Statistiques
| Révision :

root / src / lapack / double / dgelsy.f @ 2

Historique | Voir | Annoter | Télécharger (12,38 ko)

1
      SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
2
     $                   WORK, LWORK, INFO )
3
*
4
*  -- LAPACK driver routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
11
      DOUBLE PRECISION   RCOND
12
*     ..
13
*     .. Array Arguments ..
14
      INTEGER            JPVT( * )
15
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
16
*     ..
17
*
18
*  Purpose
19
*  =======
20
*
21
*  DGELSY computes the minimum-norm solution to a real linear least
22
*  squares problem:
23
*      minimize || A * X - B ||
24
*  using a complete orthogonal factorization of A.  A is an M-by-N
25
*  matrix which may be rank-deficient.
26
*
27
*  Several right hand side vectors b and solution vectors x can be
28
*  handled in a single call; they are stored as the columns of the
29
*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
30
*  matrix X.
31
*
32
*  The routine first computes a QR factorization with column pivoting:
33
*      A * P = Q * [ R11 R12 ]
34
*                  [  0  R22 ]
35
*  with R11 defined as the largest leading submatrix whose estimated
36
*  condition number is less than 1/RCOND.  The order of R11, RANK,
37
*  is the effective rank of A.
38
*
39
*  Then, R22 is considered to be negligible, and R12 is annihilated
40
*  by orthogonal transformations from the right, arriving at the
41
*  complete orthogonal factorization:
42
*     A * P = Q * [ T11 0 ] * Z
43
*                 [  0  0 ]
44
*  The minimum-norm solution is then
45
*     X = P * Z' [ inv(T11)*Q1'*B ]
46
*                [        0       ]
47
*  where Q1 consists of the first RANK columns of Q.
48
*
49
*  This routine is basically identical to the original xGELSX except
50
*  three differences:
51
*    o The call to the subroutine xGEQPF has been substituted by the
52
*      the call to the subroutine xGEQP3. This subroutine is a Blas-3
53
*      version of the QR factorization with column pivoting.
54
*    o Matrix B (the right hand side) is updated with Blas-3.
55
*    o The permutation of matrix B (the right hand side) is faster and
56
*      more simple.
57
*
58
*  Arguments
59
*  =========
60
*
61
*  M       (input) INTEGER
62
*          The number of rows of the matrix A.  M >= 0.
63
*
64
*  N       (input) INTEGER
65
*          The number of columns of the matrix A.  N >= 0.
66
*
67
*  NRHS    (input) INTEGER
68
*          The number of right hand sides, i.e., the number of
69
*          columns of matrices B and X. NRHS >= 0.
70
*
71
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
72
*          On entry, the M-by-N matrix A.
73
*          On exit, A has been overwritten by details of its
74
*          complete orthogonal factorization.
75
*
76
*  LDA     (input) INTEGER
77
*          The leading dimension of the array A.  LDA >= max(1,M).
78
*
79
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
80
*          On entry, the M-by-NRHS right hand side matrix B.
81
*          On exit, the N-by-NRHS solution matrix X.
82
*
83
*  LDB     (input) INTEGER
84
*          The leading dimension of the array B. LDB >= max(1,M,N).
85
*
86
*  JPVT    (input/output) INTEGER array, dimension (N)
87
*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
88
*          to the front of AP, otherwise column i is a free column.
89
*          On exit, if JPVT(i) = k, then the i-th column of AP
90
*          was the k-th column of A.
91
*
92
*  RCOND   (input) DOUBLE PRECISION
93
*          RCOND is used to determine the effective rank of A, which
94
*          is defined as the order of the largest leading triangular
95
*          submatrix R11 in the QR factorization with pivoting of A,
96
*          whose estimated condition number < 1/RCOND.
97
*
98
*  RANK    (output) INTEGER
99
*          The effective rank of A, i.e., the order of the submatrix
100
*          R11.  This is the same as the order of the submatrix T11
101
*          in the complete orthogonal factorization of A.
102
*
103
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
104
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
105
*
106
*  LWORK   (input) INTEGER
107
*          The dimension of the array WORK.
108
*          The unblocked strategy requires that:
109
*             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
110
*          where MN = min( M, N ).
111
*          The block algorithm requires that:
112
*             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
113
*          where NB is an upper bound on the blocksize returned
114
*          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
115
*          and DORMRZ.
116
*
117
*          If LWORK = -1, then a workspace query is assumed; the routine
118
*          only calculates the optimal size of the WORK array, returns
119
*          this value as the first entry of the WORK array, and no error
120
*          message related to LWORK is issued by XERBLA.
121
*
122
*  INFO    (output) INTEGER
123
*          = 0: successful exit
124
*          < 0: If INFO = -i, the i-th argument had an illegal value.
125
*
126
*  Further Details
127
*  ===============
128
*
129
*  Based on contributions by
130
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
131
*    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
132
*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
133
*
134
*  =====================================================================
135
*
136
*     .. Parameters ..
137
      INTEGER            IMAX, IMIN
138
      PARAMETER          ( IMAX = 1, IMIN = 2 )
139
      DOUBLE PRECISION   ZERO, ONE
140
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
141
*     ..
142
*     .. Local Scalars ..
143
      LOGICAL            LQUERY
144
      INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
145
     $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
146
      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
147
     $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
148
*     ..
149
*     .. External Functions ..
150
      INTEGER            ILAENV
151
      DOUBLE PRECISION   DLAMCH, DLANGE
152
      EXTERNAL           ILAENV, DLAMCH, DLANGE
153
*     ..
154
*     .. External Subroutines ..
155
      EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
156
     $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
157
*     ..
158
*     .. Intrinsic Functions ..
159
      INTRINSIC          ABS, MAX, MIN
160
*     ..
161
*     .. Executable Statements ..
162
*
163
      MN = MIN( M, N )
164
      ISMIN = MN + 1
165
      ISMAX = 2*MN + 1
166
*
167
*     Test the input arguments.
168
*
169
      INFO = 0
170
      LQUERY = ( LWORK.EQ.-1 )
171
      IF( M.LT.0 ) THEN
172
         INFO = -1
173
      ELSE IF( N.LT.0 ) THEN
174
         INFO = -2
175
      ELSE IF( NRHS.LT.0 ) THEN
176
         INFO = -3
177
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
178
         INFO = -5
179
      ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
180
         INFO = -7
181
      END IF
182
*
183
*     Figure out optimal block size
184
*
185
      IF( INFO.EQ.0 ) THEN
186
         IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
187
            LWKMIN = 1
188
            LWKOPT = 1
189
         ELSE
190
            NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
191
            NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
192
            NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
193
            NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
194
            NB = MAX( NB1, NB2, NB3, NB4 )
195
            LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
196
            LWKOPT = MAX( LWKMIN,
197
     $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
198
         END IF
199
         WORK( 1 ) = LWKOPT
200
*
201
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
202
            INFO = -12
203
         END IF
204
      END IF
205
*
206
      IF( INFO.NE.0 ) THEN
207
         CALL XERBLA( 'DGELSY', -INFO )
208
         RETURN
209
      ELSE IF( LQUERY ) THEN
210
         RETURN
211
      END IF
212
*
213
*     Quick return if possible
214
*
215
      IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
216
         RANK = 0
217
         RETURN
218
      END IF
219
*
220
*     Get machine parameters
221
*
222
      SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
223
      BIGNUM = ONE / SMLNUM
224
      CALL DLABAD( SMLNUM, BIGNUM )
225
*
226
*     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
227
*
228
      ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
229
      IASCL = 0
230
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
231
*
232
*        Scale matrix norm up to SMLNUM
233
*
234
         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
235
         IASCL = 1
236
      ELSE IF( ANRM.GT.BIGNUM ) THEN
237
*
238
*        Scale matrix norm down to BIGNUM
239
*
240
         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
241
         IASCL = 2
242
      ELSE IF( ANRM.EQ.ZERO ) THEN
243
*
244
*        Matrix all zero. Return zero solution.
245
*
246
         CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
247
         RANK = 0
248
         GO TO 70
249
      END IF
250
*
251
      BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
252
      IBSCL = 0
253
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
254
*
255
*        Scale matrix norm up to SMLNUM
256
*
257
         CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
258
         IBSCL = 1
259
      ELSE IF( BNRM.GT.BIGNUM ) THEN
260
*
261
*        Scale matrix norm down to BIGNUM
262
*
263
         CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
264
         IBSCL = 2
265
      END IF
266
*
267
*     Compute QR factorization with column pivoting of A:
268
*        A * P = Q * R
269
*
270
      CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
271
     $             LWORK-MN, INFO )
272
      WSIZE = MN + WORK( MN+1 )
273
*
274
*     workspace: MN+2*N+NB*(N+1).
275
*     Details of Householder rotations stored in WORK(1:MN).
276
*
277
*     Determine RANK using incremental condition estimation
278
*
279
      WORK( ISMIN ) = ONE
280
      WORK( ISMAX ) = ONE
281
      SMAX = ABS( A( 1, 1 ) )
282
      SMIN = SMAX
283
      IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
284
         RANK = 0
285
         CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
286
         GO TO 70
287
      ELSE
288
         RANK = 1
289
      END IF
290
*
291
   10 CONTINUE
292
      IF( RANK.LT.MN ) THEN
293
         I = RANK + 1
294
         CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
295
     $                A( I, I ), SMINPR, S1, C1 )
296
         CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
297
     $                A( I, I ), SMAXPR, S2, C2 )
298
*
299
         IF( SMAXPR*RCOND.LE.SMINPR ) THEN
300
            DO 20 I = 1, RANK
301
               WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
302
               WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
303
   20       CONTINUE
304
            WORK( ISMIN+RANK ) = C1
305
            WORK( ISMAX+RANK ) = C2
306
            SMIN = SMINPR
307
            SMAX = SMAXPR
308
            RANK = RANK + 1
309
            GO TO 10
310
         END IF
311
      END IF
312
*
313
*     workspace: 3*MN.
314
*
315
*     Logically partition R = [ R11 R12 ]
316
*                             [  0  R22 ]
317
*     where R11 = R(1:RANK,1:RANK)
318
*
319
*     [R11,R12] = [ T11, 0 ] * Y
320
*
321
      IF( RANK.LT.N )
322
     $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
323
     $                LWORK-2*MN, INFO )
324
*
325
*     workspace: 2*MN.
326
*     Details of Householder rotations stored in WORK(MN+1:2*MN)
327
*
328
*     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
329
*
330
      CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
331
     $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
332
      WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
333
*
334
*     workspace: 2*MN+NB*NRHS.
335
*
336
*     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
337
*
338
      CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
339
     $            NRHS, ONE, A, LDA, B, LDB )
340
*
341
      DO 40 J = 1, NRHS
342
         DO 30 I = RANK + 1, N
343
            B( I, J ) = ZERO
344
   30    CONTINUE
345
   40 CONTINUE
346
*
347
*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
348
*
349
      IF( RANK.LT.N ) THEN
350
         CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
351
     $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
352
     $                LWORK-2*MN, INFO )
353
      END IF
354
*
355
*     workspace: 2*MN+NRHS.
356
*
357
*     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
358
*
359
      DO 60 J = 1, NRHS
360
         DO 50 I = 1, N
361
            WORK( JPVT( I ) ) = B( I, J )
362
   50    CONTINUE
363
         CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
364
   60 CONTINUE
365
*
366
*     workspace: N.
367
*
368
*     Undo scaling
369
*
370
      IF( IASCL.EQ.1 ) THEN
371
         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
372
         CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
373
     $                INFO )
374
      ELSE IF( IASCL.EQ.2 ) THEN
375
         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
376
         CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
377
     $                INFO )
378
      END IF
379
      IF( IBSCL.EQ.1 ) THEN
380
         CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
381
      ELSE IF( IBSCL.EQ.2 ) THEN
382
         CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
383
      END IF
384
*
385
   70 CONTINUE
386
      WORK( 1 ) = LWKOPT
387
*
388
      RETURN
389
*
390
*     End of DGELSY
391
*
392
      END