root / src / lapack / double / dgelsy.f @ 2
Historique | Voir | Annoter | Télécharger (12,38 ko)
1 | 1 | equemene | SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, |
---|---|---|---|
2 | 1 | equemene | $ WORK, LWORK, INFO ) |
3 | 1 | equemene | * |
4 | 1 | equemene | * -- LAPACK driver routine (version 3.2) -- |
5 | 1 | equemene | * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
6 | 1 | equemene | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
7 | 1 | equemene | * November 2006 |
8 | 1 | equemene | * |
9 | 1 | equemene | * .. Scalar Arguments .. |
10 | 1 | equemene | INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK |
11 | 1 | equemene | DOUBLE PRECISION RCOND |
12 | 1 | equemene | * .. |
13 | 1 | equemene | * .. Array Arguments .. |
14 | 1 | equemene | INTEGER JPVT( * ) |
15 | 1 | equemene | DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) |
16 | 1 | equemene | * .. |
17 | 1 | equemene | * |
18 | 1 | equemene | * Purpose |
19 | 1 | equemene | * ======= |
20 | 1 | equemene | * |
21 | 1 | equemene | * DGELSY computes the minimum-norm solution to a real linear least |
22 | 1 | equemene | * squares problem: |
23 | 1 | equemene | * minimize || A * X - B || |
24 | 1 | equemene | * using a complete orthogonal factorization of A. A is an M-by-N |
25 | 1 | equemene | * matrix which may be rank-deficient. |
26 | 1 | equemene | * |
27 | 1 | equemene | * Several right hand side vectors b and solution vectors x can be |
28 | 1 | equemene | * handled in a single call; they are stored as the columns of the |
29 | 1 | equemene | * M-by-NRHS right hand side matrix B and the N-by-NRHS solution |
30 | 1 | equemene | * matrix X. |
31 | 1 | equemene | * |
32 | 1 | equemene | * The routine first computes a QR factorization with column pivoting: |
33 | 1 | equemene | * A * P = Q * [ R11 R12 ] |
34 | 1 | equemene | * [ 0 R22 ] |
35 | 1 | equemene | * with R11 defined as the largest leading submatrix whose estimated |
36 | 1 | equemene | * condition number is less than 1/RCOND. The order of R11, RANK, |
37 | 1 | equemene | * is the effective rank of A. |
38 | 1 | equemene | * |
39 | 1 | equemene | * Then, R22 is considered to be negligible, and R12 is annihilated |
40 | 1 | equemene | * by orthogonal transformations from the right, arriving at the |
41 | 1 | equemene | * complete orthogonal factorization: |
42 | 1 | equemene | * A * P = Q * [ T11 0 ] * Z |
43 | 1 | equemene | * [ 0 0 ] |
44 | 1 | equemene | * The minimum-norm solution is then |
45 | 1 | equemene | * X = P * Z' [ inv(T11)*Q1'*B ] |
46 | 1 | equemene | * [ 0 ] |
47 | 1 | equemene | * where Q1 consists of the first RANK columns of Q. |
48 | 1 | equemene | * |
49 | 1 | equemene | * This routine is basically identical to the original xGELSX except |
50 | 1 | equemene | * three differences: |
51 | 1 | equemene | * o The call to the subroutine xGEQPF has been substituted by the |
52 | 1 | equemene | * the call to the subroutine xGEQP3. This subroutine is a Blas-3 |
53 | 1 | equemene | * version of the QR factorization with column pivoting. |
54 | 1 | equemene | * o Matrix B (the right hand side) is updated with Blas-3. |
55 | 1 | equemene | * o The permutation of matrix B (the right hand side) is faster and |
56 | 1 | equemene | * more simple. |
57 | 1 | equemene | * |
58 | 1 | equemene | * Arguments |
59 | 1 | equemene | * ========= |
60 | 1 | equemene | * |
61 | 1 | equemene | * M (input) INTEGER |
62 | 1 | equemene | * The number of rows of the matrix A. M >= 0. |
63 | 1 | equemene | * |
64 | 1 | equemene | * N (input) INTEGER |
65 | 1 | equemene | * The number of columns of the matrix A. N >= 0. |
66 | 1 | equemene | * |
67 | 1 | equemene | * NRHS (input) INTEGER |
68 | 1 | equemene | * The number of right hand sides, i.e., the number of |
69 | 1 | equemene | * columns of matrices B and X. NRHS >= 0. |
70 | 1 | equemene | * |
71 | 1 | equemene | * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
72 | 1 | equemene | * On entry, the M-by-N matrix A. |
73 | 1 | equemene | * On exit, A has been overwritten by details of its |
74 | 1 | equemene | * complete orthogonal factorization. |
75 | 1 | equemene | * |
76 | 1 | equemene | * LDA (input) INTEGER |
77 | 1 | equemene | * The leading dimension of the array A. LDA >= max(1,M). |
78 | 1 | equemene | * |
79 | 1 | equemene | * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) |
80 | 1 | equemene | * On entry, the M-by-NRHS right hand side matrix B. |
81 | 1 | equemene | * On exit, the N-by-NRHS solution matrix X. |
82 | 1 | equemene | * |
83 | 1 | equemene | * LDB (input) INTEGER |
84 | 1 | equemene | * The leading dimension of the array B. LDB >= max(1,M,N). |
85 | 1 | equemene | * |
86 | 1 | equemene | * JPVT (input/output) INTEGER array, dimension (N) |
87 | 1 | equemene | * On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted |
88 | 1 | equemene | * to the front of AP, otherwise column i is a free column. |
89 | 1 | equemene | * On exit, if JPVT(i) = k, then the i-th column of AP |
90 | 1 | equemene | * was the k-th column of A. |
91 | 1 | equemene | * |
92 | 1 | equemene | * RCOND (input) DOUBLE PRECISION |
93 | 1 | equemene | * RCOND is used to determine the effective rank of A, which |
94 | 1 | equemene | * is defined as the order of the largest leading triangular |
95 | 1 | equemene | * submatrix R11 in the QR factorization with pivoting of A, |
96 | 1 | equemene | * whose estimated condition number < 1/RCOND. |
97 | 1 | equemene | * |
98 | 1 | equemene | * RANK (output) INTEGER |
99 | 1 | equemene | * The effective rank of A, i.e., the order of the submatrix |
100 | 1 | equemene | * R11. This is the same as the order of the submatrix T11 |
101 | 1 | equemene | * in the complete orthogonal factorization of A. |
102 | 1 | equemene | * |
103 | 1 | equemene | * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) |
104 | 1 | equemene | * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
105 | 1 | equemene | * |
106 | 1 | equemene | * LWORK (input) INTEGER |
107 | 1 | equemene | * The dimension of the array WORK. |
108 | 1 | equemene | * The unblocked strategy requires that: |
109 | 1 | equemene | * LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ), |
110 | 1 | equemene | * where MN = min( M, N ). |
111 | 1 | equemene | * The block algorithm requires that: |
112 | 1 | equemene | * LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ), |
113 | 1 | equemene | * where NB is an upper bound on the blocksize returned |
114 | 1 | equemene | * by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR, |
115 | 1 | equemene | * and DORMRZ. |
116 | 1 | equemene | * |
117 | 1 | equemene | * If LWORK = -1, then a workspace query is assumed; the routine |
118 | 1 | equemene | * only calculates the optimal size of the WORK array, returns |
119 | 1 | equemene | * this value as the first entry of the WORK array, and no error |
120 | 1 | equemene | * message related to LWORK is issued by XERBLA. |
121 | 1 | equemene | * |
122 | 1 | equemene | * INFO (output) INTEGER |
123 | 1 | equemene | * = 0: successful exit |
124 | 1 | equemene | * < 0: If INFO = -i, the i-th argument had an illegal value. |
125 | 1 | equemene | * |
126 | 1 | equemene | * Further Details |
127 | 1 | equemene | * =============== |
128 | 1 | equemene | * |
129 | 1 | equemene | * Based on contributions by |
130 | 1 | equemene | * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA |
131 | 1 | equemene | * E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain |
132 | 1 | equemene | * G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain |
133 | 1 | equemene | * |
134 | 1 | equemene | * ===================================================================== |
135 | 1 | equemene | * |
136 | 1 | equemene | * .. Parameters .. |
137 | 1 | equemene | INTEGER IMAX, IMIN |
138 | 1 | equemene | PARAMETER ( IMAX = 1, IMIN = 2 ) |
139 | 1 | equemene | DOUBLE PRECISION ZERO, ONE |
140 | 1 | equemene | PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) |
141 | 1 | equemene | * .. |
142 | 1 | equemene | * .. Local Scalars .. |
143 | 1 | equemene | LOGICAL LQUERY |
144 | 1 | equemene | INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN, |
145 | 1 | equemene | $ LWKOPT, MN, NB, NB1, NB2, NB3, NB4 |
146 | 1 | equemene | DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX, |
147 | 1 | equemene | $ SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE |
148 | 1 | equemene | * .. |
149 | 1 | equemene | * .. External Functions .. |
150 | 1 | equemene | INTEGER ILAENV |
151 | 1 | equemene | DOUBLE PRECISION DLAMCH, DLANGE |
152 | 1 | equemene | EXTERNAL ILAENV, DLAMCH, DLANGE |
153 | 1 | equemene | * .. |
154 | 1 | equemene | * .. External Subroutines .. |
155 | 1 | equemene | EXTERNAL DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET, |
156 | 1 | equemene | $ DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA |
157 | 1 | equemene | * .. |
158 | 1 | equemene | * .. Intrinsic Functions .. |
159 | 1 | equemene | INTRINSIC ABS, MAX, MIN |
160 | 1 | equemene | * .. |
161 | 1 | equemene | * .. Executable Statements .. |
162 | 1 | equemene | * |
163 | 1 | equemene | MN = MIN( M, N ) |
164 | 1 | equemene | ISMIN = MN + 1 |
165 | 1 | equemene | ISMAX = 2*MN + 1 |
166 | 1 | equemene | * |
167 | 1 | equemene | * Test the input arguments. |
168 | 1 | equemene | * |
169 | 1 | equemene | INFO = 0 |
170 | 1 | equemene | LQUERY = ( LWORK.EQ.-1 ) |
171 | 1 | equemene | IF( M.LT.0 ) THEN |
172 | 1 | equemene | INFO = -1 |
173 | 1 | equemene | ELSE IF( N.LT.0 ) THEN |
174 | 1 | equemene | INFO = -2 |
175 | 1 | equemene | ELSE IF( NRHS.LT.0 ) THEN |
176 | 1 | equemene | INFO = -3 |
177 | 1 | equemene | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN |
178 | 1 | equemene | INFO = -5 |
179 | 1 | equemene | ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN |
180 | 1 | equemene | INFO = -7 |
181 | 1 | equemene | END IF |
182 | 1 | equemene | * |
183 | 1 | equemene | * Figure out optimal block size |
184 | 1 | equemene | * |
185 | 1 | equemene | IF( INFO.EQ.0 ) THEN |
186 | 1 | equemene | IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN |
187 | 1 | equemene | LWKMIN = 1 |
188 | 1 | equemene | LWKOPT = 1 |
189 | 1 | equemene | ELSE |
190 | 1 | equemene | NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 ) |
191 | 1 | equemene | NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 ) |
192 | 1 | equemene | NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 ) |
193 | 1 | equemene | NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 ) |
194 | 1 | equemene | NB = MAX( NB1, NB2, NB3, NB4 ) |
195 | 1 | equemene | LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS ) |
196 | 1 | equemene | LWKOPT = MAX( LWKMIN, |
197 | 1 | equemene | $ MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS ) |
198 | 1 | equemene | END IF |
199 | 1 | equemene | WORK( 1 ) = LWKOPT |
200 | 1 | equemene | * |
201 | 1 | equemene | IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN |
202 | 1 | equemene | INFO = -12 |
203 | 1 | equemene | END IF |
204 | 1 | equemene | END IF |
205 | 1 | equemene | * |
206 | 1 | equemene | IF( INFO.NE.0 ) THEN |
207 | 1 | equemene | CALL XERBLA( 'DGELSY', -INFO ) |
208 | 1 | equemene | RETURN |
209 | 1 | equemene | ELSE IF( LQUERY ) THEN |
210 | 1 | equemene | RETURN |
211 | 1 | equemene | END IF |
212 | 1 | equemene | * |
213 | 1 | equemene | * Quick return if possible |
214 | 1 | equemene | * |
215 | 1 | equemene | IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN |
216 | 1 | equemene | RANK = 0 |
217 | 1 | equemene | RETURN |
218 | 1 | equemene | END IF |
219 | 1 | equemene | * |
220 | 1 | equemene | * Get machine parameters |
221 | 1 | equemene | * |
222 | 1 | equemene | SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) |
223 | 1 | equemene | BIGNUM = ONE / SMLNUM |
224 | 1 | equemene | CALL DLABAD( SMLNUM, BIGNUM ) |
225 | 1 | equemene | * |
226 | 1 | equemene | * Scale A, B if max entries outside range [SMLNUM,BIGNUM] |
227 | 1 | equemene | * |
228 | 1 | equemene | ANRM = DLANGE( 'M', M, N, A, LDA, WORK ) |
229 | 1 | equemene | IASCL = 0 |
230 | 1 | equemene | IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN |
231 | 1 | equemene | * |
232 | 1 | equemene | * Scale matrix norm up to SMLNUM |
233 | 1 | equemene | * |
234 | 1 | equemene | CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) |
235 | 1 | equemene | IASCL = 1 |
236 | 1 | equemene | ELSE IF( ANRM.GT.BIGNUM ) THEN |
237 | 1 | equemene | * |
238 | 1 | equemene | * Scale matrix norm down to BIGNUM |
239 | 1 | equemene | * |
240 | 1 | equemene | CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) |
241 | 1 | equemene | IASCL = 2 |
242 | 1 | equemene | ELSE IF( ANRM.EQ.ZERO ) THEN |
243 | 1 | equemene | * |
244 | 1 | equemene | * Matrix all zero. Return zero solution. |
245 | 1 | equemene | * |
246 | 1 | equemene | CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) |
247 | 1 | equemene | RANK = 0 |
248 | 1 | equemene | GO TO 70 |
249 | 1 | equemene | END IF |
250 | 1 | equemene | * |
251 | 1 | equemene | BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK ) |
252 | 1 | equemene | IBSCL = 0 |
253 | 1 | equemene | IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN |
254 | 1 | equemene | * |
255 | 1 | equemene | * Scale matrix norm up to SMLNUM |
256 | 1 | equemene | * |
257 | 1 | equemene | CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) |
258 | 1 | equemene | IBSCL = 1 |
259 | 1 | equemene | ELSE IF( BNRM.GT.BIGNUM ) THEN |
260 | 1 | equemene | * |
261 | 1 | equemene | * Scale matrix norm down to BIGNUM |
262 | 1 | equemene | * |
263 | 1 | equemene | CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) |
264 | 1 | equemene | IBSCL = 2 |
265 | 1 | equemene | END IF |
266 | 1 | equemene | * |
267 | 1 | equemene | * Compute QR factorization with column pivoting of A: |
268 | 1 | equemene | * A * P = Q * R |
269 | 1 | equemene | * |
270 | 1 | equemene | CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), |
271 | 1 | equemene | $ LWORK-MN, INFO ) |
272 | 1 | equemene | WSIZE = MN + WORK( MN+1 ) |
273 | 1 | equemene | * |
274 | 1 | equemene | * workspace: MN+2*N+NB*(N+1). |
275 | 1 | equemene | * Details of Householder rotations stored in WORK(1:MN). |
276 | 1 | equemene | * |
277 | 1 | equemene | * Determine RANK using incremental condition estimation |
278 | 1 | equemene | * |
279 | 1 | equemene | WORK( ISMIN ) = ONE |
280 | 1 | equemene | WORK( ISMAX ) = ONE |
281 | 1 | equemene | SMAX = ABS( A( 1, 1 ) ) |
282 | 1 | equemene | SMIN = SMAX |
283 | 1 | equemene | IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN |
284 | 1 | equemene | RANK = 0 |
285 | 1 | equemene | CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) |
286 | 1 | equemene | GO TO 70 |
287 | 1 | equemene | ELSE |
288 | 1 | equemene | RANK = 1 |
289 | 1 | equemene | END IF |
290 | 1 | equemene | * |
291 | 1 | equemene | 10 CONTINUE |
292 | 1 | equemene | IF( RANK.LT.MN ) THEN |
293 | 1 | equemene | I = RANK + 1 |
294 | 1 | equemene | CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ), |
295 | 1 | equemene | $ A( I, I ), SMINPR, S1, C1 ) |
296 | 1 | equemene | CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ), |
297 | 1 | equemene | $ A( I, I ), SMAXPR, S2, C2 ) |
298 | 1 | equemene | * |
299 | 1 | equemene | IF( SMAXPR*RCOND.LE.SMINPR ) THEN |
300 | 1 | equemene | DO 20 I = 1, RANK |
301 | 1 | equemene | WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 ) |
302 | 1 | equemene | WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 ) |
303 | 1 | equemene | 20 CONTINUE |
304 | 1 | equemene | WORK( ISMIN+RANK ) = C1 |
305 | 1 | equemene | WORK( ISMAX+RANK ) = C2 |
306 | 1 | equemene | SMIN = SMINPR |
307 | 1 | equemene | SMAX = SMAXPR |
308 | 1 | equemene | RANK = RANK + 1 |
309 | 1 | equemene | GO TO 10 |
310 | 1 | equemene | END IF |
311 | 1 | equemene | END IF |
312 | 1 | equemene | * |
313 | 1 | equemene | * workspace: 3*MN. |
314 | 1 | equemene | * |
315 | 1 | equemene | * Logically partition R = [ R11 R12 ] |
316 | 1 | equemene | * [ 0 R22 ] |
317 | 1 | equemene | * where R11 = R(1:RANK,1:RANK) |
318 | 1 | equemene | * |
319 | 1 | equemene | * [R11,R12] = [ T11, 0 ] * Y |
320 | 1 | equemene | * |
321 | 1 | equemene | IF( RANK.LT.N ) |
322 | 1 | equemene | $ CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ), |
323 | 1 | equemene | $ LWORK-2*MN, INFO ) |
324 | 1 | equemene | * |
325 | 1 | equemene | * workspace: 2*MN. |
326 | 1 | equemene | * Details of Householder rotations stored in WORK(MN+1:2*MN) |
327 | 1 | equemene | * |
328 | 1 | equemene | * B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) |
329 | 1 | equemene | * |
330 | 1 | equemene | CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ), |
331 | 1 | equemene | $ B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO ) |
332 | 1 | equemene | WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) ) |
333 | 1 | equemene | * |
334 | 1 | equemene | * workspace: 2*MN+NB*NRHS. |
335 | 1 | equemene | * |
336 | 1 | equemene | * B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) |
337 | 1 | equemene | * |
338 | 1 | equemene | CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK, |
339 | 1 | equemene | $ NRHS, ONE, A, LDA, B, LDB ) |
340 | 1 | equemene | * |
341 | 1 | equemene | DO 40 J = 1, NRHS |
342 | 1 | equemene | DO 30 I = RANK + 1, N |
343 | 1 | equemene | B( I, J ) = ZERO |
344 | 1 | equemene | 30 CONTINUE |
345 | 1 | equemene | 40 CONTINUE |
346 | 1 | equemene | * |
347 | 1 | equemene | * B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) |
348 | 1 | equemene | * |
349 | 1 | equemene | IF( RANK.LT.N ) THEN |
350 | 1 | equemene | CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A, |
351 | 1 | equemene | $ LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ), |
352 | 1 | equemene | $ LWORK-2*MN, INFO ) |
353 | 1 | equemene | END IF |
354 | 1 | equemene | * |
355 | 1 | equemene | * workspace: 2*MN+NRHS. |
356 | 1 | equemene | * |
357 | 1 | equemene | * B(1:N,1:NRHS) := P * B(1:N,1:NRHS) |
358 | 1 | equemene | * |
359 | 1 | equemene | DO 60 J = 1, NRHS |
360 | 1 | equemene | DO 50 I = 1, N |
361 | 1 | equemene | WORK( JPVT( I ) ) = B( I, J ) |
362 | 1 | equemene | 50 CONTINUE |
363 | 1 | equemene | CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 ) |
364 | 1 | equemene | 60 CONTINUE |
365 | 1 | equemene | * |
366 | 1 | equemene | * workspace: N. |
367 | 1 | equemene | * |
368 | 1 | equemene | * Undo scaling |
369 | 1 | equemene | * |
370 | 1 | equemene | IF( IASCL.EQ.1 ) THEN |
371 | 1 | equemene | CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) |
372 | 1 | equemene | CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA, |
373 | 1 | equemene | $ INFO ) |
374 | 1 | equemene | ELSE IF( IASCL.EQ.2 ) THEN |
375 | 1 | equemene | CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) |
376 | 1 | equemene | CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA, |
377 | 1 | equemene | $ INFO ) |
378 | 1 | equemene | END IF |
379 | 1 | equemene | IF( IBSCL.EQ.1 ) THEN |
380 | 1 | equemene | CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) |
381 | 1 | equemene | ELSE IF( IBSCL.EQ.2 ) THEN |
382 | 1 | equemene | CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) |
383 | 1 | equemene | END IF |
384 | 1 | equemene | * |
385 | 1 | equemene | 70 CONTINUE |
386 | 1 | equemene | WORK( 1 ) = LWKOPT |
387 | 1 | equemene | * |
388 | 1 | equemene | RETURN |
389 | 1 | equemene | * |
390 | 1 | equemene | * End of DGELSY |
391 | 1 | equemene | * |
392 | 1 | equemene | END |