Statistiques
| Révision :

root / src / Step_GDIIS_Simple_Err.f90 @ 7

Historique | Voir | Annoter | Télécharger (9,95 ko)

1 1 equemene
!C  HEAT is never used, not even in call of Space(...)
2 1 equemene
!C  Geom = input parameter vector (Geometry).
3 1 equemene
!C  Grad = input gradient vector.
4 1 equemene
      SUBROUTINE Step_GDIIS_Simple_Err(NewGeom,Geom,NewGrad,GRAD,HP,HEAT,Hess,NCoord,FRST)
5 1 equemene
!      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
6 1 equemene
      IMPLICIT NONE
7 1 equemene
      integer, parameter :: KINT = kind(1)
8 1 equemene
      integer, parameter :: KREAL = kind(1.0d0)
9 1 equemene
10 1 equemene
!      INCLUDE 'SIZES'
11 1 equemene
12 1 equemene
      INTEGER(KINT) :: NCoord
13 1 equemene
      REAL(KREAL) :: NewGeom(NCoord), Geom(NCoord), NewGrad(NCoord), GRAD(NCoord), Hess(NCoord*NCoord)
14 1 equemene
      REAL(KREAL) :: HEAT, HP
15 1 equemene
      LOGICAL :: FRST
16 4 pfleura2
17 1 equemene
!************************************************************************
18 1 equemene
!*                                                                      *
19 1 equemene
!*     DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE         *
20 1 equemene
!*                                                                      *
21 1 equemene
!*     THIS INVOLVES SOLVING FOR C IN Geom(NEW) = Geom' - HG'           *
22 1 equemene
!*                                                                      *
23 1 equemene
!*  WHERE Geom' = SUM(C(I)Geom(I), THE C COEFFICIENTES COMING FROM      *
24 1 equemene
!*                                                                      *
25 1 equemene
!*                   | B   1 | . | C | = | 0 |                          *
26 1 equemene
!*                   | 1   0 |   |-L |   | 1 |                          *
27 1 equemene
!*                                                                      *
28 1 equemene
!* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J)  GRAD(I) = GRADIENT ON CYCLE I     *
29 1 equemene
!*                              Hess    = INVERSE HESSIAN               *
30 1 equemene
!*                                                                      *
31 1 equemene
!*                          REFERENCE                                   *
32 1 equemene
!*                                                                      *
33 1 equemene
!*  P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984)    *
34 1 equemene
!*                                                                      *
35 1 equemene
!************************************************************************
36 1 equemene
!************************************************************************
37 1 equemene
!*                                                                      *
38 1 equemene
!*     GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN    *
39 1 equemene
!*     THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER *
40 1 equemene
!*     (A VARIABLE METRIC METHOD)                                       *
41 1 equemene
!*                                                                      *
42 1 equemene
!*     WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA     *
43 1 equemene
!*                                                                      *
44 1 equemene
!*                              REFERENCE                               *
45 1 equemene
!*                                                                      *
46 1 equemene
!*      "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM   *
47 1 equemene
!*     GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL  *
48 1 equemene
!*     LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10,    *
49 1 equemene
!*     939-950 (1989).                                                  *
50 1 equemene
!*                                                                      *
51 1 equemene
!*     MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS        *
52 1 equemene
!*                                                                      *
53 1 equemene
!************************************************************************
54 1 equemene
55 1 equemene
      ! MRESET = number of iterations.
56 1 equemene
      INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256
57 1 equemene
      REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet(:), GradSet(:), ERR(:) ! MRESET*NCoord
58 1 equemene
      REAL(KREAL) :: ESET(MRESET)
59 1 equemene
      REAL(KREAL), ALLOCATABLE, SAVE :: DX(:), GSAVE(:) !NCoord
60 1 equemene
      REAL(KREAL) :: B(M2), BS(M2), BST(M2)
61 1 equemene
      LOGICAL DEBUG, PRINT
62 1 equemene
      INTEGER(KINT), SAVE :: MSET
63 1 equemene
      INTEGER(KINT) :: NDIIS, MPLUS, INV, ITERA, MM, I, J, K
64 1 equemene
      INTEGER(KINT) :: JJ, KJ, JNV, II, IONE, IJ, INK,ITmp
65 1 equemene
      REAL(KREAL) :: XMax, XNorm, S, DET, THRES
66 1 equemene
67 1 equemene
      DEBUG=.TRUE.
68 1 equemene
      PRINT=.TRUE.
69 1 equemene
70 1 equemene
      IF (PRINT)  WRITE(*,'(/,''      BEGIN Step_GDIIS_Simple_Err   '')')
71 1 equemene
72 1 equemene
      ! Initialization
73 1 equemene
      IF (FRST) THEN
74 1 equemene
       ! FRST will be set to False in Space, so no need to modify it here
75 1 equemene
         IF (ALLOCATED(GeomSet)) THEN
76 1 equemene
            IF (PRINT)  WRITE(*,'(/,''    In FRST, Step_GDIIS_Simple_Err Dealloc  '')')
77 1 equemene
            DEALLOCATE(GeomSet,GradSet,ERR,DX,GSave)
78 1 equemene
            RETURN
79 1 equemene
         ELSE
80 1 equemene
            IF (PRINT)  WRITE(*,'(/,''     In FRST,  Step_GDIIS_Simple_Err alloc  '')')
81 1 equemene
            ALLOCATE(GeomSet(MRESET*NCoord), GradSet(MRESET*NCoord), ERR(MRESET*NCoord))
82 1 equemene
            ALLOCATE(DX(NCoord),GSAVE(NCoord))
83 1 equemene
         END IF
84 1 equemene
      END IF
85 1 equemene
86 1 equemene
      ! SPACE SIMPLY LOADS THE CURRENT VALUES OF Geom AND GRAD INTO THE ARRAYS GeomSet AND GradSet
87 1 equemene
      ! HEAT is never used, not even in Space(...)
88 1 equemene
      CALL SPACE(MRESET,MSET,Geom,Grad,HEAT,NCoord,GeomSet,GradSet,ESET,FRST)
89 1 equemene
90 1 equemene
      IF (PRINT)  WRITE(*,'(/,''       Step_GDIIS_Simple_Err after Space  '')')
91 1 equemene
92 1 equemene
      ! INITIALIZE SOME VARIABLES AND CONSTANTS:
93 1 equemene
      NDIIS = MSET
94 1 equemene
      MPLUS = MSET + 1
95 1 equemene
      MM = MPLUS * MPLUS
96 1 equemene
97 1 equemene
      ! CONSTRUCT THE GDIIS MATRIX:
98 1 equemene
      ! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>
99 1 equemene
      JJ=0
100 1 equemene
      INV=-NCoord
101 1 equemene
      DO I=1,MSET
102 1 equemene
         INV=INV+NCoord
103 1 equemene
         JNV=-NCoord
104 1 equemene
         DO J=1,MSET
105 1 equemene
            JNV=JNV+NCoord
106 1 equemene
            JJ = JJ + 1
107 1 equemene
            B(JJ)=0.D0
108 4 pfleura2
      DO K=1, NCoord
109 4 pfleura2
         B(JJ) = B(JJ) + (((GradSet(INV+K)-GradSet(JNV+K))*(GeomSet(INV+K)-GeomSet(JNV+K)))/2.D0)
110 4 pfleura2
      END DO
111 1 equemene
         END DO
112 1 equemene
      END DO
113 1 equemene
114 1 equemene
     ! The following shifting is required to correct indices of B_ij elements in the GDIIS matrix.
115 4 pfleura2
   ! The correction is needed because the last coloumn of the matrix contains all 1 and one zero.
116 1 equemene
      DO 60 I=MSET-1,1,-1
117 1 equemene
         DO 60 J=MSET,1,-1
118 1 equemene
   60 B(I*MSET+J+I) = B(I*MSET+J)
119 1 equemene
120 1 equemene
      ! for last row and last column of GDIIS matrix
121 1 equemene
      DO 70 I=1,MPLUS
122 1 equemene
         B(MPLUS*I) = 1.D0
123 1 equemene
   70 B(MPLUS*MSET+I) = 1.D0
124 1 equemene
      B(MM) = 0.D0
125 1 equemene
126 1 equemene
      ! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM:
127 1 equemene
   80 CONTINUE
128 1 equemene
      DO 90 I=1,MM
129 1 equemene
   90 BS(I) = B(I)
130 1 equemene
      IF (NDIIS .EQ. MSET) GO TO 140
131 1 equemene
      DO 130 II=1,MSET-NDIIS
132 1 equemene
         XMAX = -1.D10
133 1 equemene
         ITERA = 0
134 1 equemene
         DO 110 I=1,MSET
135 1 equemene
            XNORM = 0.D0
136 1 equemene
            INV = (I-1) * MPLUS
137 1 equemene
            DO 100 J=1,MSET
138 1 equemene
  100       XNORM = XNORM + ABS(B(INV + J))
139 1 equemene
            IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN
140 1 equemene
               XMAX = XNORM
141 1 equemene
               ITERA = I
142 1 equemene
               IONE = INV + I
143 1 equemene
            ENDIF
144 1 equemene
  110    CONTINUE
145 1 equemene
         DO 120 I=1,MPLUS
146 1 equemene
            INV = (I-1) * MPLUS
147 1 equemene
            DO 120 J=1,MPLUS
148 1 equemene
               JNV = (J-1) * MPLUS
149 1 equemene
               IF (J.EQ.ITERA) B(INV + J) = 0.D0
150 1 equemene
               B(JNV + I) = B(INV + J)
151 1 equemene
  120    CONTINUE
152 1 equemene
         B(IONE) = 1.0D0
153 1 equemene
  130 CONTINUE
154 1 equemene
  140 CONTINUE
155 1 equemene
156 1 equemene
      IF (DEBUG) THEN
157 1 equemene
158 1 equemene
      ! OUTPUT THE GDIIS MATRIX:
159 1 equemene
         WRITE(*,'(/5X,'' Step_GDIIS_Simple_Err MATRIX'')')
160 1 equemene
         ITmp=min(12,MPLUS)
161 1 equemene
         DO IJ=1,MPLUS
162 1 equemene
            WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp)
163 1 equemene
         END DO
164 1 equemene
      ENDIF
165 1 equemene
166 1 equemene
      ! SCALE DIIS MATRIX BEFORE INVERSION:
167 1 equemene
      DO 160 I=1,MPLUS
168 1 equemene
         II = MPLUS * (I-1) + I
169 1 equemene
  160 GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II)))
170 1 equemene
      GSAVE(MPLUS) = 1.D0
171 1 equemene
      DO 170 I=1,MPLUS
172 1 equemene
         DO 170 J=1,MPLUS
173 1 equemene
            IJ = MPLUS * (I-1) + J
174 1 equemene
  170 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J)
175 1 equemene
176 1 equemene
      IF (DEBUG) THEN
177 1 equemene
178 1 equemene
      ! OUTPUT SCALED GDIIS MATRIX:
179 1 equemene
         WRITE(*,'(/5X,'' Step_GDIIS_Simple_Err MATRIX (SCALED)'')')
180 1 equemene
         ITmp=min(12,MPLUS)
181 1 equemene
         DO IJ=1,MPLUS
182 1 equemene
            WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp)
183 1 equemene
         END DO
184 1 equemene
185 1 equemene
      ENDIF ! matches IF (DEBUG) THEN
186 1 equemene
187 1 equemene
      ! INVERT THE GDIIS MATRIX B:
188 1 equemene
      CALL MINV(B,MPLUS,DET) ! matrix inversion.
189 1 equemene
190 1 equemene
      DO 190 I=1,MPLUS
191 1 equemene
         DO 190 J=1,MPLUS
192 1 equemene
            IJ = MPLUS * (I-1) + J
193 1 equemene
  190 B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J)
194 1 equemene
195 1 equemene
      ! COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT VECTORS:
196 1 equemene
      DO 200 K=1,NCoord
197 1 equemene
         NewGeom(K) = 0.D0
198 1 equemene
         NewGrad(K) = 0.D0
199 1 equemene
         DO 200 I=1,MSET
200 1 equemene
            INK = (I-1) * NCoord + K
201 4 pfleura2
      !Print *, 'B(',MPLUS*MSET+I,')=', B(MPLUS*MSET+I)
202 1 equemene
            NewGeom(K) = NewGeom(K) + B(MPLUS*MSET+I) * GeomSet(INK)
203 1 equemene
  200 NewGrad(K) = NewGrad(K) + B(MPLUS*MSET+I) * GradSet(INK)
204 1 equemene
      HP=0.D0
205 1 equemene
      DO 210 I=1,MSET
206 1 equemene
  210 HP=HP+B(MPLUS*MSET+I)*ESET(I)
207 1 equemene
208 1 equemene
      DO 220 K=1,NCoord
209 1 equemene
  220 DX(K) = Geom(K) - NewGeom(K)
210 1 equemene
      XNORM = SQRT(DOT_PRODUCT(DX,DX))
211 1 equemene
      IF (PRINT) THEN
212 1 equemene
         WRITE (6,'(/10X,''DEVIATION IN X '',F7.4,8X,''DETERMINANT '',G9.3)') XNORM,DET
213 1 equemene
         WRITE(*,'(10X,''Step_GDIIS_Simple_Err COEFFICIENTS'')')
214 1 equemene
         WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET)
215 1 equemene
      ENDIF
216 1 equemene
217 1 equemene
      ! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY:
218 1 equemene
      THRES = MAX(10.D0**(-NCoord), 1.D-25)
219 1 equemene
      IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN
220 1 equemene
         IF (PRINT)THEN
221 1 equemene
            WRITE(*,*) "THE DIIS MATRIX IS ILL CONDITIONED"
222 1 equemene
            WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - "
223 1 equemene
            WRITE(*,*) "THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE"
224 1 equemene
         END IF
225 1 equemene
         DO 230 K=1,MM
226 1 equemene
  230    B(K) = BS(K)
227 1 equemene
         NDIIS = NDIIS - 1
228 1 equemene
         IF (NDIIS .GT. 0) GO TO 80
229 1 equemene
         IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')')
230 1 equemene
         DO 240 K=1,NCoord
231 1 equemene
            NewGeom(K) = Geom(K)
232 1 equemene
  240       NewGrad(K) = GRAD(K)
233 1 equemene
      ENDIF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN
234 4 pfleura2
235 1 equemene
      !    q_{m+1} = q'_{m+1} - H^{-1}g'_{m+1}
236 4 pfleura2
     ! Hess is a symmetric matrix.
237 4 pfleura2
     !Hess_inv = 1.d0 ! to be deleted.
238 4 pfleura2
     !Call GenInv(NCoord,Reshape(Hess,(/NCoord,NCoord/)),Hess_inv,NCoord) ! Implemented in Mat_util.f90
239 4 pfleura2
     ! H^{-1}g'_{m+1}
240 4 pfleura2
     !Print *, 'Hess_inv='
241 4 pfleura2
    ! Print *, Hess_inv
242 4 pfleura2
     !Geom=0.d0
243 4 pfleura2
     !DO I=1, NCoord
244 4 pfleura2
      !  Geom(:) = Geom(:) + Hess_inv(:,I)*NewGrad(I)
245 4 pfleura2
     !END DO
246 4 pfleura2
     !Geom(:) = NewGeom(:) - Geom(:) ! now Geom is a new geometry.
247 4 pfleura2
248 4 pfleura2
     ! STEP is the difference between the new and old geometry and thus "step":
249 1 equemene
         !STEP = Geom - Geom_old
250 1 equemene
251 1 equemene
      IF (PRINT)  WRITE(*,'(/,''       END Step_GDIIS_Simple_Err  '',/)')
252 1 equemene
253 1 equemene
      END SUBROUTINE Step_GDIIS_Simple_Err