root / src / Step_GDIIS_Simple_Err.f90 @ 7
Historique | Voir | Annoter | Télécharger (9,95 ko)
1 |
!C HEAT is never used, not even in call of Space(...) |
---|---|
2 |
!C Geom = input parameter vector (Geometry). |
3 |
!C Grad = input gradient vector. |
4 |
SUBROUTINE Step_GDIIS_Simple_Err(NewGeom,Geom,NewGrad,GRAD,HP,HEAT,Hess,NCoord,FRST) |
5 |
! IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
6 |
IMPLICIT NONE |
7 |
integer, parameter :: KINT = kind(1) |
8 |
integer, parameter :: KREAL = kind(1.0d0) |
9 |
|
10 |
! INCLUDE 'SIZES' |
11 |
|
12 |
INTEGER(KINT) :: NCoord |
13 |
REAL(KREAL) :: NewGeom(NCoord), Geom(NCoord), NewGrad(NCoord), GRAD(NCoord), Hess(NCoord*NCoord) |
14 |
REAL(KREAL) :: HEAT, HP |
15 |
LOGICAL :: FRST |
16 |
|
17 |
!************************************************************************ |
18 |
!* * |
19 |
!* DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE * |
20 |
!* * |
21 |
!* THIS INVOLVES SOLVING FOR C IN Geom(NEW) = Geom' - HG' * |
22 |
!* * |
23 |
!* WHERE Geom' = SUM(C(I)Geom(I), THE C COEFFICIENTES COMING FROM * |
24 |
!* * |
25 |
!* | B 1 | . | C | = | 0 | * |
26 |
!* | 1 0 | |-L | | 1 | * |
27 |
!* * |
28 |
!* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J) GRAD(I) = GRADIENT ON CYCLE I * |
29 |
!* Hess = INVERSE HESSIAN * |
30 |
!* * |
31 |
!* REFERENCE * |
32 |
!* * |
33 |
!* P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984) * |
34 |
!* * |
35 |
!************************************************************************ |
36 |
!************************************************************************ |
37 |
!* * |
38 |
!* GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN * |
39 |
!* THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER * |
40 |
!* (A VARIABLE METRIC METHOD) * |
41 |
!* * |
42 |
!* WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA * |
43 |
!* * |
44 |
!* REFERENCE * |
45 |
!* * |
46 |
!* "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM * |
47 |
!* GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL * |
48 |
!* LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10, * |
49 |
!* 939-950 (1989). * |
50 |
!* * |
51 |
!* MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS * |
52 |
!* * |
53 |
!************************************************************************ |
54 |
|
55 |
! MRESET = number of iterations. |
56 |
INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
57 |
REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet(:), GradSet(:), ERR(:) ! MRESET*NCoord |
58 |
REAL(KREAL) :: ESET(MRESET) |
59 |
REAL(KREAL), ALLOCATABLE, SAVE :: DX(:), GSAVE(:) !NCoord |
60 |
REAL(KREAL) :: B(M2), BS(M2), BST(M2) |
61 |
LOGICAL DEBUG, PRINT |
62 |
INTEGER(KINT), SAVE :: MSET |
63 |
INTEGER(KINT) :: NDIIS, MPLUS, INV, ITERA, MM, I, J, K |
64 |
INTEGER(KINT) :: JJ, KJ, JNV, II, IONE, IJ, INK,ITmp |
65 |
REAL(KREAL) :: XMax, XNorm, S, DET, THRES |
66 |
|
67 |
DEBUG=.TRUE. |
68 |
PRINT=.TRUE. |
69 |
|
70 |
IF (PRINT) WRITE(*,'(/,'' BEGIN Step_GDIIS_Simple_Err '')') |
71 |
|
72 |
! Initialization |
73 |
IF (FRST) THEN |
74 |
! FRST will be set to False in Space, so no need to modify it here |
75 |
IF (ALLOCATED(GeomSet)) THEN |
76 |
IF (PRINT) WRITE(*,'(/,'' In FRST, Step_GDIIS_Simple_Err Dealloc '')') |
77 |
DEALLOCATE(GeomSet,GradSet,ERR,DX,GSave) |
78 |
RETURN |
79 |
ELSE |
80 |
IF (PRINT) WRITE(*,'(/,'' In FRST, Step_GDIIS_Simple_Err alloc '')') |
81 |
ALLOCATE(GeomSet(MRESET*NCoord), GradSet(MRESET*NCoord), ERR(MRESET*NCoord)) |
82 |
ALLOCATE(DX(NCoord),GSAVE(NCoord)) |
83 |
END IF |
84 |
END IF |
85 |
|
86 |
! SPACE SIMPLY LOADS THE CURRENT VALUES OF Geom AND GRAD INTO THE ARRAYS GeomSet AND GradSet |
87 |
! HEAT is never used, not even in Space(...) |
88 |
CALL SPACE(MRESET,MSET,Geom,Grad,HEAT,NCoord,GeomSet,GradSet,ESET,FRST) |
89 |
|
90 |
IF (PRINT) WRITE(*,'(/,'' Step_GDIIS_Simple_Err after Space '')') |
91 |
|
92 |
! INITIALIZE SOME VARIABLES AND CONSTANTS: |
93 |
NDIIS = MSET |
94 |
MPLUS = MSET + 1 |
95 |
MM = MPLUS * MPLUS |
96 |
|
97 |
! CONSTRUCT THE GDIIS MATRIX: |
98 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)> |
99 |
JJ=0 |
100 |
INV=-NCoord |
101 |
DO I=1,MSET |
102 |
INV=INV+NCoord |
103 |
JNV=-NCoord |
104 |
DO J=1,MSET |
105 |
JNV=JNV+NCoord |
106 |
JJ = JJ + 1 |
107 |
B(JJ)=0.D0 |
108 |
DO K=1, NCoord |
109 |
B(JJ) = B(JJ) + (((GradSet(INV+K)-GradSet(JNV+K))*(GeomSet(INV+K)-GeomSet(JNV+K)))/2.D0) |
110 |
END DO |
111 |
END DO |
112 |
END DO |
113 |
|
114 |
! The following shifting is required to correct indices of B_ij elements in the GDIIS matrix. |
115 |
! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
116 |
DO 60 I=MSET-1,1,-1 |
117 |
DO 60 J=MSET,1,-1 |
118 |
60 B(I*MSET+J+I) = B(I*MSET+J) |
119 |
|
120 |
! for last row and last column of GDIIS matrix |
121 |
DO 70 I=1,MPLUS |
122 |
B(MPLUS*I) = 1.D0 |
123 |
70 B(MPLUS*MSET+I) = 1.D0 |
124 |
B(MM) = 0.D0 |
125 |
|
126 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
127 |
80 CONTINUE |
128 |
DO 90 I=1,MM |
129 |
90 BS(I) = B(I) |
130 |
IF (NDIIS .EQ. MSET) GO TO 140 |
131 |
DO 130 II=1,MSET-NDIIS |
132 |
XMAX = -1.D10 |
133 |
ITERA = 0 |
134 |
DO 110 I=1,MSET |
135 |
XNORM = 0.D0 |
136 |
INV = (I-1) * MPLUS |
137 |
DO 100 J=1,MSET |
138 |
100 XNORM = XNORM + ABS(B(INV + J)) |
139 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
140 |
XMAX = XNORM |
141 |
ITERA = I |
142 |
IONE = INV + I |
143 |
ENDIF |
144 |
110 CONTINUE |
145 |
DO 120 I=1,MPLUS |
146 |
INV = (I-1) * MPLUS |
147 |
DO 120 J=1,MPLUS |
148 |
JNV = (J-1) * MPLUS |
149 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
150 |
B(JNV + I) = B(INV + J) |
151 |
120 CONTINUE |
152 |
B(IONE) = 1.0D0 |
153 |
130 CONTINUE |
154 |
140 CONTINUE |
155 |
|
156 |
IF (DEBUG) THEN |
157 |
|
158 |
! OUTPUT THE GDIIS MATRIX: |
159 |
WRITE(*,'(/5X,'' Step_GDIIS_Simple_Err MATRIX'')') |
160 |
ITmp=min(12,MPLUS) |
161 |
DO IJ=1,MPLUS |
162 |
WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
163 |
END DO |
164 |
ENDIF |
165 |
|
166 |
! SCALE DIIS MATRIX BEFORE INVERSION: |
167 |
DO 160 I=1,MPLUS |
168 |
II = MPLUS * (I-1) + I |
169 |
160 GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
170 |
GSAVE(MPLUS) = 1.D0 |
171 |
DO 170 I=1,MPLUS |
172 |
DO 170 J=1,MPLUS |
173 |
IJ = MPLUS * (I-1) + J |
174 |
170 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
175 |
|
176 |
IF (DEBUG) THEN |
177 |
|
178 |
! OUTPUT SCALED GDIIS MATRIX: |
179 |
WRITE(*,'(/5X,'' Step_GDIIS_Simple_Err MATRIX (SCALED)'')') |
180 |
ITmp=min(12,MPLUS) |
181 |
DO IJ=1,MPLUS |
182 |
WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
183 |
END DO |
184 |
|
185 |
ENDIF ! matches IF (DEBUG) THEN |
186 |
|
187 |
! INVERT THE GDIIS MATRIX B: |
188 |
CALL MINV(B,MPLUS,DET) ! matrix inversion. |
189 |
|
190 |
DO 190 I=1,MPLUS |
191 |
DO 190 J=1,MPLUS |
192 |
IJ = MPLUS * (I-1) + J |
193 |
190 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
194 |
|
195 |
! COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT VECTORS: |
196 |
DO 200 K=1,NCoord |
197 |
NewGeom(K) = 0.D0 |
198 |
NewGrad(K) = 0.D0 |
199 |
DO 200 I=1,MSET |
200 |
INK = (I-1) * NCoord + K |
201 |
!Print *, 'B(',MPLUS*MSET+I,')=', B(MPLUS*MSET+I) |
202 |
NewGeom(K) = NewGeom(K) + B(MPLUS*MSET+I) * GeomSet(INK) |
203 |
200 NewGrad(K) = NewGrad(K) + B(MPLUS*MSET+I) * GradSet(INK) |
204 |
HP=0.D0 |
205 |
DO 210 I=1,MSET |
206 |
210 HP=HP+B(MPLUS*MSET+I)*ESET(I) |
207 |
|
208 |
DO 220 K=1,NCoord |
209 |
220 DX(K) = Geom(K) - NewGeom(K) |
210 |
XNORM = SQRT(DOT_PRODUCT(DX,DX)) |
211 |
IF (PRINT) THEN |
212 |
WRITE (6,'(/10X,''DEVIATION IN X '',F7.4,8X,''DETERMINANT '',G9.3)') XNORM,DET |
213 |
WRITE(*,'(10X,''Step_GDIIS_Simple_Err COEFFICIENTS'')') |
214 |
WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET) |
215 |
ENDIF |
216 |
|
217 |
! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY: |
218 |
THRES = MAX(10.D0**(-NCoord), 1.D-25) |
219 |
IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
220 |
IF (PRINT)THEN |
221 |
WRITE(*,*) "THE DIIS MATRIX IS ILL CONDITIONED" |
222 |
WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
223 |
WRITE(*,*) "THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
224 |
END IF |
225 |
DO 230 K=1,MM |
226 |
230 B(K) = BS(K) |
227 |
NDIIS = NDIIS - 1 |
228 |
IF (NDIIS .GT. 0) GO TO 80 |
229 |
IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
230 |
DO 240 K=1,NCoord |
231 |
NewGeom(K) = Geom(K) |
232 |
240 NewGrad(K) = GRAD(K) |
233 |
ENDIF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
234 |
|
235 |
! q_{m+1} = q'_{m+1} - H^{-1}g'_{m+1} |
236 |
! Hess is a symmetric matrix. |
237 |
!Hess_inv = 1.d0 ! to be deleted. |
238 |
!Call GenInv(NCoord,Reshape(Hess,(/NCoord,NCoord/)),Hess_inv,NCoord) ! Implemented in Mat_util.f90 |
239 |
! H^{-1}g'_{m+1} |
240 |
!Print *, 'Hess_inv=' |
241 |
! Print *, Hess_inv |
242 |
!Geom=0.d0 |
243 |
!DO I=1, NCoord |
244 |
! Geom(:) = Geom(:) + Hess_inv(:,I)*NewGrad(I) |
245 |
!END DO |
246 |
!Geom(:) = NewGeom(:) - Geom(:) ! now Geom is a new geometry. |
247 |
|
248 |
! STEP is the difference between the new and old geometry and thus "step": |
249 |
!STEP = Geom - Geom_old |
250 |
|
251 |
IF (PRINT) WRITE(*,'(/,'' END Step_GDIIS_Simple_Err '',/)') |
252 |
|
253 |
END SUBROUTINE Step_GDIIS_Simple_Err |