Statistiques
| Révision :

root / src / blas / ztrmv.f @ 2

Historique | Voir | Annoter | Télécharger (9,88 ko)

1 1 equemene
      SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      INTEGER INCX,LDA,N
4 1 equemene
      CHARACTER DIAG,TRANS,UPLO
5 1 equemene
*     ..
6 1 equemene
*     .. Array Arguments ..
7 1 equemene
      DOUBLE COMPLEX A(LDA,*),X(*)
8 1 equemene
*     ..
9 1 equemene
*
10 1 equemene
*  Purpose
11 1 equemene
*  =======
12 1 equemene
*
13 1 equemene
*  ZTRMV  performs one of the matrix-vector operations
14 1 equemene
*
15 1 equemene
*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
16 1 equemene
*
17 1 equemene
*  where x is an n element vector and  A is an n by n unit, or non-unit,
18 1 equemene
*  upper or lower triangular matrix.
19 1 equemene
*
20 1 equemene
*  Arguments
21 1 equemene
*  ==========
22 1 equemene
*
23 1 equemene
*  UPLO   - CHARACTER*1.
24 1 equemene
*           On entry, UPLO specifies whether the matrix is an upper or
25 1 equemene
*           lower triangular matrix as follows:
26 1 equemene
*
27 1 equemene
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28 1 equemene
*
29 1 equemene
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30 1 equemene
*
31 1 equemene
*           Unchanged on exit.
32 1 equemene
*
33 1 equemene
*  TRANS  - CHARACTER*1.
34 1 equemene
*           On entry, TRANS specifies the operation to be performed as
35 1 equemene
*           follows:
36 1 equemene
*
37 1 equemene
*              TRANS = 'N' or 'n'   x := A*x.
38 1 equemene
*
39 1 equemene
*              TRANS = 'T' or 't'   x := A'*x.
40 1 equemene
*
41 1 equemene
*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
42 1 equemene
*
43 1 equemene
*           Unchanged on exit.
44 1 equemene
*
45 1 equemene
*  DIAG   - CHARACTER*1.
46 1 equemene
*           On entry, DIAG specifies whether or not A is unit
47 1 equemene
*           triangular as follows:
48 1 equemene
*
49 1 equemene
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50 1 equemene
*
51 1 equemene
*              DIAG = 'N' or 'n'   A is not assumed to be unit
52 1 equemene
*                                  triangular.
53 1 equemene
*
54 1 equemene
*           Unchanged on exit.
55 1 equemene
*
56 1 equemene
*  N      - INTEGER.
57 1 equemene
*           On entry, N specifies the order of the matrix A.
58 1 equemene
*           N must be at least zero.
59 1 equemene
*           Unchanged on exit.
60 1 equemene
*
61 1 equemene
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
62 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
63 1 equemene
*           upper triangular part of the array A must contain the upper
64 1 equemene
*           triangular matrix and the strictly lower triangular part of
65 1 equemene
*           A is not referenced.
66 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading n by n
67 1 equemene
*           lower triangular part of the array A must contain the lower
68 1 equemene
*           triangular matrix and the strictly upper triangular part of
69 1 equemene
*           A is not referenced.
70 1 equemene
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
71 1 equemene
*           A are not referenced either, but are assumed to be unity.
72 1 equemene
*           Unchanged on exit.
73 1 equemene
*
74 1 equemene
*  LDA    - INTEGER.
75 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
76 1 equemene
*           in the calling (sub) program. LDA must be at least
77 1 equemene
*           max( 1, n ).
78 1 equemene
*           Unchanged on exit.
79 1 equemene
*
80 1 equemene
*  X      - COMPLEX*16       array of dimension at least
81 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
82 1 equemene
*           Before entry, the incremented array X must contain the n
83 1 equemene
*           element vector x. On exit, X is overwritten with the
84 1 equemene
*           tranformed vector x.
85 1 equemene
*
86 1 equemene
*  INCX   - INTEGER.
87 1 equemene
*           On entry, INCX specifies the increment for the elements of
88 1 equemene
*           X. INCX must not be zero.
89 1 equemene
*           Unchanged on exit.
90 1 equemene
*
91 1 equemene
*
92 1 equemene
*  Level 2 Blas routine.
93 1 equemene
*
94 1 equemene
*  -- Written on 22-October-1986.
95 1 equemene
*     Jack Dongarra, Argonne National Lab.
96 1 equemene
*     Jeremy Du Croz, Nag Central Office.
97 1 equemene
*     Sven Hammarling, Nag Central Office.
98 1 equemene
*     Richard Hanson, Sandia National Labs.
99 1 equemene
*
100 1 equemene
*
101 1 equemene
*     .. Parameters ..
102 1 equemene
      DOUBLE COMPLEX ZERO
103 1 equemene
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
104 1 equemene
*     ..
105 1 equemene
*     .. Local Scalars ..
106 1 equemene
      DOUBLE COMPLEX TEMP
107 1 equemene
      INTEGER I,INFO,IX,J,JX,KX
108 1 equemene
      LOGICAL NOCONJ,NOUNIT
109 1 equemene
*     ..
110 1 equemene
*     .. External Functions ..
111 1 equemene
      LOGICAL LSAME
112 1 equemene
      EXTERNAL LSAME
113 1 equemene
*     ..
114 1 equemene
*     .. External Subroutines ..
115 1 equemene
      EXTERNAL XERBLA
116 1 equemene
*     ..
117 1 equemene
*     .. Intrinsic Functions ..
118 1 equemene
      INTRINSIC DCONJG,MAX
119 1 equemene
*     ..
120 1 equemene
*
121 1 equemene
*     Test the input parameters.
122 1 equemene
*
123 1 equemene
      INFO = 0
124 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
125 1 equemene
          INFO = 1
126 1 equemene
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
127 1 equemene
     +         .NOT.LSAME(TRANS,'C')) THEN
128 1 equemene
          INFO = 2
129 1 equemene
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
130 1 equemene
          INFO = 3
131 1 equemene
      ELSE IF (N.LT.0) THEN
132 1 equemene
          INFO = 4
133 1 equemene
      ELSE IF (LDA.LT.MAX(1,N)) THEN
134 1 equemene
          INFO = 6
135 1 equemene
      ELSE IF (INCX.EQ.0) THEN
136 1 equemene
          INFO = 8
137 1 equemene
      END IF
138 1 equemene
      IF (INFO.NE.0) THEN
139 1 equemene
          CALL XERBLA('ZTRMV ',INFO)
140 1 equemene
          RETURN
141 1 equemene
      END IF
142 1 equemene
*
143 1 equemene
*     Quick return if possible.
144 1 equemene
*
145 1 equemene
      IF (N.EQ.0) RETURN
146 1 equemene
*
147 1 equemene
      NOCONJ = LSAME(TRANS,'T')
148 1 equemene
      NOUNIT = LSAME(DIAG,'N')
149 1 equemene
*
150 1 equemene
*     Set up the start point in X if the increment is not unity. This
151 1 equemene
*     will be  ( N - 1 )*INCX  too small for descending loops.
152 1 equemene
*
153 1 equemene
      IF (INCX.LE.0) THEN
154 1 equemene
          KX = 1 - (N-1)*INCX
155 1 equemene
      ELSE IF (INCX.NE.1) THEN
156 1 equemene
          KX = 1
157 1 equemene
      END IF
158 1 equemene
*
159 1 equemene
*     Start the operations. In this version the elements of A are
160 1 equemene
*     accessed sequentially with one pass through A.
161 1 equemene
*
162 1 equemene
      IF (LSAME(TRANS,'N')) THEN
163 1 equemene
*
164 1 equemene
*        Form  x := A*x.
165 1 equemene
*
166 1 equemene
          IF (LSAME(UPLO,'U')) THEN
167 1 equemene
              IF (INCX.EQ.1) THEN
168 1 equemene
                  DO 20 J = 1,N
169 1 equemene
                      IF (X(J).NE.ZERO) THEN
170 1 equemene
                          TEMP = X(J)
171 1 equemene
                          DO 10 I = 1,J - 1
172 1 equemene
                              X(I) = X(I) + TEMP*A(I,J)
173 1 equemene
   10                     CONTINUE
174 1 equemene
                          IF (NOUNIT) X(J) = X(J)*A(J,J)
175 1 equemene
                      END IF
176 1 equemene
   20             CONTINUE
177 1 equemene
              ELSE
178 1 equemene
                  JX = KX
179 1 equemene
                  DO 40 J = 1,N
180 1 equemene
                      IF (X(JX).NE.ZERO) THEN
181 1 equemene
                          TEMP = X(JX)
182 1 equemene
                          IX = KX
183 1 equemene
                          DO 30 I = 1,J - 1
184 1 equemene
                              X(IX) = X(IX) + TEMP*A(I,J)
185 1 equemene
                              IX = IX + INCX
186 1 equemene
   30                     CONTINUE
187 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)*A(J,J)
188 1 equemene
                      END IF
189 1 equemene
                      JX = JX + INCX
190 1 equemene
   40             CONTINUE
191 1 equemene
              END IF
192 1 equemene
          ELSE
193 1 equemene
              IF (INCX.EQ.1) THEN
194 1 equemene
                  DO 60 J = N,1,-1
195 1 equemene
                      IF (X(J).NE.ZERO) THEN
196 1 equemene
                          TEMP = X(J)
197 1 equemene
                          DO 50 I = N,J + 1,-1
198 1 equemene
                              X(I) = X(I) + TEMP*A(I,J)
199 1 equemene
   50                     CONTINUE
200 1 equemene
                          IF (NOUNIT) X(J) = X(J)*A(J,J)
201 1 equemene
                      END IF
202 1 equemene
   60             CONTINUE
203 1 equemene
              ELSE
204 1 equemene
                  KX = KX + (N-1)*INCX
205 1 equemene
                  JX = KX
206 1 equemene
                  DO 80 J = N,1,-1
207 1 equemene
                      IF (X(JX).NE.ZERO) THEN
208 1 equemene
                          TEMP = X(JX)
209 1 equemene
                          IX = KX
210 1 equemene
                          DO 70 I = N,J + 1,-1
211 1 equemene
                              X(IX) = X(IX) + TEMP*A(I,J)
212 1 equemene
                              IX = IX - INCX
213 1 equemene
   70                     CONTINUE
214 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)*A(J,J)
215 1 equemene
                      END IF
216 1 equemene
                      JX = JX - INCX
217 1 equemene
   80             CONTINUE
218 1 equemene
              END IF
219 1 equemene
          END IF
220 1 equemene
      ELSE
221 1 equemene
*
222 1 equemene
*        Form  x := A'*x  or  x := conjg( A' )*x.
223 1 equemene
*
224 1 equemene
          IF (LSAME(UPLO,'U')) THEN
225 1 equemene
              IF (INCX.EQ.1) THEN
226 1 equemene
                  DO 110 J = N,1,-1
227 1 equemene
                      TEMP = X(J)
228 1 equemene
                      IF (NOCONJ) THEN
229 1 equemene
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
230 1 equemene
                          DO 90 I = J - 1,1,-1
231 1 equemene
                              TEMP = TEMP + A(I,J)*X(I)
232 1 equemene
   90                     CONTINUE
233 1 equemene
                      ELSE
234 1 equemene
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
235 1 equemene
                          DO 100 I = J - 1,1,-1
236 1 equemene
                              TEMP = TEMP + DCONJG(A(I,J))*X(I)
237 1 equemene
  100                     CONTINUE
238 1 equemene
                      END IF
239 1 equemene
                      X(J) = TEMP
240 1 equemene
  110             CONTINUE
241 1 equemene
              ELSE
242 1 equemene
                  JX = KX + (N-1)*INCX
243 1 equemene
                  DO 140 J = N,1,-1
244 1 equemene
                      TEMP = X(JX)
245 1 equemene
                      IX = JX
246 1 equemene
                      IF (NOCONJ) THEN
247 1 equemene
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
248 1 equemene
                          DO 120 I = J - 1,1,-1
249 1 equemene
                              IX = IX - INCX
250 1 equemene
                              TEMP = TEMP + A(I,J)*X(IX)
251 1 equemene
  120                     CONTINUE
252 1 equemene
                      ELSE
253 1 equemene
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
254 1 equemene
                          DO 130 I = J - 1,1,-1
255 1 equemene
                              IX = IX - INCX
256 1 equemene
                              TEMP = TEMP + DCONJG(A(I,J))*X(IX)
257 1 equemene
  130                     CONTINUE
258 1 equemene
                      END IF
259 1 equemene
                      X(JX) = TEMP
260 1 equemene
                      JX = JX - INCX
261 1 equemene
  140             CONTINUE
262 1 equemene
              END IF
263 1 equemene
          ELSE
264 1 equemene
              IF (INCX.EQ.1) THEN
265 1 equemene
                  DO 170 J = 1,N
266 1 equemene
                      TEMP = X(J)
267 1 equemene
                      IF (NOCONJ) THEN
268 1 equemene
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
269 1 equemene
                          DO 150 I = J + 1,N
270 1 equemene
                              TEMP = TEMP + A(I,J)*X(I)
271 1 equemene
  150                     CONTINUE
272 1 equemene
                      ELSE
273 1 equemene
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
274 1 equemene
                          DO 160 I = J + 1,N
275 1 equemene
                              TEMP = TEMP + DCONJG(A(I,J))*X(I)
276 1 equemene
  160                     CONTINUE
277 1 equemene
                      END IF
278 1 equemene
                      X(J) = TEMP
279 1 equemene
  170             CONTINUE
280 1 equemene
              ELSE
281 1 equemene
                  JX = KX
282 1 equemene
                  DO 200 J = 1,N
283 1 equemene
                      TEMP = X(JX)
284 1 equemene
                      IX = JX
285 1 equemene
                      IF (NOCONJ) THEN
286 1 equemene
                          IF (NOUNIT) TEMP = TEMP*A(J,J)
287 1 equemene
                          DO 180 I = J + 1,N
288 1 equemene
                              IX = IX + INCX
289 1 equemene
                              TEMP = TEMP + A(I,J)*X(IX)
290 1 equemene
  180                     CONTINUE
291 1 equemene
                      ELSE
292 1 equemene
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
293 1 equemene
                          DO 190 I = J + 1,N
294 1 equemene
                              IX = IX + INCX
295 1 equemene
                              TEMP = TEMP + DCONJG(A(I,J))*X(IX)
296 1 equemene
  190                     CONTINUE
297 1 equemene
                      END IF
298 1 equemene
                      X(JX) = TEMP
299 1 equemene
                      JX = JX + INCX
300 1 equemene
  200             CONTINUE
301 1 equemene
              END IF
302 1 equemene
          END IF
303 1 equemene
      END IF
304 1 equemene
*
305 1 equemene
      RETURN
306 1 equemene
*
307 1 equemene
*     End of ZTRMV .
308 1 equemene
*
309 1 equemene
      END