:", rationalPolynomial |
57 | 115 | storres | # |
58 | 115 | storres | ## Create a polynomial over the rationals that will take integer |
59 | 115 | storres | # variables instead of rational. |
60 | 115 | storres | rationalPolynomialOfIntegers = \ |
61 | 115 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(rationalPolynomial, precision) |
62 | 115 | storres | print "Type:", type(rationalPolynomialOfIntegers) |
63 | 115 | storres | print "Rational polynomial of integers:", rationalPolynomialOfIntegers |
64 | 115 | storres | # |
65 | 115 | storres | ## Check the rational polynomial of integers variables. |
66 | 115 | storres | # (check against the scaled function). |
67 | 115 | storres | toIntegerFactor = 2^(precision-1) |
68 | 115 | storres | intervalCenterAsIntegerSa = int(firstTupleSa[3] * toIntegerFactor) |
69 | 115 | storres | print "Interval center as integer:", intervalCenterAsIntegerSa |
70 | 115 | storres | lowerBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[0] * \ |
71 | 115 | storres | toIntegerFactor) - intervalCenterAsIntegerSa |
72 | 115 | storres | upperBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[1] * \ |
73 | 115 | storres | toIntegerFactor) - intervalCenterAsIntegerSa |
74 | 115 | storres | print "Lower bound as integer:", lowerBoundAsIntegerSa |
75 | 115 | storres | print "Upper bound as integer:", upperBoundAsIntegerSa |
76 | 115 | storres | print "Image of the lower bound by the scaled function", \ |
77 | 115 | storres | fff(firstTupleSa[2].endpoints()[0]) |
78 | 115 | storres | print "Image of the lower bound by the approximation polynomial of ints:", \ |
79 | 115 | storres | RRR(rationalPolynomialOfIntegers(lowerBoundAsIntegerSa)) |
80 | 115 | storres | print "Image of the center by the scaled function", fff(firstTupleSa[3]) |
81 | 115 | storres | print "Image of the center by the approximation polynomial of ints:", \ |
82 | 115 | storres | RRR(rationalPolynomialOfIntegers(0)) |
83 | 115 | storres | print "Image of the upper bound by the scaled function", \ |
84 | 115 | storres | fff(firstTupleSa[2].endpoints()[1]) |
85 | 115 | storres | print "Image of the upper bound by the approximation polynomial of ints:", \ |
86 | 115 | storres | RRR(rationalPolynomialOfIntegers(upperBoundAsIntegerSa)) |
87 | 115 | storres | |
88 | 115 | storres | # End slz_check_htr_value. |
89 | 115 | storres | # |
90 | 121 | storres | def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
91 | 119 | storres | """ |
92 | 119 | storres | For given "real number", compute the bounds of the binade it belongs to. |
93 | 121 | storres | |
94 | 121 | storres | NOTE:: |
95 | 121 | storres | When number >= 2^(emax+1), we return the "fake" binade |
96 | 121 | storres | [2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
97 | 121 | storres | with interval [-infinity, -2^(emax+1)]. |
98 | 121 | storres | |
99 | 119 | storres | """ |
100 | 121 | storres | # Check the parameters. |
101 | 121 | storres | # RealNumbers only. |
102 | 121 | storres | classTree = [number.__class__] + number.mro() |
103 | 121 | storres | if not sage.rings.real_mpfr.RealNumber in classTree: |
104 | 121 | storres | return None |
105 | 121 | storres | # Non zero negative integers only for emin. |
106 | 121 | storres | if emin >= 0 or int(emin) != emin: |
107 | 121 | storres | return None |
108 | 121 | storres | # Non zero positive integers only for emax. |
109 | 121 | storres | if emax <= 0 or int(emax) != emax: |
110 | 121 | storres | return None |
111 | 121 | storres | precision = number.precision() |
112 | 121 | storres | RF = RealField(precision) |
113 | 121 | storres | # A more precise RealField is needed to avoid unwanted rounding effects |
114 | 121 | storres | # when computing number.log2(). |
115 | 121 | storres | RRF = RealField(max(2048, 2 * precision)) |
116 | 121 | storres | # number = 0 special case, the binade bounds are |
117 | 121 | storres | # [0, 2^emin - 2^(emin-precision)] |
118 | 119 | storres | if number == 0: |
119 | 119 | storres | return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
120 | 121 | storres | # Begin general case |
121 | 119 | storres | l2 = RRF(number).abs().log2() |
122 | 121 | storres | # Another special one: beyond largest representable -> "Fake" binade. |
123 | 121 | storres | if l2 >= emax + 1: |
124 | 121 | storres | if number > 0: |
125 | 121 | storres | return (RF(2^(emax+1)), RRR(+infinity) ) |
126 | 121 | storres | else: |
127 | 121 | storres | return (RF(-infinity), -RF(2^(emax+1))) |
128 | 119 | storres | offset = int(l2) |
129 | 121 | storres | # number.abs() >= 1. |
130 | 119 | storres | if l2 >= 0: |
131 | 119 | storres | if number >= 0: |
132 | 119 | storres | lb = RF(2^offset) |
133 | 119 | storres | ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
134 | 119 | storres | else: #number < 0 |
135 | 119 | storres | lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
136 | 119 | storres | ub = -RF(2^offset) |
137 | 121 | storres | else: # log2 < 0, number.abs() < 1. |
138 | 119 | storres | if l2 < emin: # Denormal |
139 | 121 | storres | # print "Denormal:", l2 |
140 | 119 | storres | if number >= 0: |
141 | 119 | storres | lb = RF(0) |
142 | 119 | storres | ub = RF(2^(emin)) - RF(2^(emin-precision)) |
143 | 119 | storres | else: # number <= 0 |
144 | 119 | storres | lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
145 | 119 | storres | ub = RF(0) |
146 | 119 | storres | elif l2 > emin: # Normal number other than +/-2^emin. |
147 | 119 | storres | if number >= 0: |
148 | 121 | storres | if int(l2) == l2: |
149 | 121 | storres | lb = RF(2^(offset)) |
150 | 121 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
151 | 121 | storres | else: |
152 | 121 | storres | lb = RF(2^(offset-1)) |
153 | 121 | storres | ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
154 | 119 | storres | else: # number < 0 |
155 | 121 | storres | if int(l2) == l2: # Binade limit. |
156 | 121 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
157 | 121 | storres | ub = -RF(2^(offset)) |
158 | 121 | storres | else: |
159 | 121 | storres | lb = -RF(2^(offset) - 2^(-precision+offset)) |
160 | 121 | storres | ub = -RF(2^(offset-1)) |
161 | 121 | storres | else: # l2== emin, number == +/-2^emin |
162 | 119 | storres | if number >= 0: |
163 | 119 | storres | lb = RF(2^(offset)) |
164 | 119 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
165 | 119 | storres | else: # number < 0 |
166 | 119 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
167 | 119 | storres | ub = -RF(2^(offset)) |
168 | 119 | storres | return (lb, ub) |
169 | 119 | storres | # End slz_compute_binade_bounds |
170 | 119 | storres | # |
171 | 61 | storres | def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
172 | 61 | storres | upperBoundSa, approxPrecSa, |
173 | 61 | storres | sollyaPrecSa=None): |
174 | 61 | storres | """ |
175 | 61 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
176 | 61 | storres | a polynomial that approximates the function on a an interval starting |
177 | 61 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
178 | 61 | storres | approximates with the expected precision. |
179 | 61 | storres | The interval upper bound is lowered until the expected approximation |
180 | 61 | storres | precision is reached. |
181 | 61 | storres | The polynomial, the bounds, the center of the interval and the error |
182 | 61 | storres | are returned. |
183 | 61 | storres | """ |
184 | 61 | storres | RRR = lowerBoundSa.parent() |
185 | 61 | storres | intervalShrinkConstFactorSa = RRR('0.5') |
186 | 61 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
187 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
188 | 61 | storres | currentUpperBoundSa = upperBoundSa |
189 | 61 | storres | currentLowerBoundSa = lowerBoundSa |
190 | 61 | storres | # What we want here is the polynomial without the variable change, |
191 | 61 | storres | # since our actual variable will be x-intervalCenter defined over the |
192 | 61 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
193 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
194 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
195 | 61 | storres | currentRangeSo, |
196 | 61 | storres | absoluteErrorTypeSo) |
197 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
198 | 61 | storres | while maxErrorSa > approxPrecSa: |
199 | 101 | storres | #print "++Approximation error:", maxErrorSa |
200 | 81 | storres | sollya_lib_clear_obj(polySo) |
201 | 81 | storres | sollya_lib_clear_obj(intervalCenterSo) |
202 | 120 | storres | sollya_lib_clear_obj(maxErrorSo) |
203 | 101 | storres | shrinkFactorSa = RRR('5')/(maxErrorSa/approxPrecSa).log2().abs() |
204 | 81 | storres | #shrinkFactorSa = 1.5/(maxErrorSa/approxPrecSa) |
205 | 81 | storres | #errorRatioSa = approxPrecSa/maxErrorSa |
206 | 61 | storres | #print "Error ratio: ", errorRatioSa |
207 | 81 | storres | if shrinkFactorSa > intervalShrinkConstFactorSa: |
208 | 81 | storres | actualShrinkFactorSa = intervalShrinkConstFactorSa |
209 | 81 | storres | #print "Fixed" |
210 | 61 | storres | else: |
211 | 81 | storres | actualShrinkFactorSa = shrinkFactorSa |
212 | 81 | storres | #print "Computed",shrinkFactorSa,maxErrorSa |
213 | 81 | storres | #print shrinkFactorSa, maxErrorSa |
214 | 101 | storres | #print "Shrink factor", actualShrinkFactorSa |
215 | 81 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
216 | 61 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
217 | 81 | storres | actualShrinkFactorSa |
218 | 71 | storres | #print "Current upper bound:", currentUpperBoundSa |
219 | 61 | storres | sollya_lib_clear_obj(currentRangeSo) |
220 | 101 | storres | if currentUpperBoundSa <= currentLowerBoundSa or \ |
221 | 101 | storres | currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
222 | 86 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
223 | 86 | storres | print "Can't find an interval." |
224 | 86 | storres | print "Use either or both a higher polynomial degree or a higher", |
225 | 86 | storres | print "internal precision." |
226 | 86 | storres | print "Aborting!" |
227 | 86 | storres | return (None, None, None, None) |
228 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
229 | 61 | storres | currentUpperBoundSa) |
230 | 86 | storres | # print "New interval:", |
231 | 86 | storres | # pobyso_autoprint(currentRangeSo) |
232 | 120 | storres | #print "Second Taylor expansion call." |
233 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
234 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
235 | 61 | storres | currentRangeSo, |
236 | 61 | storres | absoluteErrorTypeSo) |
237 | 61 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
238 | 85 | storres | #print "Max errorSo:", |
239 | 85 | storres | #pobyso_autoprint(maxErrorSo) |
240 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
241 | 85 | storres | #print "Max errorSa:", maxErrorSa |
242 | 85 | storres | #print "Sollya prec:", |
243 | 85 | storres | #pobyso_autoprint(sollya_lib_get_prec(None)) |
244 | 61 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
245 | 61 | storres | return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
246 | 81 | storres | # End slz_compute_polynomial_and_interval |
247 | 61 | storres | |
248 | 98 | storres | def slz_compute_reduced_polynomials(reducedMatrix, |
249 | 98 | storres | knownMonomials, |
250 | 106 | storres | var1, |
251 | 98 | storres | var1Bound, |
252 | 106 | storres | var2, |
253 | 99 | storres | var2Bound): |
254 | 98 | storres | """ |
255 | 98 | storres | From a reduced matrix, holding the coefficients, from a monomials list, |
256 | 98 | storres | from the bounds of each variable, compute the corresponding polynomials |
257 | 98 | storres | scaled back by dividing by the "right" powers of the variables bounds. |
258 | 99 | storres | |
259 | 99 | storres | The elements in knownMonomials must be of the "right" polynomial type. |
260 | 103 | storres | They set the polynomial type of the output polynomials list. |
261 | 98 | storres | """ |
262 | 99 | storres | |
263 | 98 | storres | # TODO: check input arguments. |
264 | 98 | storres | reducedPolynomials = [] |
265 | 106 | storres | #print "type var1:", type(var1), " - type var2:", type(var2) |
266 | 98 | storres | for matrixRow in reducedMatrix.rows(): |
267 | 102 | storres | currentPolynomial = 0 |
268 | 98 | storres | for colIndex in xrange(0, len(knownMonomials)): |
269 | 98 | storres | currentCoefficient = matrixRow[colIndex] |
270 | 106 | storres | if currentCoefficient != 0: |
271 | 106 | storres | #print "Current coefficient:", currentCoefficient |
272 | 106 | storres | currentMonomial = knownMonomials[colIndex] |
273 | 106 | storres | parentRing = currentMonomial.parent() |
274 | 106 | storres | #print "Monomial as multivariate polynomial:", \ |
275 | 106 | storres | #currentMonomial, type(currentMonomial) |
276 | 106 | storres | degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
277 | 106 | storres | #print "Degree in var", var1, ":", degreeInVar1 |
278 | 106 | storres | degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
279 | 106 | storres | #print "Degree in var", var2, ":", degreeInVar2 |
280 | 106 | storres | if degreeInVar1 > 0: |
281 | 106 | storres | currentCoefficient = \ |
282 | 106 | storres | currentCoefficient / var1Bound^degreeInVar1 |
283 | 106 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
284 | 106 | storres | #print "Current coefficient(1)", currentCoefficient |
285 | 106 | storres | if degreeInVar2 > 0: |
286 | 106 | storres | currentCoefficient = \ |
287 | 106 | storres | currentCoefficient / var2Bound^degreeInVar2 |
288 | 106 | storres | #print "Current coefficient(2)", currentCoefficient |
289 | 106 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
290 | 106 | storres | # currentMonomial) |
291 | 106 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
292 | 106 | storres | #print "Current polynomial:", currentPolynomial |
293 | 106 | storres | # End if |
294 | 106 | storres | # End for colIndex. |
295 | 99 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
296 | 99 | storres | reducedPolynomials.append(currentPolynomial) |
297 | 98 | storres | return reducedPolynomials |
298 | 99 | storres | # End slz_compute_reduced_polynomials. |
299 | 98 | storres | |
300 | 114 | storres | def slz_compute_scaled_function(functionSa, |
301 | 114 | storres | lowerBoundSa, |
302 | 114 | storres | upperBoundSa, |
303 | 114 | storres | floatingPointPrecSa): |
304 | 72 | storres | """ |
305 | 72 | storres | From a function, compute the scaled function whose domain |
306 | 72 | storres | is included in [1, 2) and whose image is also included in [1,2). |
307 | 72 | storres | Return a tuple: |
308 | 72 | storres | [0]: the scaled function |
309 | 72 | storres | [1]: the scaled domain lower bound |
310 | 72 | storres | [2]: the scaled domain upper bound |
311 | 72 | storres | [3]: the scaled image lower bound |
312 | 72 | storres | [4]: the scaled image upper bound |
313 | 72 | storres | """ |
314 | 80 | storres | x = functionSa.variables()[0] |
315 | 80 | storres | # Reassert f as a function (an not a mere expression). |
316 | 80 | storres | |
317 | 72 | storres | # Scalling the domain -> [1,2[. |
318 | 72 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
319 | 72 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
320 | 72 | storres | (domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
321 | 80 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
322 | 72 | storres | print "domainScalingExpression for argument :", domainScalingExpressionSa |
323 | 72 | storres | print "f: ", f |
324 | 72 | storres | ff = f.subs({x : domainScalingExpressionSa}) |
325 | 72 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
326 | 80 | storres | domainScalingFunction(x) = invDomainScalingExpressionSa |
327 | 80 | storres | scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
328 | 80 | storres | scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
329 | 72 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
330 | 72 | storres | # |
331 | 72 | storres | # Scalling the image -> [1,2[. |
332 | 72 | storres | flbSa = f(lowerBoundSa).n() |
333 | 72 | storres | fubSa = f(upperBoundSa).n() |
334 | 72 | storres | if flbSa <= fubSa: # Increasing |
335 | 72 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
336 | 72 | storres | else: # Decreasing |
337 | 72 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
338 | 72 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
339 | 72 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
340 | 72 | storres | (imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
341 | 80 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
342 | 72 | storres | iis = invImageScalingExpressionSa.function(x) |
343 | 72 | storres | fff = iis.subs({x:ff}) |
344 | 72 | storres | print "fff:", fff, |
345 | 72 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
346 | 72 | storres | return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
347 | 72 | storres | fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
348 | 72 | storres | |
349 | 79 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
350 | 79 | storres | # Create a polynomial over the rationals. |
351 | 79 | storres | polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
352 | 79 | storres | return(polynomialRing(polyOfFloat)) |
353 | 86 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat. |
354 | 81 | storres | |
355 | 80 | storres | def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
356 | 63 | storres | lowerBoundSa, |
357 | 60 | storres | upperBoundSa, floatingPointPrecSa, |
358 | 64 | storres | internalSollyaPrecSa, approxPrecSa): |
359 | 60 | storres | """ |
360 | 60 | storres | Under the assumption that: |
361 | 60 | storres | - functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
362 | 60 | storres | - lowerBound and upperBound belong to the same binade. |
363 | 60 | storres | from a: |
364 | 60 | storres | - function; |
365 | 60 | storres | - a degree |
366 | 60 | storres | - a pair of bounds; |
367 | 60 | storres | - the floating-point precision we work on; |
368 | 60 | storres | - the internal Sollya precision; |
369 | 64 | storres | - the requested approximation error |
370 | 61 | storres | The initial interval is, possibly, splitted into smaller intervals. |
371 | 61 | storres | It return a list of tuples, each made of: |
372 | 72 | storres | - a first polynomial (without the changed variable f(x) = p(x-x0)); |
373 | 79 | storres | - a second polynomial (with a changed variable f(x) = q(x)) |
374 | 61 | storres | - the approximation interval; |
375 | 72 | storres | - the center, x0, of the interval; |
376 | 61 | storres | - the corresponding approximation error. |
377 | 100 | storres | TODO: fix endless looping for some parameters sets. |
378 | 60 | storres | """ |
379 | 120 | storres | resultArray = [] |
380 | 101 | storres | # Set Sollya to the necessary internal precision. |
381 | 120 | storres | precChangedSa = False |
382 | 85 | storres | currentSollyaPrecSo = pobyso_get_prec_so() |
383 | 85 | storres | currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
384 | 85 | storres | if internalSollyaPrecSa > currentSollyaPrecSa: |
385 | 85 | storres | pobyso_set_prec_sa_so(internalSollyaPrecSa) |
386 | 120 | storres | precChangedSa = True |
387 | 101 | storres | # |
388 | 80 | storres | x = functionSa.variables()[0] # Actual variable name can be anything. |
389 | 101 | storres | # Scaled function: [1=,2] -> [1,2]. |
390 | 115 | storres | (fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
391 | 115 | storres | scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
392 | 115 | storres | slz_compute_scaled_function(functionSa, \ |
393 | 115 | storres | lowerBoundSa, \ |
394 | 115 | storres | upperBoundSa, \ |
395 | 80 | storres | floatingPointPrecSa) |
396 | 60 | storres | # |
397 | 60 | storres | print "Approximation precision: ", RR(approxPrecSa) |
398 | 61 | storres | # Prepare the arguments for the Taylor expansion computation with Sollya. |
399 | 62 | storres | functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
400 | 60 | storres | degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
401 | 61 | storres | scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
402 | 61 | storres | scaledUpperBoundSa) |
403 | 61 | storres | # Compute the first Taylor expansion. |
404 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
405 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
406 | 60 | storres | scaledLowerBoundSa, scaledUpperBoundSa, |
407 | 60 | storres | approxPrecSa, internalSollyaPrecSa) |
408 | 86 | storres | if polySo is None: |
409 | 101 | storres | print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
410 | 120 | storres | if precChangedSa: |
411 | 120 | storres | pobyso_set_prec_so_so(currentSollyaPrecSo) |
412 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
413 | 115 | storres | sollya_lib_clear_obj(functionSo) |
414 | 115 | storres | sollya_lib_clear_obj(degreeSo) |
415 | 115 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
416 | 86 | storres | return None |
417 | 60 | storres | realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
418 | 60 | storres | upperBoundSa.parent().precision())) |
419 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
420 | 101 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
421 | 101 | storres | #print "First approximation error:", errorSa |
422 | 101 | storres | # If the error and interval are OK a the first try, just return. |
423 | 101 | storres | if boundsSa.endpoints()[1] >= scaledUpperBoundSa: |
424 | 101 | storres | # Change variable stuff in Sollya x -> x0-x. |
425 | 101 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( \ |
426 | 101 | storres | sollya_lib_build_function_free_variable(), \ |
427 | 101 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
428 | 101 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
429 | 115 | storres | sollya_lib_clear_obj(changeVarExpressionSo) |
430 | 101 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
431 | 101 | storres | intervalCenterSo, maxErrorSo)) |
432 | 101 | storres | if internalSollyaPrecSa != currentSollyaPrecSa: |
433 | 101 | storres | pobyso_set_prec_sa_so(currentSollyaPrecSa) |
434 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
435 | 101 | storres | sollya_lib_clear_obj(functionSo) |
436 | 101 | storres | sollya_lib_clear_obj(degreeSo) |
437 | 101 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
438 | 101 | storres | #print "Approximation error:", errorSa |
439 | 101 | storres | return resultArray |
440 | 120 | storres | # The returned interval upper bound does not reach the requested upper |
441 | 120 | storres | # upper bound: compute the next upper bound. |
442 | 101 | storres | # The following ratio is always >= 1 |
443 | 81 | storres | currentErrorRatio = approxPrecSa / errorSa |
444 | 101 | storres | # Starting point for the next upper bound. |
445 | 81 | storres | currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
446 | 101 | storres | boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
447 | 101 | storres | # Compute the increment. |
448 | 101 | storres | if currentErrorRatio > RR('1000'): # ]1.5, infinity[ |
449 | 81 | storres | currentScaledUpperBoundSa += \ |
450 | 101 | storres | currentErrorRatio * boundsWidthSa * 2 |
451 | 101 | storres | else: # [1, 1.5] |
452 | 81 | storres | currentScaledUpperBoundSa += \ |
453 | 101 | storres | (RR('1.0') + currentErrorRatio.log() / 500) * boundsWidthSa |
454 | 101 | storres | # Take into account the original interval upper bound. |
455 | 81 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
456 | 81 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
457 | 61 | storres | # Compute the other expansions. |
458 | 60 | storres | while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
459 | 60 | storres | currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
460 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
461 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
462 | 60 | storres | currentScaledLowerBoundSa, |
463 | 81 | storres | currentScaledUpperBoundSa, |
464 | 81 | storres | approxPrecSa, |
465 | 60 | storres | internalSollyaPrecSa) |
466 | 101 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
467 | 101 | storres | if errorSa < approxPrecSa: |
468 | 101 | storres | # Change variable stuff |
469 | 101 | storres | #print "Approximation error:", errorSa |
470 | 101 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
471 | 101 | storres | sollya_lib_build_function_free_variable(), |
472 | 101 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
473 | 101 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
474 | 115 | storres | sollya_lib_clear_obj(changeVarExpressionSo) |
475 | 101 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
476 | 101 | storres | intervalCenterSo, maxErrorSo)) |
477 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
478 | 81 | storres | # Compute the next upper bound. |
479 | 101 | storres | # The following ratio is always >= 1 |
480 | 81 | storres | currentErrorRatio = approxPrecSa / errorSa |
481 | 101 | storres | # Starting point for the next upper bound. |
482 | 101 | storres | currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
483 | 101 | storres | boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
484 | 101 | storres | # Compute the increment. |
485 | 101 | storres | if currentErrorRatio > RR('1000'): # ]1.5, infinity[ |
486 | 101 | storres | currentScaledUpperBoundSa += \ |
487 | 101 | storres | currentErrorRatio * boundsWidthSa * 2 |
488 | 101 | storres | else: # [1, 1.5] |
489 | 101 | storres | currentScaledUpperBoundSa += \ |
490 | 101 | storres | (RR('1.0') + currentErrorRatio.log()/500) * boundsWidthSa |
491 | 101 | storres | #print "currentErrorRatio:", currentErrorRatio |
492 | 101 | storres | #print "currentScaledUpperBoundSa", currentScaledUpperBoundSa |
493 | 85 | storres | # Test for insufficient precision. |
494 | 85 | storres | if currentScaledUpperBoundSa == scaledLowerBoundSa: |
495 | 85 | storres | print "Can't shrink the interval anymore!" |
496 | 85 | storres | print "You should consider increasing the Sollya internal precision" |
497 | 85 | storres | print "or the polynomial degree." |
498 | 85 | storres | print "Giving up!" |
499 | 101 | storres | if internalSollyaPrecSa != currentSollyaPrecSa: |
500 | 101 | storres | pobyso_set_prec_sa_so(currentSollyaPrecSa) |
501 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
502 | 85 | storres | sollya_lib_clear_obj(functionSo) |
503 | 85 | storres | sollya_lib_clear_obj(degreeSo) |
504 | 85 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
505 | 85 | storres | return None |
506 | 81 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
507 | 81 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
508 | 115 | storres | if internalSollyaPrecSa > currentSollyaPrecSa: |
509 | 115 | storres | pobyso_set_prec_so_so(currentSollyaPrecSo) |
510 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
511 | 60 | storres | sollya_lib_clear_obj(functionSo) |
512 | 60 | storres | sollya_lib_clear_obj(degreeSo) |
513 | 60 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
514 | 60 | storres | return(resultArray) |
515 | 81 | storres | # End slz_get_intervals_and_polynomials |
516 | 60 | storres | |
517 | 81 | storres | |
518 | 80 | storres | def slz_interval_scaling_expression(boundsInterval, expVar): |
519 | 61 | storres | """ |
520 | 114 | storres | Compute the scaling expression to map an interval that span at most |
521 | 114 | storres | a single binade to [1, 2) and the inverse expression as well. |
522 | 62 | storres | Not very sure that the transformation makes sense for negative numbers. |
523 | 61 | storres | """ |
524 | 62 | storres | # The scaling offset is only used for negative numbers. |
525 | 61 | storres | if abs(boundsInterval.endpoints()[0]) < 1: |
526 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
527 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
528 | 62 | storres | invScalingCoeff = 1/scalingCoeff |
529 | 80 | storres | return((scalingCoeff * expVar, |
530 | 80 | storres | invScalingCoeff * expVar)) |
531 | 60 | storres | else: |
532 | 62 | storres | scalingCoeff = \ |
533 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
534 | 62 | storres | scalingOffset = -3 * scalingCoeff |
535 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
536 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
537 | 61 | storres | else: |
538 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
539 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
540 | 61 | storres | scalingOffset = 0 |
541 | 80 | storres | return((scalingCoeff * expVar, |
542 | 80 | storres | 1/scalingCoeff * expVar)) |
543 | 61 | storres | else: |
544 | 62 | storres | scalingCoeff = \ |
545 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[1]).log2())) |
546 | 62 | storres | scalingOffset = -3 * scalingCoeff |
547 | 62 | storres | #scalingOffset = 0 |
548 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
549 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
550 | 61 | storres | |
551 | 61 | storres | |
552 | 83 | storres | def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
553 | 72 | storres | """ |
554 | 72 | storres | Compute the Sage version of the Taylor polynomial and it's |
555 | 72 | storres | companion data (interval, center...) |
556 | 72 | storres | The input parameter is a five elements tuple: |
557 | 79 | storres | - [0]: the polyomial (without variable change), as polynomial over a |
558 | 79 | storres | real ring; |
559 | 79 | storres | - [1]: the polyomial (with variable change done in Sollya), as polynomial |
560 | 79 | storres | over a real ring; |
561 | 72 | storres | - [2]: the interval (as Sollya range); |
562 | 72 | storres | - [3]: the interval center; |
563 | 72 | storres | - [4]: the approximation error. |
564 | 72 | storres | |
565 | 72 | storres | The function return a 5 elements tuple: formed with all the |
566 | 72 | storres | input elements converted into their Sollya counterpart. |
567 | 72 | storres | """ |
568 | 60 | storres | polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
569 | 64 | storres | polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
570 | 60 | storres | intervalSa = \ |
571 | 64 | storres | pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
572 | 60 | storres | centerSa = \ |
573 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
574 | 60 | storres | errorSa = \ |
575 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
576 | 64 | storres | return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
577 | 83 | storres | # End slz_interval_and_polynomial_to_sage |
578 | 62 | storres | |
579 | 80 | storres | def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
580 | 80 | storres | precision, |
581 | 80 | storres | targetHardnessToRound, |
582 | 80 | storres | variable1, |
583 | 80 | storres | variable2): |
584 | 80 | storres | """ |
585 | 90 | storres | Creates a new multivariate polynomial with integer coefficients for use |
586 | 90 | storres | with the Coppersmith method. |
587 | 80 | storres | A the same time it computes : |
588 | 80 | storres | - 2^K (N); |
589 | 90 | storres | - 2^k (bound on the second variable) |
590 | 80 | storres | - lcm |
591 | 90 | storres | |
592 | 90 | storres | :param ratPolyOfInt: a polynomial with rational coefficients and integer |
593 | 90 | storres | variables. |
594 | 90 | storres | :param precision: the precision of the floating-point coefficients. |
595 | 90 | storres | :param targetHardnessToRound: the hardness to round we want to check. |
596 | 90 | storres | :param variable1: the first variable of the polynomial (an expression). |
597 | 90 | storres | :param variable2: the second variable of the polynomial (an expression). |
598 | 90 | storres | |
599 | 90 | storres | :returns: a 4 elements tuple: |
600 | 90 | storres | - the polynomial; |
601 | 91 | storres | - the modulus (N); |
602 | 91 | storres | - the t bound; |
603 | 90 | storres | - the lcm used to compute the integral coefficients and the |
604 | 90 | storres | module. |
605 | 80 | storres | """ |
606 | 80 | storres | # Create a new integer polynomial ring. |
607 | 80 | storres | IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
608 | 80 | storres | # Coefficients are issued in the increasing power order. |
609 | 80 | storres | ratPolyCoefficients = ratPolyOfInt.coefficients() |
610 | 91 | storres | # Print the reversed list for debugging. |
611 | 94 | storres | print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
612 | 94 | storres | # Build the list of number we compute the lcm of. |
613 | 80 | storres | coefficientDenominators = sro_denominators(ratPolyCoefficients) |
614 | 80 | storres | coefficientDenominators.append(2^precision) |
615 | 80 | storres | coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
616 | 87 | storres | leastCommonMultiple = lcm(coefficientDenominators) |
617 | 80 | storres | # Compute the expression corresponding to the new polynomial |
618 | 80 | storres | coefficientNumerators = sro_numerators(ratPolyCoefficients) |
619 | 91 | storres | #print coefficientNumerators |
620 | 80 | storres | polynomialExpression = 0 |
621 | 80 | storres | power = 0 |
622 | 80 | storres | # Iterate over two lists at the same time, stop when the shorter is |
623 | 80 | storres | # exhausted. |
624 | 80 | storres | for numerator, denominator in \ |
625 | 94 | storres | zip(coefficientNumerators, coefficientDenominators): |
626 | 80 | storres | multiplicator = leastCommonMultiple / denominator |
627 | 80 | storres | newCoefficient = numerator * multiplicator |
628 | 80 | storres | polynomialExpression += newCoefficient * variable1^power |
629 | 80 | storres | power +=1 |
630 | 80 | storres | polynomialExpression += - variable2 |
631 | 80 | storres | return (IP(polynomialExpression), |
632 | 80 | storres | leastCommonMultiple / 2^precision, # 2^K or N. |
633 | 91 | storres | leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
634 | 91 | storres | leastCommonMultiple) # If we want to make test computations. |
635 | 80 | storres | |
636 | 80 | storres | # End slz_ratPoly_of_int_to_poly_for_coppersmith |
637 | 79 | storres | |
638 | 79 | storres | def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
639 | 79 | storres | precision): |
640 | 79 | storres | """ |
641 | 79 | storres | Makes a variable substitution into the input polynomial so that the output |
642 | 79 | storres | polynomial can take integer arguments. |
643 | 79 | storres | All variables of the input polynomial "have precision p". That is to say |
644 | 103 | storres | that they are rationals with denominator == 2^(precision - 1): |
645 | 103 | storres | x = y/2^(precision - 1). |
646 | 79 | storres | We "incorporate" these denominators into the coefficients with, |
647 | 79 | storres | respectively, the "right" power. |
648 | 79 | storres | """ |
649 | 79 | storres | polynomialField = ratPolyOfRat.parent() |
650 | 91 | storres | polynomialVariable = ratPolyOfRat.variables()[0] |
651 | 91 | storres | #print "The polynomial field is:", polynomialField |
652 | 79 | storres | return \ |
653 | 91 | storres | polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
654 | 79 | storres | polynomialVariable/2^(precision-1)})) |
655 | 79 | storres | |
656 | 79 | storres | # Return a tuple: |
657 | 79 | storres | # - the bivariate integer polynomial in (i,j); |
658 | 79 | storres | # - 2^K |
659 | 79 | storres | # End slz_rat_poly_of_rat_to_rat_poly_of_int |
660 | 79 | storres | |
661 | 115 | storres | |
662 | 87 | storres | print "\t...sageSLZ loaded" |