Statistiques
| Révision :

root / src / lapack / double / dormbr.f @ 2

Historique | Voir | Annoter | Télécharger (8,57 ko)

1 1 equemene
      SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
2 1 equemene
     $                   LDC, WORK, LWORK, INFO )
3 1 equemene
*
4 1 equemene
*  -- LAPACK routine (version 3.2) --
5 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 1 equemene
*     November 2006
8 1 equemene
*
9 1 equemene
*     .. Scalar Arguments ..
10 1 equemene
      CHARACTER          SIDE, TRANS, VECT
11 1 equemene
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
12 1 equemene
*     ..
13 1 equemene
*     .. Array Arguments ..
14 1 equemene
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15 1 equemene
*     ..
16 1 equemene
*
17 1 equemene
*  Purpose
18 1 equemene
*  =======
19 1 equemene
*
20 1 equemene
*  If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
21 1 equemene
*  with
22 1 equemene
*                  SIDE = 'L'     SIDE = 'R'
23 1 equemene
*  TRANS = 'N':      Q * C          C * Q
24 1 equemene
*  TRANS = 'T':      Q**T * C       C * Q**T
25 1 equemene
*
26 1 equemene
*  If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
27 1 equemene
*  with
28 1 equemene
*                  SIDE = 'L'     SIDE = 'R'
29 1 equemene
*  TRANS = 'N':      P * C          C * P
30 1 equemene
*  TRANS = 'T':      P**T * C       C * P**T
31 1 equemene
*
32 1 equemene
*  Here Q and P**T are the orthogonal matrices determined by DGEBRD when
33 1 equemene
*  reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
34 1 equemene
*  P**T are defined as products of elementary reflectors H(i) and G(i)
35 1 equemene
*  respectively.
36 1 equemene
*
37 1 equemene
*  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
38 1 equemene
*  order of the orthogonal matrix Q or P**T that is applied.
39 1 equemene
*
40 1 equemene
*  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
41 1 equemene
*  if nq >= k, Q = H(1) H(2) . . . H(k);
42 1 equemene
*  if nq < k, Q = H(1) H(2) . . . H(nq-1).
43 1 equemene
*
44 1 equemene
*  If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
45 1 equemene
*  if k < nq, P = G(1) G(2) . . . G(k);
46 1 equemene
*  if k >= nq, P = G(1) G(2) . . . G(nq-1).
47 1 equemene
*
48 1 equemene
*  Arguments
49 1 equemene
*  =========
50 1 equemene
*
51 1 equemene
*  VECT    (input) CHARACTER*1
52 1 equemene
*          = 'Q': apply Q or Q**T;
53 1 equemene
*          = 'P': apply P or P**T.
54 1 equemene
*
55 1 equemene
*  SIDE    (input) CHARACTER*1
56 1 equemene
*          = 'L': apply Q, Q**T, P or P**T from the Left;
57 1 equemene
*          = 'R': apply Q, Q**T, P or P**T from the Right.
58 1 equemene
*
59 1 equemene
*  TRANS   (input) CHARACTER*1
60 1 equemene
*          = 'N':  No transpose, apply Q  or P;
61 1 equemene
*          = 'T':  Transpose, apply Q**T or P**T.
62 1 equemene
*
63 1 equemene
*  M       (input) INTEGER
64 1 equemene
*          The number of rows of the matrix C. M >= 0.
65 1 equemene
*
66 1 equemene
*  N       (input) INTEGER
67 1 equemene
*          The number of columns of the matrix C. N >= 0.
68 1 equemene
*
69 1 equemene
*  K       (input) INTEGER
70 1 equemene
*          If VECT = 'Q', the number of columns in the original
71 1 equemene
*          matrix reduced by DGEBRD.
72 1 equemene
*          If VECT = 'P', the number of rows in the original
73 1 equemene
*          matrix reduced by DGEBRD.
74 1 equemene
*          K >= 0.
75 1 equemene
*
76 1 equemene
*  A       (input) DOUBLE PRECISION array, dimension
77 1 equemene
*                                (LDA,min(nq,K)) if VECT = 'Q'
78 1 equemene
*                                (LDA,nq)        if VECT = 'P'
79 1 equemene
*          The vectors which define the elementary reflectors H(i) and
80 1 equemene
*          G(i), whose products determine the matrices Q and P, as
81 1 equemene
*          returned by DGEBRD.
82 1 equemene
*
83 1 equemene
*  LDA     (input) INTEGER
84 1 equemene
*          The leading dimension of the array A.
85 1 equemene
*          If VECT = 'Q', LDA >= max(1,nq);
86 1 equemene
*          if VECT = 'P', LDA >= max(1,min(nq,K)).
87 1 equemene
*
88 1 equemene
*  TAU     (input) DOUBLE PRECISION array, dimension (min(nq,K))
89 1 equemene
*          TAU(i) must contain the scalar factor of the elementary
90 1 equemene
*          reflector H(i) or G(i) which determines Q or P, as returned
91 1 equemene
*          by DGEBRD in the array argument TAUQ or TAUP.
92 1 equemene
*
93 1 equemene
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
94 1 equemene
*          On entry, the M-by-N matrix C.
95 1 equemene
*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
96 1 equemene
*          or P*C or P**T*C or C*P or C*P**T.
97 1 equemene
*
98 1 equemene
*  LDC     (input) INTEGER
99 1 equemene
*          The leading dimension of the array C. LDC >= max(1,M).
100 1 equemene
*
101 1 equemene
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
102 1 equemene
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
103 1 equemene
*
104 1 equemene
*  LWORK   (input) INTEGER
105 1 equemene
*          The dimension of the array WORK.
106 1 equemene
*          If SIDE = 'L', LWORK >= max(1,N);
107 1 equemene
*          if SIDE = 'R', LWORK >= max(1,M).
108 1 equemene
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
109 1 equemene
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
110 1 equemene
*          blocksize.
111 1 equemene
*
112 1 equemene
*          If LWORK = -1, then a workspace query is assumed; the routine
113 1 equemene
*          only calculates the optimal size of the WORK array, returns
114 1 equemene
*          this value as the first entry of the WORK array, and no error
115 1 equemene
*          message related to LWORK is issued by XERBLA.
116 1 equemene
*
117 1 equemene
*  INFO    (output) INTEGER
118 1 equemene
*          = 0:  successful exit
119 1 equemene
*          < 0:  if INFO = -i, the i-th argument had an illegal value
120 1 equemene
*
121 1 equemene
*  =====================================================================
122 1 equemene
*
123 1 equemene
*     .. Local Scalars ..
124 1 equemene
      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
125 1 equemene
      CHARACTER          TRANST
126 1 equemene
      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
127 1 equemene
*     ..
128 1 equemene
*     .. External Functions ..
129 1 equemene
      LOGICAL            LSAME
130 1 equemene
      INTEGER            ILAENV
131 1 equemene
      EXTERNAL           LSAME, ILAENV
132 1 equemene
*     ..
133 1 equemene
*     .. External Subroutines ..
134 1 equemene
      EXTERNAL           DORMLQ, DORMQR, XERBLA
135 1 equemene
*     ..
136 1 equemene
*     .. Intrinsic Functions ..
137 1 equemene
      INTRINSIC          MAX, MIN
138 1 equemene
*     ..
139 1 equemene
*     .. Executable Statements ..
140 1 equemene
*
141 1 equemene
*     Test the input arguments
142 1 equemene
*
143 1 equemene
      INFO = 0
144 1 equemene
      APPLYQ = LSAME( VECT, 'Q' )
145 1 equemene
      LEFT = LSAME( SIDE, 'L' )
146 1 equemene
      NOTRAN = LSAME( TRANS, 'N' )
147 1 equemene
      LQUERY = ( LWORK.EQ.-1 )
148 1 equemene
*
149 1 equemene
*     NQ is the order of Q or P and NW is the minimum dimension of WORK
150 1 equemene
*
151 1 equemene
      IF( LEFT ) THEN
152 1 equemene
         NQ = M
153 1 equemene
         NW = N
154 1 equemene
      ELSE
155 1 equemene
         NQ = N
156 1 equemene
         NW = M
157 1 equemene
      END IF
158 1 equemene
      IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
159 1 equemene
         INFO = -1
160 1 equemene
      ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
161 1 equemene
         INFO = -2
162 1 equemene
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
163 1 equemene
         INFO = -3
164 1 equemene
      ELSE IF( M.LT.0 ) THEN
165 1 equemene
         INFO = -4
166 1 equemene
      ELSE IF( N.LT.0 ) THEN
167 1 equemene
         INFO = -5
168 1 equemene
      ELSE IF( K.LT.0 ) THEN
169 1 equemene
         INFO = -6
170 1 equemene
      ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
171 1 equemene
     $         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
172 1 equemene
     $          THEN
173 1 equemene
         INFO = -8
174 1 equemene
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
175 1 equemene
         INFO = -11
176 1 equemene
      ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
177 1 equemene
         INFO = -13
178 1 equemene
      END IF
179 1 equemene
*
180 1 equemene
      IF( INFO.EQ.0 ) THEN
181 1 equemene
         IF( APPLYQ ) THEN
182 1 equemene
            IF( LEFT ) THEN
183 1 equemene
               NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M-1, N, M-1,
184 1 equemene
     $              -1 )
185 1 equemene
            ELSE
186 1 equemene
               NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N-1, N-1,
187 1 equemene
     $              -1 )
188 1 equemene
            END IF
189 1 equemene
         ELSE
190 1 equemene
            IF( LEFT ) THEN
191 1 equemene
               NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M-1, N, M-1,
192 1 equemene
     $              -1 )
193 1 equemene
            ELSE
194 1 equemene
               NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N-1, N-1,
195 1 equemene
     $              -1 )
196 1 equemene
            END IF
197 1 equemene
         END IF
198 1 equemene
         LWKOPT = MAX( 1, NW )*NB
199 1 equemene
         WORK( 1 ) = LWKOPT
200 1 equemene
      END IF
201 1 equemene
*
202 1 equemene
      IF( INFO.NE.0 ) THEN
203 1 equemene
         CALL XERBLA( 'DORMBR', -INFO )
204 1 equemene
         RETURN
205 1 equemene
      ELSE IF( LQUERY ) THEN
206 1 equemene
         RETURN
207 1 equemene
      END IF
208 1 equemene
*
209 1 equemene
*     Quick return if possible
210 1 equemene
*
211 1 equemene
      WORK( 1 ) = 1
212 1 equemene
      IF( M.EQ.0 .OR. N.EQ.0 )
213 1 equemene
     $   RETURN
214 1 equemene
*
215 1 equemene
      IF( APPLYQ ) THEN
216 1 equemene
*
217 1 equemene
*        Apply Q
218 1 equemene
*
219 1 equemene
         IF( NQ.GE.K ) THEN
220 1 equemene
*
221 1 equemene
*           Q was determined by a call to DGEBRD with nq >= k
222 1 equemene
*
223 1 equemene
            CALL DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
224 1 equemene
     $                   WORK, LWORK, IINFO )
225 1 equemene
         ELSE IF( NQ.GT.1 ) THEN
226 1 equemene
*
227 1 equemene
*           Q was determined by a call to DGEBRD with nq < k
228 1 equemene
*
229 1 equemene
            IF( LEFT ) THEN
230 1 equemene
               MI = M - 1
231 1 equemene
               NI = N
232 1 equemene
               I1 = 2
233 1 equemene
               I2 = 1
234 1 equemene
            ELSE
235 1 equemene
               MI = M
236 1 equemene
               NI = N - 1
237 1 equemene
               I1 = 1
238 1 equemene
               I2 = 2
239 1 equemene
            END IF
240 1 equemene
            CALL DORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
241 1 equemene
     $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
242 1 equemene
         END IF
243 1 equemene
      ELSE
244 1 equemene
*
245 1 equemene
*        Apply P
246 1 equemene
*
247 1 equemene
         IF( NOTRAN ) THEN
248 1 equemene
            TRANST = 'T'
249 1 equemene
         ELSE
250 1 equemene
            TRANST = 'N'
251 1 equemene
         END IF
252 1 equemene
         IF( NQ.GT.K ) THEN
253 1 equemene
*
254 1 equemene
*           P was determined by a call to DGEBRD with nq > k
255 1 equemene
*
256 1 equemene
            CALL DORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
257 1 equemene
     $                   WORK, LWORK, IINFO )
258 1 equemene
         ELSE IF( NQ.GT.1 ) THEN
259 1 equemene
*
260 1 equemene
*           P was determined by a call to DGEBRD with nq <= k
261 1 equemene
*
262 1 equemene
            IF( LEFT ) THEN
263 1 equemene
               MI = M - 1
264 1 equemene
               NI = N
265 1 equemene
               I1 = 2
266 1 equemene
               I2 = 1
267 1 equemene
            ELSE
268 1 equemene
               MI = M
269 1 equemene
               NI = N - 1
270 1 equemene
               I1 = 1
271 1 equemene
               I2 = 2
272 1 equemene
            END IF
273 1 equemene
            CALL DORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
274 1 equemene
     $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
275 1 equemene
         END IF
276 1 equemene
      END IF
277 1 equemene
      WORK( 1 ) = LWKOPT
278 1 equemene
      RETURN
279 1 equemene
*
280 1 equemene
*     End of DORMBR
281 1 equemene
*
282 1 equemene
      END