root / src / blas / ztrmv.f @ 2
Historique | Voir | Annoter | Télécharger (9,88 ko)
1 |
SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
INTEGER INCX,LDA,N |
4 |
CHARACTER DIAG,TRANS,UPLO |
5 |
* .. |
6 |
* .. Array Arguments .. |
7 |
DOUBLE COMPLEX A(LDA,*),X(*) |
8 |
* .. |
9 |
* |
10 |
* Purpose |
11 |
* ======= |
12 |
* |
13 |
* ZTRMV performs one of the matrix-vector operations |
14 |
* |
15 |
* x := A*x, or x := A'*x, or x := conjg( A' )*x, |
16 |
* |
17 |
* where x is an n element vector and A is an n by n unit, or non-unit, |
18 |
* upper or lower triangular matrix. |
19 |
* |
20 |
* Arguments |
21 |
* ========== |
22 |
* |
23 |
* UPLO - CHARACTER*1. |
24 |
* On entry, UPLO specifies whether the matrix is an upper or |
25 |
* lower triangular matrix as follows: |
26 |
* |
27 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
28 |
* |
29 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
30 |
* |
31 |
* Unchanged on exit. |
32 |
* |
33 |
* TRANS - CHARACTER*1. |
34 |
* On entry, TRANS specifies the operation to be performed as |
35 |
* follows: |
36 |
* |
37 |
* TRANS = 'N' or 'n' x := A*x. |
38 |
* |
39 |
* TRANS = 'T' or 't' x := A'*x. |
40 |
* |
41 |
* TRANS = 'C' or 'c' x := conjg( A' )*x. |
42 |
* |
43 |
* Unchanged on exit. |
44 |
* |
45 |
* DIAG - CHARACTER*1. |
46 |
* On entry, DIAG specifies whether or not A is unit |
47 |
* triangular as follows: |
48 |
* |
49 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
50 |
* |
51 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
52 |
* triangular. |
53 |
* |
54 |
* Unchanged on exit. |
55 |
* |
56 |
* N - INTEGER. |
57 |
* On entry, N specifies the order of the matrix A. |
58 |
* N must be at least zero. |
59 |
* Unchanged on exit. |
60 |
* |
61 |
* A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
62 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
63 |
* upper triangular part of the array A must contain the upper |
64 |
* triangular matrix and the strictly lower triangular part of |
65 |
* A is not referenced. |
66 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
67 |
* lower triangular part of the array A must contain the lower |
68 |
* triangular matrix and the strictly upper triangular part of |
69 |
* A is not referenced. |
70 |
* Note that when DIAG = 'U' or 'u', the diagonal elements of |
71 |
* A are not referenced either, but are assumed to be unity. |
72 |
* Unchanged on exit. |
73 |
* |
74 |
* LDA - INTEGER. |
75 |
* On entry, LDA specifies the first dimension of A as declared |
76 |
* in the calling (sub) program. LDA must be at least |
77 |
* max( 1, n ). |
78 |
* Unchanged on exit. |
79 |
* |
80 |
* X - COMPLEX*16 array of dimension at least |
81 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
82 |
* Before entry, the incremented array X must contain the n |
83 |
* element vector x. On exit, X is overwritten with the |
84 |
* tranformed vector x. |
85 |
* |
86 |
* INCX - INTEGER. |
87 |
* On entry, INCX specifies the increment for the elements of |
88 |
* X. INCX must not be zero. |
89 |
* Unchanged on exit. |
90 |
* |
91 |
* |
92 |
* Level 2 Blas routine. |
93 |
* |
94 |
* -- Written on 22-October-1986. |
95 |
* Jack Dongarra, Argonne National Lab. |
96 |
* Jeremy Du Croz, Nag Central Office. |
97 |
* Sven Hammarling, Nag Central Office. |
98 |
* Richard Hanson, Sandia National Labs. |
99 |
* |
100 |
* |
101 |
* .. Parameters .. |
102 |
DOUBLE COMPLEX ZERO |
103 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
104 |
* .. |
105 |
* .. Local Scalars .. |
106 |
DOUBLE COMPLEX TEMP |
107 |
INTEGER I,INFO,IX,J,JX,KX |
108 |
LOGICAL NOCONJ,NOUNIT |
109 |
* .. |
110 |
* .. External Functions .. |
111 |
LOGICAL LSAME |
112 |
EXTERNAL LSAME |
113 |
* .. |
114 |
* .. External Subroutines .. |
115 |
EXTERNAL XERBLA |
116 |
* .. |
117 |
* .. Intrinsic Functions .. |
118 |
INTRINSIC DCONJG,MAX |
119 |
* .. |
120 |
* |
121 |
* Test the input parameters. |
122 |
* |
123 |
INFO = 0 |
124 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
125 |
INFO = 1 |
126 |
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
127 |
+ .NOT.LSAME(TRANS,'C')) THEN |
128 |
INFO = 2 |
129 |
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
130 |
INFO = 3 |
131 |
ELSE IF (N.LT.0) THEN |
132 |
INFO = 4 |
133 |
ELSE IF (LDA.LT.MAX(1,N)) THEN |
134 |
INFO = 6 |
135 |
ELSE IF (INCX.EQ.0) THEN |
136 |
INFO = 8 |
137 |
END IF |
138 |
IF (INFO.NE.0) THEN |
139 |
CALL XERBLA('ZTRMV ',INFO) |
140 |
RETURN |
141 |
END IF |
142 |
* |
143 |
* Quick return if possible. |
144 |
* |
145 |
IF (N.EQ.0) RETURN |
146 |
* |
147 |
NOCONJ = LSAME(TRANS,'T') |
148 |
NOUNIT = LSAME(DIAG,'N') |
149 |
* |
150 |
* Set up the start point in X if the increment is not unity. This |
151 |
* will be ( N - 1 )*INCX too small for descending loops. |
152 |
* |
153 |
IF (INCX.LE.0) THEN |
154 |
KX = 1 - (N-1)*INCX |
155 |
ELSE IF (INCX.NE.1) THEN |
156 |
KX = 1 |
157 |
END IF |
158 |
* |
159 |
* Start the operations. In this version the elements of A are |
160 |
* accessed sequentially with one pass through A. |
161 |
* |
162 |
IF (LSAME(TRANS,'N')) THEN |
163 |
* |
164 |
* Form x := A*x. |
165 |
* |
166 |
IF (LSAME(UPLO,'U')) THEN |
167 |
IF (INCX.EQ.1) THEN |
168 |
DO 20 J = 1,N |
169 |
IF (X(J).NE.ZERO) THEN |
170 |
TEMP = X(J) |
171 |
DO 10 I = 1,J - 1 |
172 |
X(I) = X(I) + TEMP*A(I,J) |
173 |
10 CONTINUE |
174 |
IF (NOUNIT) X(J) = X(J)*A(J,J) |
175 |
END IF |
176 |
20 CONTINUE |
177 |
ELSE |
178 |
JX = KX |
179 |
DO 40 J = 1,N |
180 |
IF (X(JX).NE.ZERO) THEN |
181 |
TEMP = X(JX) |
182 |
IX = KX |
183 |
DO 30 I = 1,J - 1 |
184 |
X(IX) = X(IX) + TEMP*A(I,J) |
185 |
IX = IX + INCX |
186 |
30 CONTINUE |
187 |
IF (NOUNIT) X(JX) = X(JX)*A(J,J) |
188 |
END IF |
189 |
JX = JX + INCX |
190 |
40 CONTINUE |
191 |
END IF |
192 |
ELSE |
193 |
IF (INCX.EQ.1) THEN |
194 |
DO 60 J = N,1,-1 |
195 |
IF (X(J).NE.ZERO) THEN |
196 |
TEMP = X(J) |
197 |
DO 50 I = N,J + 1,-1 |
198 |
X(I) = X(I) + TEMP*A(I,J) |
199 |
50 CONTINUE |
200 |
IF (NOUNIT) X(J) = X(J)*A(J,J) |
201 |
END IF |
202 |
60 CONTINUE |
203 |
ELSE |
204 |
KX = KX + (N-1)*INCX |
205 |
JX = KX |
206 |
DO 80 J = N,1,-1 |
207 |
IF (X(JX).NE.ZERO) THEN |
208 |
TEMP = X(JX) |
209 |
IX = KX |
210 |
DO 70 I = N,J + 1,-1 |
211 |
X(IX) = X(IX) + TEMP*A(I,J) |
212 |
IX = IX - INCX |
213 |
70 CONTINUE |
214 |
IF (NOUNIT) X(JX) = X(JX)*A(J,J) |
215 |
END IF |
216 |
JX = JX - INCX |
217 |
80 CONTINUE |
218 |
END IF |
219 |
END IF |
220 |
ELSE |
221 |
* |
222 |
* Form x := A'*x or x := conjg( A' )*x. |
223 |
* |
224 |
IF (LSAME(UPLO,'U')) THEN |
225 |
IF (INCX.EQ.1) THEN |
226 |
DO 110 J = N,1,-1 |
227 |
TEMP = X(J) |
228 |
IF (NOCONJ) THEN |
229 |
IF (NOUNIT) TEMP = TEMP*A(J,J) |
230 |
DO 90 I = J - 1,1,-1 |
231 |
TEMP = TEMP + A(I,J)*X(I) |
232 |
90 CONTINUE |
233 |
ELSE |
234 |
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) |
235 |
DO 100 I = J - 1,1,-1 |
236 |
TEMP = TEMP + DCONJG(A(I,J))*X(I) |
237 |
100 CONTINUE |
238 |
END IF |
239 |
X(J) = TEMP |
240 |
110 CONTINUE |
241 |
ELSE |
242 |
JX = KX + (N-1)*INCX |
243 |
DO 140 J = N,1,-1 |
244 |
TEMP = X(JX) |
245 |
IX = JX |
246 |
IF (NOCONJ) THEN |
247 |
IF (NOUNIT) TEMP = TEMP*A(J,J) |
248 |
DO 120 I = J - 1,1,-1 |
249 |
IX = IX - INCX |
250 |
TEMP = TEMP + A(I,J)*X(IX) |
251 |
120 CONTINUE |
252 |
ELSE |
253 |
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) |
254 |
DO 130 I = J - 1,1,-1 |
255 |
IX = IX - INCX |
256 |
TEMP = TEMP + DCONJG(A(I,J))*X(IX) |
257 |
130 CONTINUE |
258 |
END IF |
259 |
X(JX) = TEMP |
260 |
JX = JX - INCX |
261 |
140 CONTINUE |
262 |
END IF |
263 |
ELSE |
264 |
IF (INCX.EQ.1) THEN |
265 |
DO 170 J = 1,N |
266 |
TEMP = X(J) |
267 |
IF (NOCONJ) THEN |
268 |
IF (NOUNIT) TEMP = TEMP*A(J,J) |
269 |
DO 150 I = J + 1,N |
270 |
TEMP = TEMP + A(I,J)*X(I) |
271 |
150 CONTINUE |
272 |
ELSE |
273 |
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) |
274 |
DO 160 I = J + 1,N |
275 |
TEMP = TEMP + DCONJG(A(I,J))*X(I) |
276 |
160 CONTINUE |
277 |
END IF |
278 |
X(J) = TEMP |
279 |
170 CONTINUE |
280 |
ELSE |
281 |
JX = KX |
282 |
DO 200 J = 1,N |
283 |
TEMP = X(JX) |
284 |
IX = JX |
285 |
IF (NOCONJ) THEN |
286 |
IF (NOUNIT) TEMP = TEMP*A(J,J) |
287 |
DO 180 I = J + 1,N |
288 |
IX = IX + INCX |
289 |
TEMP = TEMP + A(I,J)*X(IX) |
290 |
180 CONTINUE |
291 |
ELSE |
292 |
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) |
293 |
DO 190 I = J + 1,N |
294 |
IX = IX + INCX |
295 |
TEMP = TEMP + DCONJG(A(I,J))*X(IX) |
296 |
190 CONTINUE |
297 |
END IF |
298 |
X(JX) = TEMP |
299 |
JX = JX + INCX |
300 |
200 CONTINUE |
301 |
END IF |
302 |
END IF |
303 |
END IF |
304 |
* |
305 |
RETURN |
306 |
* |
307 |
* End of ZTRMV . |
308 |
* |
309 |
END |