root / src / lapack / double / dormbr.f @ 2
Historique | Voir | Annoter | Télécharger (8,57 ko)
1 |
SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, |
---|---|
2 |
$ LDC, WORK, LWORK, INFO ) |
3 |
* |
4 |
* -- LAPACK routine (version 3.2) -- |
5 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
6 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
7 |
* November 2006 |
8 |
* |
9 |
* .. Scalar Arguments .. |
10 |
CHARACTER SIDE, TRANS, VECT |
11 |
INTEGER INFO, K, LDA, LDC, LWORK, M, N |
12 |
* .. |
13 |
* .. Array Arguments .. |
14 |
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) |
15 |
* .. |
16 |
* |
17 |
* Purpose |
18 |
* ======= |
19 |
* |
20 |
* If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C |
21 |
* with |
22 |
* SIDE = 'L' SIDE = 'R' |
23 |
* TRANS = 'N': Q * C C * Q |
24 |
* TRANS = 'T': Q**T * C C * Q**T |
25 |
* |
26 |
* If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C |
27 |
* with |
28 |
* SIDE = 'L' SIDE = 'R' |
29 |
* TRANS = 'N': P * C C * P |
30 |
* TRANS = 'T': P**T * C C * P**T |
31 |
* |
32 |
* Here Q and P**T are the orthogonal matrices determined by DGEBRD when |
33 |
* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and |
34 |
* P**T are defined as products of elementary reflectors H(i) and G(i) |
35 |
* respectively. |
36 |
* |
37 |
* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the |
38 |
* order of the orthogonal matrix Q or P**T that is applied. |
39 |
* |
40 |
* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: |
41 |
* if nq >= k, Q = H(1) H(2) . . . H(k); |
42 |
* if nq < k, Q = H(1) H(2) . . . H(nq-1). |
43 |
* |
44 |
* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: |
45 |
* if k < nq, P = G(1) G(2) . . . G(k); |
46 |
* if k >= nq, P = G(1) G(2) . . . G(nq-1). |
47 |
* |
48 |
* Arguments |
49 |
* ========= |
50 |
* |
51 |
* VECT (input) CHARACTER*1 |
52 |
* = 'Q': apply Q or Q**T; |
53 |
* = 'P': apply P or P**T. |
54 |
* |
55 |
* SIDE (input) CHARACTER*1 |
56 |
* = 'L': apply Q, Q**T, P or P**T from the Left; |
57 |
* = 'R': apply Q, Q**T, P or P**T from the Right. |
58 |
* |
59 |
* TRANS (input) CHARACTER*1 |
60 |
* = 'N': No transpose, apply Q or P; |
61 |
* = 'T': Transpose, apply Q**T or P**T. |
62 |
* |
63 |
* M (input) INTEGER |
64 |
* The number of rows of the matrix C. M >= 0. |
65 |
* |
66 |
* N (input) INTEGER |
67 |
* The number of columns of the matrix C. N >= 0. |
68 |
* |
69 |
* K (input) INTEGER |
70 |
* If VECT = 'Q', the number of columns in the original |
71 |
* matrix reduced by DGEBRD. |
72 |
* If VECT = 'P', the number of rows in the original |
73 |
* matrix reduced by DGEBRD. |
74 |
* K >= 0. |
75 |
* |
76 |
* A (input) DOUBLE PRECISION array, dimension |
77 |
* (LDA,min(nq,K)) if VECT = 'Q' |
78 |
* (LDA,nq) if VECT = 'P' |
79 |
* The vectors which define the elementary reflectors H(i) and |
80 |
* G(i), whose products determine the matrices Q and P, as |
81 |
* returned by DGEBRD. |
82 |
* |
83 |
* LDA (input) INTEGER |
84 |
* The leading dimension of the array A. |
85 |
* If VECT = 'Q', LDA >= max(1,nq); |
86 |
* if VECT = 'P', LDA >= max(1,min(nq,K)). |
87 |
* |
88 |
* TAU (input) DOUBLE PRECISION array, dimension (min(nq,K)) |
89 |
* TAU(i) must contain the scalar factor of the elementary |
90 |
* reflector H(i) or G(i) which determines Q or P, as returned |
91 |
* by DGEBRD in the array argument TAUQ or TAUP. |
92 |
* |
93 |
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) |
94 |
* On entry, the M-by-N matrix C. |
95 |
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q |
96 |
* or P*C or P**T*C or C*P or C*P**T. |
97 |
* |
98 |
* LDC (input) INTEGER |
99 |
* The leading dimension of the array C. LDC >= max(1,M). |
100 |
* |
101 |
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) |
102 |
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
103 |
* |
104 |
* LWORK (input) INTEGER |
105 |
* The dimension of the array WORK. |
106 |
* If SIDE = 'L', LWORK >= max(1,N); |
107 |
* if SIDE = 'R', LWORK >= max(1,M). |
108 |
* For optimum performance LWORK >= N*NB if SIDE = 'L', and |
109 |
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal |
110 |
* blocksize. |
111 |
* |
112 |
* If LWORK = -1, then a workspace query is assumed; the routine |
113 |
* only calculates the optimal size of the WORK array, returns |
114 |
* this value as the first entry of the WORK array, and no error |
115 |
* message related to LWORK is issued by XERBLA. |
116 |
* |
117 |
* INFO (output) INTEGER |
118 |
* = 0: successful exit |
119 |
* < 0: if INFO = -i, the i-th argument had an illegal value |
120 |
* |
121 |
* ===================================================================== |
122 |
* |
123 |
* .. Local Scalars .. |
124 |
LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN |
125 |
CHARACTER TRANST |
126 |
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW |
127 |
* .. |
128 |
* .. External Functions .. |
129 |
LOGICAL LSAME |
130 |
INTEGER ILAENV |
131 |
EXTERNAL LSAME, ILAENV |
132 |
* .. |
133 |
* .. External Subroutines .. |
134 |
EXTERNAL DORMLQ, DORMQR, XERBLA |
135 |
* .. |
136 |
* .. Intrinsic Functions .. |
137 |
INTRINSIC MAX, MIN |
138 |
* .. |
139 |
* .. Executable Statements .. |
140 |
* |
141 |
* Test the input arguments |
142 |
* |
143 |
INFO = 0 |
144 |
APPLYQ = LSAME( VECT, 'Q' ) |
145 |
LEFT = LSAME( SIDE, 'L' ) |
146 |
NOTRAN = LSAME( TRANS, 'N' ) |
147 |
LQUERY = ( LWORK.EQ.-1 ) |
148 |
* |
149 |
* NQ is the order of Q or P and NW is the minimum dimension of WORK |
150 |
* |
151 |
IF( LEFT ) THEN |
152 |
NQ = M |
153 |
NW = N |
154 |
ELSE |
155 |
NQ = N |
156 |
NW = M |
157 |
END IF |
158 |
IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN |
159 |
INFO = -1 |
160 |
ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN |
161 |
INFO = -2 |
162 |
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN |
163 |
INFO = -3 |
164 |
ELSE IF( M.LT.0 ) THEN |
165 |
INFO = -4 |
166 |
ELSE IF( N.LT.0 ) THEN |
167 |
INFO = -5 |
168 |
ELSE IF( K.LT.0 ) THEN |
169 |
INFO = -6 |
170 |
ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR. |
171 |
$ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) ) |
172 |
$ THEN |
173 |
INFO = -8 |
174 |
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN |
175 |
INFO = -11 |
176 |
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN |
177 |
INFO = -13 |
178 |
END IF |
179 |
* |
180 |
IF( INFO.EQ.0 ) THEN |
181 |
IF( APPLYQ ) THEN |
182 |
IF( LEFT ) THEN |
183 |
NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M-1, N, M-1, |
184 |
$ -1 ) |
185 |
ELSE |
186 |
NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N-1, N-1, |
187 |
$ -1 ) |
188 |
END IF |
189 |
ELSE |
190 |
IF( LEFT ) THEN |
191 |
NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M-1, N, M-1, |
192 |
$ -1 ) |
193 |
ELSE |
194 |
NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N-1, N-1, |
195 |
$ -1 ) |
196 |
END IF |
197 |
END IF |
198 |
LWKOPT = MAX( 1, NW )*NB |
199 |
WORK( 1 ) = LWKOPT |
200 |
END IF |
201 |
* |
202 |
IF( INFO.NE.0 ) THEN |
203 |
CALL XERBLA( 'DORMBR', -INFO ) |
204 |
RETURN |
205 |
ELSE IF( LQUERY ) THEN |
206 |
RETURN |
207 |
END IF |
208 |
* |
209 |
* Quick return if possible |
210 |
* |
211 |
WORK( 1 ) = 1 |
212 |
IF( M.EQ.0 .OR. N.EQ.0 ) |
213 |
$ RETURN |
214 |
* |
215 |
IF( APPLYQ ) THEN |
216 |
* |
217 |
* Apply Q |
218 |
* |
219 |
IF( NQ.GE.K ) THEN |
220 |
* |
221 |
* Q was determined by a call to DGEBRD with nq >= k |
222 |
* |
223 |
CALL DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, |
224 |
$ WORK, LWORK, IINFO ) |
225 |
ELSE IF( NQ.GT.1 ) THEN |
226 |
* |
227 |
* Q was determined by a call to DGEBRD with nq < k |
228 |
* |
229 |
IF( LEFT ) THEN |
230 |
MI = M - 1 |
231 |
NI = N |
232 |
I1 = 2 |
233 |
I2 = 1 |
234 |
ELSE |
235 |
MI = M |
236 |
NI = N - 1 |
237 |
I1 = 1 |
238 |
I2 = 2 |
239 |
END IF |
240 |
CALL DORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU, |
241 |
$ C( I1, I2 ), LDC, WORK, LWORK, IINFO ) |
242 |
END IF |
243 |
ELSE |
244 |
* |
245 |
* Apply P |
246 |
* |
247 |
IF( NOTRAN ) THEN |
248 |
TRANST = 'T' |
249 |
ELSE |
250 |
TRANST = 'N' |
251 |
END IF |
252 |
IF( NQ.GT.K ) THEN |
253 |
* |
254 |
* P was determined by a call to DGEBRD with nq > k |
255 |
* |
256 |
CALL DORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC, |
257 |
$ WORK, LWORK, IINFO ) |
258 |
ELSE IF( NQ.GT.1 ) THEN |
259 |
* |
260 |
* P was determined by a call to DGEBRD with nq <= k |
261 |
* |
262 |
IF( LEFT ) THEN |
263 |
MI = M - 1 |
264 |
NI = N |
265 |
I1 = 2 |
266 |
I2 = 1 |
267 |
ELSE |
268 |
MI = M |
269 |
NI = N - 1 |
270 |
I1 = 1 |
271 |
I2 = 2 |
272 |
END IF |
273 |
CALL DORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA, |
274 |
$ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO ) |
275 |
END IF |
276 |
END IF |
277 |
WORK( 1 ) = LWKOPT |
278 |
RETURN |
279 |
* |
280 |
* End of DORMBR |
281 |
* |
282 |
END |