Statistiques
| Branche: | Révision :

root / doc / sphinx_doc / build / text / ref.txt @ dadb6a4d

Historique | Voir | Annoter | Télécharger (32,9 ko)

1

    
2
References
3
**********
4

    
5

    
6
Python Reference
7
================
8

    
9
configurator.CSV_SAMPLE_FILE = None
10

    
11
   Path to cvs file that contains sample information.
12

    
13
configurator.BOWTIE_BUILD_BIN = None
14

    
15
   Path for bowtie2 build bin.
16

    
17
configurator.BOWTIE2_BIN = None
18

    
19
   Path for bowtie2 bin.
20

    
21
configurator.SAMTOOLS_BIN = None
22

    
23
   Path for samtools bin.
24

    
25
configurator.BEDTOOLS_BIN = None
26

    
27
   Path for bedtools bin.
28

    
29
configurator.TF_BIN = None
30

    
31
   Path for TemplateFilter bin.
32

    
33
configurator.TF_TEMPLATES_FILE = None
34

    
35
   Path for TemplateFilter templates file.
36

    
37
configurator.ILLUMINA_OUTPUTFILE_PREFIX = None
38

    
39
   Prefix for Illumina fastq output files.
40

    
41
configurator.INDEX_DIR = None
42

    
43
   Path for index dir.
44

    
45
configurator.ALIGN_DIR = None
46

    
47
   Path for align dir.
48

    
49
configurator.LOG_DIR = None
50

    
51
   Path for log dir
52

    
53
configurator.CACHE_DIR = None
54

    
55
   Path for cache dir.
56

    
57
configurator.RESULTS_DIR = None
58

    
59
   Path for results dir
60

    
61
configurator.FASTA_REFERENCE_GENOME_FILES = None
62

    
63
   Dictionary where each fasta reference genomes is indexed by
64
   reference strain that it corresponds.
65

    
66
configurator.AREA_BLACK_LIST = None
67

    
68
   Dictionary where keys are strain and values are black listed of
69
   geneome region.
70

    
71
configurator.FASTA_INDEXES = None
72

    
73
   Dictionary of strain that indexes dictionaries where keys are
74
   chromosome reference from Fastq file and value are its
75
   correspondance for Templatefilter.
76

    
77
configurator.C2C_FILES = None
78

    
79
   Dictionary where each strain combination indexes genome aligment.
80

    
81
configurator.READ_LENGTH = None
82

    
83
   Length of Illumina reads.
84

    
85
configurator.MAPQ_THRES = None
86

    
87
   Aligment quality thresold.
88

    
89
configurator.TF_CORR = None
90

    
91
   TemplateFilter Template correlation threshold.
92

    
93
configurator.TF_MINW = None
94

    
95
   TemplateFilter minimum width of a nucleosome.
96

    
97
configurator.TF_MAXW = None
98

    
99
   TemplateFilter maximum  width of a nucleosome.
100

    
101
configurator.TF_OL = None
102

    
103
   TemplateFilter maximum allowed overlap for two nucleosomes.
104

    
105
wf.json_conf_file = 'src/current/nucleominer_config.json'
106

    
107
   Path to the json configuration file.
108

    
109
wf.samples = []
110

    
111
   List of samples where a sample is identify by an id (key: *id*) and
112
   a strain name (key *strain*).
113

    
114
wf.samples_mnase = []
115

    
116
   List of Mnase samples.
117

    
118
wf.strains = []
119

    
120
   List of reference strains.
121

    
122
libcoverage.create_bowtie_index(strain, strain_fasta_ref, index_dir, bowtie_build_bin)
123

    
124
   Creates bowtie index for a strain *strain*.
125

    
126
   Parameters:
127
      * **strain** -- the strain reference.
128

    
129
      * **strain_fasta_ref** -- fasta reference genome.
130

    
131
      * **index_dir** -- directories where to put bowtie index.
132

    
133
      * **bowtie_build_bin** -- bowtie2 build binary.
134

    
135
libcoverage.align_reads(sample, align_dir, log_dir, index_dir, illumina_outputfile_prefix, bowtie2_bin, samtools_bin, bedtools_bin)
136

    
137
   Aligns reads to reference genomes. It produces .sam files, that are
138
   converted to .bam, that are converted to .bed.
139

    
140
   Parameters:
141
      * **sample** -- a dict that describe a sample.
142

    
143
      * **align_dir** -- directory where aligned reads will be
144
        stored.
145

    
146
      * **log_dir** -- directory where logs will be stored.
147

    
148
      * **illumina_outputfile_prefix** -- prefix of Illumina
149
        sequencer fastq.gz output files.
150

    
151
      * **bowtie2_bin** -- bowtie2 binary.
152

    
153
      * **samtools_bin** -- samtools binary.
154

    
155
      * **bedtools_bin** -- bedtools binary.
156

    
157
      * **index_dir** -- bowtie index directory.
158

    
159
libcoverage.split_fr_4_TF(sample, align_dir, fasta_indexes, area_black_list, read_length, mapq_thres)
160

    
161
   Create TempleFilter input files form bed files. This function
162
   appends in two times. First, it collects reads from bed files and
163
   feeds a datastructure
164

    
165
   Parameters:
166
      * **sample** -- a dict that describe a sample.
167

    
168
      * **align_dir** -- directory where aligned reads will be
169
        stored.
170

    
171
      * **fasta_index** -- the chr reference from the illumina
172
        output file.
173

    
174
      * **area_black_list** -- the description of genome that will
175
        be omit.
176

    
177
      * **read_length** -- Length of Illumina reads.
178

    
179
      * **mapq_thres** -- mapping quality criterion threshold, see
180
        MAPQ in BED/BAM file format.
181

    
182
libcoverage.template_filter(sample, align_dir, log_dir, tf_bin, tf_templates_file, corr, minw, maxw, ol)
183

    
184
   Run TemplateFilter on a specifi sample. It produces .tab file.
185

    
186
   Parameters:
187
      * **sample** -- a dict that describe a sample.
188

    
189
      * **align_dir** -- directory where aligned reads will be
190
        stored.
191

    
192
      * **log_dir** -- directory where logs will be stored.
193

    
194
      * **tf_bin** -- path to the TemplateFilter binary.
195

    
196
      * **tf_templates_file** -- path to the TemplateFilter
197
        templates file.
198

    
199
      * **corr** -- correlation threshold transmits to
200
        TemplateFilter.
201

    
202
      * **minw** -- minimum width of a nuc, transmits to
203
        TemplateFilter.
204

    
205
      * **maxw** -- maximum width of a nuc, transmits to
206
        TemplateFilter.
207

    
208
      * **ol** -- maximum overlaps for 2 nuc, transmits to
209
        TemplateFilter.
210

    
211

    
212
R Reference
213
===========
214

    
215

    
216
Arabic to Roman pair list.
217
--------------------------
218

    
219

    
220
Description
221
~~~~~~~~~~~
222

    
223
Util to convert Arabicto Roman
224

    
225

    
226
Usage
227
~~~~~
228

    
229
   ARAB2ROM()
230

    
231

    
232
Author(s)
233
~~~~~~~~~
234

    
235
Florent Chuffart
236

    
237
R: False Discovery Rate
238

    
239

    
240
False Discovery Rate
241
--------------------
242

    
243

    
244
Description
245
~~~~~~~~~~~
246

    
247
From a vector x of independent p-values, extract the cutoff
248
corresponding to the specified FDR. See Benjamini & Hochberg 1995
249
paper
250

    
251

    
252
Usage
253
~~~~~
254

    
255
   FDR(x, FDR)
256

    
257

    
258
Arguments
259
~~~~~~~~~
260

    
261
"x"
262

    
263
A vector x of independent p-values.
264

    
265
"FDR"
266

    
267
The specified FDR.
268

    
269

    
270
Value
271
~~~~~
272

    
273
Return the the corresponding cutoff.
274

    
275

    
276
Author(s)
277
~~~~~~~~~
278

    
279
Gael Yvert, Florent Chuffart
280

    
281

    
282
Examples
283
~~~~~~~~
284

    
285
   print("example")
286

    
287
R: Roman to Arabic pair list.
288

    
289

    
290
Roman to Arabic pair list.
291
--------------------------
292

    
293

    
294
Description
295
~~~~~~~~~~~
296

    
297
Util to convert Roman to Arabic
298

    
299

    
300
Usage
301
~~~~~
302

    
303
   ROM2ARAB()
304

    
305

    
306
Author(s)
307
~~~~~~~~~
308

    
309
Florent Chuffart
310

    
311
R: Aggregate replicated sample's nucleosomes.
312

    
313

    
314
Aggregate replicated sample's nucleosomes.
315
------------------------------------------
316

    
317

    
318
Description
319
~~~~~~~~~~~
320

    
321
This function aggregates nucleosome for replicated samples. It uses
322
TemplateFilter ouput of each sample as replicate. Each sample owns a
323
set of nucleosomes computed using TemplateFilter and ordered by the
324
position of their center. Adajacent nucleosomes are compared two by
325
two. Comparison is based on a log likelihood ratio score. The issue of
326
comparison is adjacents nucleosomes merge or separation. Finally the
327
function returns a list of clusters and all computed *llr_scores*.
328
Each cluster ows an attribute *wp* for "well positionned". This
329
attribute is set as *TRUE* if the cluster is composed of exactly one
330
nucleosomes of each sample.
331

    
332

    
333
Usage
334
~~~~~
335

    
336
   aggregate_intra_strain_nucs(samples, llr_thres = 20, coord_max = 2e+07)
337

    
338

    
339
Arguments
340
~~~~~~~~~
341

    
342
"samples"
343

    
344
A list of samples. Each sample is a list like *sample = list(id=...,
345
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi =
346
list(name=..., begin=..., end=..., chr=..., genome=...)*.
347

    
348
"llr_thres"
349

    
350
Log likelihood ration threshold.
351

    
352
"coord_max"
353

    
354
A too big value to be a coord for a nucleosome lower bound.
355

    
356

    
357
Value
358
~~~~~
359

    
360
Returns a list of clusterized nucleosomes, and all computed llr
361
scores.
362

    
363

    
364
Author(s)
365
~~~~~~~~~
366

    
367
Florent Chuffart
368

    
369

    
370
Examples
371
~~~~~~~~
372

    
373
   # Dealing with a region of interest
374
   roi =list(name="example", begin=1000,  end=1300, chr="1", genome=rep("A",301))
375
   samples = list()
376
   for (i in 1:3) {
377
       # Create TF output
378
       tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
379
       outputs = dfadd(NULL,tf_nuc)
380
       outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end)
381
       # Generate corresponding reads
382
       nb_reads = round(runif(1,170,230))
383
       reads = round(rnorm(nb_reads, tf_nuc$center,20))
384
       u_reads = sort(unique(reads))
385
       strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
386
       counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
387
       shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
388
       u_reads = u_reads + shifts
389
       inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)),
390
                                "V2" = u_reads,
391
                                                        "V3" = strands,
392
                                                        "V4" = counts), stringsAsFactors=FALSE)
393
       samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
394
   }
395
   print(aggregate_intra_strain_nucs(samples))
396

    
397
R: Aligns nucleosomes between 2 strains.
398

    
399

    
400
Aligns nucleosomes between 2 strains.
401
-------------------------------------
402

    
403

    
404
Description
405
~~~~~~~~~~~
406

    
407
This function aligns nucs between two strains for a given genome
408
region.
409

    
410

    
411
Usage
412
~~~~~
413

    
414
   align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL,
415
       wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, llr_thres = 100,
416
       config = NULL, ...)
417

    
418

    
419
Arguments
420
~~~~~~~~~
421

    
422
"replicates"
423

    
424
Set of replicates, ideally 3 per strain.
425

    
426
"wp_nucs_strain_ref1"
427

    
428
List of aggregates nucleosome for strain 1. If it's null this list
429
will be computed.
430

    
431
"wp_nucs_strain_ref2"
432

    
433
List of aggregates nucleosome for strain 2. If it's null this list
434
will be computed.
435

    
436
"corr_thres"
437

    
438
Correlation threshold.
439

    
440
"llr_thres"
441

    
442
LOD cut off.
443

    
444
"config"
445

    
446
GLOBAL config variable
447

    
448
"..."
449

    
450
A list of parameters that will be passed to
451
*aggregate_intra_strain_nucs* if needed.
452

    
453

    
454
Value
455
~~~~~
456

    
457
Returns a list of clusterized nucleosomes, and all computed llr
458
scores.
459

    
460

    
461
Author(s)
462
~~~~~~~~~
463

    
464
Florent Chuffart
465

    
466

    
467
Examples
468
~~~~~~~~
469

    
470
       # Define new translate_cur function...
471
       translate_cur = function(roi, strain2, big_cur=NULL, config=NULL) {
472
         return(roi)
473
       }
474
       # Binding it by uncomment follwing lines.
475
       unlockBinding("translate_cur", as.environment("package:nucleominer"))
476
       unlockBinding("translate_cur", getNamespace("nucleominer"))
477
       assign("translate_cur", translate_cur, "package:nucleominer")
478
       assign("translate_cur", translate_cur, getNamespace("nucleominer"))
479
       lockBinding("translate_cur", getNamespace("nucleominer"))
480
       lockBinding("translate_cur", as.environment("package:nucleominer"))
481

    
482
   # Dealing with a region of interest
483
   roi =list(name="example", begin=1000,  end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1")
484
   roi2 = translate_cur(roi, roi$strain_ref1)
485
   replicates = list()
486
   for (j in 1:2) {
487
       samples = list()
488
       for (i in 1:3) {
489
           # Create TF output
490
           tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
491
           outputs = dfadd(NULL,tf_nuc)
492
           outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end)
493
           # Generate corresponding reads
494
           nb_reads = round(runif(1,170,230))
495
           reads = round(rnorm(nb_reads, tf_nuc$center,20))
496
           u_reads = sort(unique(reads))
497
           strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
498
           counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
499
           shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
500
           u_reads = u_reads + shifts
501
           inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)),
502
                                    "V2" = u_reads,
503
                                                            "V3" = strands,
504
                                                            "V4" = counts), stringsAsFactors=FALSE)
505
           samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
506
       }
507
       replicates[[length(replicates) + 1]] = samples
508
   }
509
   print(align_inter_strain_nucs(replicates))
510

    
511
R: Launch deseq methods.
512

    
513

    
514
Launch deseq methods.
515
---------------------
516

    
517

    
518
Description
519
~~~~~~~~~~~
520

    
521
This function is based on deseq example. It mormalizes data, fit data
522
to GLM model with and without interaction term and compare the two
523
l;=models.
524

    
525

    
526
Usage
527
~~~~~
528

    
529
   analyse_design(snep_design, reads)
530

    
531

    
532
Arguments
533
~~~~~~~~~
534

    
535
"snep_design"
536

    
537
The design to considere.
538

    
539
"reads"
540

    
541
The data to considere.
542

    
543

    
544
Author(s)
545
~~~~~~~~~
546

    
547
Florent Chuffart
548

    
549
R: Stage replicates data
550

    
551

    
552
Stage replicates data
553
---------------------
554

    
555

    
556
Description
557
~~~~~~~~~~~
558

    
559
This function loads in memory data corresponding to the given
560
experiments.
561

    
562

    
563
Usage
564
~~~~~
565

    
566
   build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE,
567
       all_samples, config = NULL)
568

    
569

    
570
Arguments
571
~~~~~~~~~
572

    
573
"expe"
574

    
575
a list of vector corresponding to vector of replicates.
576

    
577
"roi"
578

    
579
the region that we are interested in.
580

    
581
"only_fetch"
582

    
583
filter or not inputs.
584

    
585
"get_genome"
586

    
587
Load or not corresponding genome.
588

    
589
"all_samples"
590

    
591
Global list of samples.
592

    
593
"config"
594

    
595
GLOBAL config variable.
596

    
597

    
598
Author(s)
599
~~~~~~~~~
600

    
601
Florent Chuffart
602

    
603

    
604
Examples
605
~~~~~~~~
606

    
607
   # library(rjson)
608
   # library(nucleominer)
609
   #
610
   # # Read config file
611
   # json_conf_file = "nucleo_miner_config.json"
612
   # config = fromJSON(paste(readLines(json_conf_file), collapse=""))
613
   # # Read sample file
614
   # all_samples = get_content(config$CSV_SAMPLE_FILE, "cvs", sep=";", head=TRUE, stringsAsFactors=FALSE)
615
   # # here are the sample ids in a list
616
   # expes = list(c(1))
617
   # # here is the region that we wnt to see the coverage
618
   # cur = list(chr="8", begin=472000, end=474000, strain_ref="BY")
619
   # # it displays the corverage
620
   # replicates = build_replicates(expes, cur, all_samples=all_samples, config=config)
621
   # out = watch_samples(replicates, config$READ_LENGTH,
622
   #       plot_coverage = TRUE,
623
   #       plot_squared_reads = FALSE,
624
   #       plot_ref_genome = FALSE,
625
   #       plot_arrow_raw_reads = FALSE,
626
   #       plot_arrow_nuc_reads = FALSE,
627
   #       plot_gaussian_reads = FALSE,
628
   #       plot_gaussian_unified_reads = FALSE,
629
   #       plot_ellipse_nucs = FALSE,
630
   #       plot_wp_nucs = FALSE,
631
   #       plot_wp_nuc_model = FALSE,
632
   #       plot_common_nucs = FALSE,
633
   #       height = 50)
634

    
635
R: Extract a sub part of the corresponding c2c file
636

    
637

    
638
Extract a sub part of the corresponding c2c file
639
------------------------------------------------
640

    
641

    
642
Description
643
~~~~~~~~~~~
644

    
645
This fonction allow to acces to a specific part of the c2c file.
646

    
647

    
648
Usage
649
~~~~~
650

    
651
   c2c_extraction(strain1, strain2, chr = NULL, lower_bound = NULL,
652
       upper_bound = NULL, config = NULL)
653

    
654

    
655
Arguments
656
~~~~~~~~~
657

    
658
"strain1"
659

    
660
the key strain
661

    
662
"strain2"
663

    
664
the target strain
665

    
666
"chr"
667

    
668
if defined, the c2c will filtered according to the chromosome value
669

    
670
"lower_bound"
671

    
672
if defined, the c2c will filtered for part of the genome upper than
673
lower_bound
674

    
675
"upper_bound"
676

    
677
if defined, the c2c will filtered for part of the genome lower than
678
upper_bound
679

    
680
"config"
681

    
682
GLOBAL config variable
683

    
684

    
685
Author(s)
686
~~~~~~~~~
687

    
688
Florent Chuffart
689

    
690
R: reformat an "apply manipulated" list of regions
691

    
692

    
693
reformat an "apply manipulated" list of regions
694
-----------------------------------------------
695

    
696

    
697
Description
698
~~~~~~~~~~~
699

    
700
Utils to reformat an "apply manipulated" list of regions
701

    
702

    
703
Usage
704
~~~~~
705

    
706
   collapse_regions(regions)
707

    
708

    
709
Arguments
710
~~~~~~~~~
711

    
712
+-----------------+------+
713
+-----------------+------+
714

    
715

    
716
Author(s)
717
~~~~~~~~~
718

    
719
Florent Chuffart
720

    
721
R: Compute Common Uninterrupted Regions (CUR)
722

    
723

    
724
Compute Common Uninterrupted Regions (CUR)
725
------------------------------------------
726

    
727

    
728
Description
729
~~~~~~~~~~~
730

    
731
CURs are regions that can be aligned between the genomes
732

    
733

    
734
Usage
735
~~~~~
736

    
737
   compute_inter_all_strain_curs(diff_allowed = 30, min_cur_width = 4000,
738
       config = NULL)
739

    
740

    
741
Arguments
742
~~~~~~~~~
743

    
744
"diff_allowed"
745

    
746
the maximum indel width allowe din a CUR
747

    
748
"min_cur_width"
749

    
750
The minimum width of a CUR
751

    
752
"config"
753

    
754
GLOBAL config variable
755

    
756

    
757
Author(s)
758
~~~~~~~~~
759

    
760
Florent Chuffart
761

    
762
R: Crop bound of regions according to region of interest bound
763

    
764

    
765
Crop bound of regions according to region of interest bound
766
-----------------------------------------------------------
767

    
768

    
769
Description
770
~~~~~~~~~~~
771

    
772
The fucntion is no more necessary since we remove "big_cur" bug in
773
translate_cur function.
774

    
775

    
776
Usage
777
~~~~~
778

    
779
   crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL)
780

    
781

    
782
Arguments
783
~~~~~~~~~
784

    
785
"tmp_fuzzy_nucs"
786

    
787
the regiuons to be croped.
788

    
789
"roi"
790

    
791
The region of interest.
792

    
793
"strain"
794

    
795
The strain to consider.
796

    
797
"config"
798

    
799
GLOBAL config variable
800

    
801

    
802
Author(s)
803
~~~~~~~~~
804

    
805
Florent Chuffart
806

    
807
R: Adding list to a dataframe.
808

    
809

    
810
Adding list to a dataframe.
811
---------------------------
812

    
813

    
814
Description
815
~~~~~~~~~~~
816

    
817
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*.
818
Return the dataframe *df*.
819

    
820

    
821
Usage
822
~~~~~
823

    
824
   dfadd(df, l)
825

    
826

    
827
Arguments
828
~~~~~~~~~
829

    
830
"df"
831

    
832
A dataframe
833

    
834
"l"
835

    
836
A list
837

    
838

    
839
Value
840
~~~~~
841

    
842
Return the dataframe *df*.
843

    
844

    
845
Author(s)
846
~~~~~~~~~
847

    
848
Florent Chuffart
849

    
850

    
851
Examples
852
~~~~~~~~
853

    
854
   ## Here dataframe is NULL
855
   print(df)
856
   df = NULL
857

    
858
   # Initialize df
859
   df = dfadd(df, list(key1 = "value1", key2 = "value2"))
860
   print(df)
861

    
862
   # Adding elements to df
863
   df = dfadd(df, list(key1 = "value1'", key2 = "value2'"))
864
   print(df)
865

    
866
R: Prefetch data
867

    
868

    
869
Prefetch data
870
-------------
871

    
872

    
873
Description
874
~~~~~~~~~~~
875

    
876
Fetch and filter inputs and outpouts per region of interest. Organize
877
it per replicates.
878

    
879

    
880
Usage
881
~~~~~
882

    
883
   fetch_mnase_replicates(strain, roi, all_samples, config = NULL,
884
       only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE)
885

    
886

    
887
Arguments
888
~~~~~~~~~
889

    
890
"strain"
891

    
892
The strain we want mnase replicatesList of replicates. Each replicates
893
is a vector of sample ids.
894

    
895
"roi"
896

    
897
Region of interest.
898

    
899
"all_samples"
900

    
901
Global list of samples.
902

    
903
"config"
904

    
905
GLOBAL config variable
906

    
907
"only_fetch"
908

    
909
If TRUE, only fetch and not filtering. It is used tio load sample
910
files into memory before forking.
911

    
912
"get_genome"
913

    
914
If TRUE, load corresponding genome sequence.
915

    
916
"get_ouputs"
917

    
918
If TRUE, get also ouput corresponding TF output files.
919

    
920

    
921
Author(s)
922
~~~~~~~~~
923

    
924
Florent Chuffart
925

    
926
R: Filter TemplateFilter inputs
927

    
928

    
929
Filter TemplateFilter inputs
930
----------------------------
931

    
932

    
933
Description
934
~~~~~~~~~~~
935

    
936
This function filters TemplateFilter inputs according genome area
937
observed properties. It takes into account reads that are at the
938
frontier of this area and the strand of these reads.
939

    
940

    
941
Usage
942
~~~~~
943

    
944
   filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160,
945
       only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE)
946

    
947

    
948
Arguments
949
~~~~~~~~~
950

    
951
"inputs"
952

    
953
TF inputs to be filtered.
954

    
955
"chr"
956

    
957
Chromosome observed, here chr is an integer.
958

    
959
"x_min"
960

    
961
Coordinate of the first bp observed.
962

    
963
"x_max"
964

    
965
Coordinate of the last bp observed.
966

    
967
"nuc_width"
968

    
969
Nucleosome width.
970

    
971
"only_f"
972

    
973
Filter only F reads.
974

    
975
"only_r"
976

    
977
Filter only R reads.
978

    
979
"filter_for_coverage"
980

    
981
Does it filter for plot coverage?
982

    
983

    
984
Value
985
~~~~~
986

    
987
Returns filtred inputs.
988

    
989

    
990
Author(s)
991
~~~~~~~~~
992

    
993
Florent Chuffart
994

    
995
R: Filter TemplateFilter outputs
996

    
997

    
998
Filter TemplateFilter outputs
999
-----------------------------
1000

    
1001

    
1002
Description
1003
~~~~~~~~~~~
1004

    
1005
This function filters TemplateFilter outputs according, not only
1006
genome area observerved properties, but also correlation and
1007
overlapping threshold.
1008

    
1009

    
1010
Usage
1011
~~~~~
1012

    
1013
   filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160,
1014
       ol_bp = 59, corr_thres = 0.5)
1015

    
1016

    
1017
Arguments
1018
~~~~~~~~~
1019

    
1020
"tf_outputs"
1021

    
1022
TemplateFilter outputs.
1023

    
1024
"chr"
1025

    
1026
Chromosome observed, here chr is an integer.
1027

    
1028
"x_min"
1029

    
1030
Coordinate of the first bp observed.
1031

    
1032
"x_max"
1033

    
1034
Coordinate of the last bp observed.
1035

    
1036
"nuc_width"
1037

    
1038
Nucleosome width.
1039

    
1040
"ol_bp"
1041

    
1042
Overlap Threshold.
1043

    
1044
"corr_thres"
1045

    
1046
Correlation threshold.
1047

    
1048

    
1049
Value
1050
~~~~~
1051

    
1052
Returns filtered TemplateFilter Outputs
1053

    
1054

    
1055
Author(s)
1056
~~~~~~~~~
1057

    
1058
Florent Chuffart
1059

    
1060
R: to flat aggregate_intra_strain_nucs function output
1061

    
1062

    
1063
to flat aggregate_intra_strain_nucs function output
1064
---------------------------------------------------
1065

    
1066

    
1067
Description
1068
~~~~~~~~~~~
1069

    
1070
This function builds a dataframe of all clusters obtain from
1071
aggregate_intra_strain_nucs function.
1072

    
1073

    
1074
Usage
1075
~~~~~
1076

    
1077
   flat_aggregated_intra_strain_nucs(partial_strain_maps, cur_index)
1078

    
1079

    
1080
Arguments
1081
~~~~~~~~~
1082

    
1083
"partial_strain_maps"
1084

    
1085
the output of aggregate_intra_strain_nucs function
1086

    
1087
"cur_index"
1088

    
1089
the index of the roi involved
1090

    
1091

    
1092
Value
1093
~~~~~
1094

    
1095
Returns a dataframe of all clusters obtain from
1096
aggregate_intra_strain_nucs function.
1097

    
1098

    
1099
Author(s)
1100
~~~~~~~~~
1101

    
1102
Florent Chuffart
1103

    
1104
R: flat reads
1105

    
1106

    
1107
flat reads
1108
----------
1109

    
1110

    
1111
Description
1112
~~~~~~~~~~~
1113

    
1114
Extract reads coordinates from TempleteFilter input sequence
1115

    
1116

    
1117
Usage
1118
~~~~~
1119

    
1120
   flat_reads(reads, nuc_width)
1121

    
1122

    
1123
Arguments
1124
~~~~~~~~~
1125

    
1126
"reads"
1127

    
1128
TemplateFilter input reads
1129

    
1130
"nuc_width"
1131

    
1132
Width used to shift F and R reads.
1133

    
1134

    
1135
Value
1136
~~~~~
1137

    
1138
Returns a list of F reads, R reads and joint/shifted F and R reads.
1139

    
1140

    
1141
Author(s)
1142
~~~~~~~~~
1143

    
1144
Florent Chuffart
1145

    
1146
R: Retrieve Reads
1147

    
1148

    
1149
Retrieve Reads
1150
--------------
1151

    
1152

    
1153
Description
1154
~~~~~~~~~~~
1155

    
1156
Retrieve reads for a given marker, combi, form.
1157

    
1158

    
1159
Usage
1160
~~~~~
1161

    
1162
   get_all_reads(marker, combi, form = "wp", config = NULL)
1163

    
1164

    
1165
Arguments
1166
~~~~~~~~~
1167

    
1168
"marker"
1169

    
1170
The marker to considere.
1171

    
1172
"combi"
1173

    
1174
The starin combination to considere.
1175

    
1176
"form"
1177

    
1178
The nuc form to considere.
1179

    
1180
"config"
1181

    
1182
GLOBAL config variable
1183

    
1184

    
1185
Author(s)
1186
~~~~~~~~~
1187

    
1188
Florent Chuffart
1189

    
1190
R: get comp strand
1191

    
1192

    
1193
get comp strand
1194
---------------
1195

    
1196

    
1197
Description
1198
~~~~~~~~~~~
1199

    
1200
Compute the complementatry strand.
1201

    
1202

    
1203
Usage
1204
~~~~~
1205

    
1206
   get_comp_strand(strand)
1207

    
1208

    
1209
Arguments
1210
~~~~~~~~~
1211

    
1212
"strand"
1213

    
1214
The original strand.
1215

    
1216

    
1217
Value
1218
~~~~~
1219

    
1220
Returns the complementatry strand.
1221

    
1222

    
1223
Author(s)
1224
~~~~~~~~~
1225

    
1226
Florent Chuffart
1227

    
1228
R: Build the design for deseq
1229

    
1230

    
1231
Build the design for deseq
1232
--------------------------
1233

    
1234

    
1235
Description
1236
~~~~~~~~~~~
1237

    
1238
This function build the design according sample properties.
1239

    
1240

    
1241
Usage
1242
~~~~~
1243

    
1244
   get_design(marker, combi, all_samples)
1245

    
1246

    
1247
Arguments
1248
~~~~~~~~~
1249

    
1250
"marker"
1251

    
1252
The marker to considere.
1253

    
1254
"combi"
1255

    
1256
The starin combination to considere.
1257

    
1258
"all_samples"
1259

    
1260
Global list of samples.
1261

    
1262

    
1263
Author(s)
1264
~~~~~~~~~
1265

    
1266
Florent Chuffart
1267

    
1268
R: Compute the fuzzy list for a given strain.
1269

    
1270

    
1271
Compute the fuzzy list for a given strain.
1272
------------------------------------------
1273

    
1274

    
1275
Description
1276
~~~~~~~~~~~
1277

    
1278
This function grabs the nucleosomes detxted by template_filter that
1279
have been rejected bt aggregate_intra_strain_nucs as well positions.
1280

    
1281

    
1282
Usage
1283
~~~~~
1284

    
1285
   get_intra_strain_fuzzy(wp_map, roi, strain, config = NULL)
1286

    
1287

    
1288
Arguments
1289
~~~~~~~~~
1290

    
1291
"wp_map"
1292

    
1293
Well positionned nucleosomes map.
1294

    
1295
"roi"
1296

    
1297
The region of interest.
1298

    
1299
"strain"
1300

    
1301
The strain we want to extracvt the fuzzy map.
1302

    
1303
"config"
1304

    
1305
GLOBAL config variable.
1306

    
1307

    
1308
Author(s)
1309
~~~~~~~~~
1310

    
1311
Florent Chuffart
1312

    
1313
R: Compute the list of SNEPs for a given set of marker, strain...
1314

    
1315

    
1316
Compute the list of SNEPs for a given set of marker, strain combination and nuc form.
1317
-------------------------------------------------------------------------------------
1318

    
1319

    
1320
Description
1321
~~~~~~~~~~~
1322

    
1323
This function uses
1324

    
1325

    
1326
Usage
1327
~~~~~
1328

    
1329
   get_sneps(marker, combi, form, all_samples, config = NULL)
1330

    
1331

    
1332
Arguments
1333
~~~~~~~~~
1334

    
1335
"marker"
1336

    
1337
The marker involved.
1338

    
1339
"combi"
1340

    
1341
The strain combination involved.
1342

    
1343
"form"
1344

    
1345
the nuc form involved.
1346

    
1347
"all_samples"
1348

    
1349
Global list of samples.
1350

    
1351
"config"
1352

    
1353
GLOBAL config variable
1354

    
1355

    
1356
Author(s)
1357
~~~~~~~~~
1358

    
1359
Florent Chuffart
1360

    
1361

    
1362
Examples
1363
~~~~~~~~
1364

    
1365
   marker = "H3K4me1"
1366
   combi = c("BY", "YJM")
1367
   form = "wpunr" # "wp" | "unr" | "wpunr"
1368
   # foo = get_sneps(marker, combi, form)
1369
   # foo = get_sneps("H4K12ac", c("BY", "RM"), "wp")
1370

    
1371
R: Compute the unaligned nucleosomal regions (UNRs).
1372

    
1373

    
1374
Compute the unaligned nucleosomal regions (UNRs).
1375
-------------------------------------------------
1376

    
1377

    
1378
Description
1379
~~~~~~~~~~~
1380

    
1381
This function aggregate non common wp nucs for each strain and
1382
substract common wp nucs. It does not take care about the size of the
1383
resulting UNR. It will be take into account in the count read part og
1384
the pipeline.
1385

    
1386

    
1387
Usage
1388
~~~~~
1389

    
1390
   get_unrs(combi, roi, cur_index, wp_maps, fuzzy_maps, common_nuc_results,
1391
       config = NULL)
1392

    
1393

    
1394
Arguments
1395
~~~~~~~~~
1396

    
1397
"combi"
1398

    
1399
The strain combination to consider.
1400

    
1401
"roi"
1402

    
1403
The region of interest.
1404

    
1405
"cur_index"
1406

    
1407
The region of interest index.
1408

    
1409
"wp_maps"
1410

    
1411
Well positionned nucleosomes maps.
1412

    
1413
"fuzzy_maps"
1414

    
1415
Fuzzy nucleosomes maps.
1416

    
1417
"common_nuc_results"
1418

    
1419
Common wp nuc maps
1420

    
1421
"config"
1422

    
1423
GLOBAL config variable
1424

    
1425

    
1426
Author(s)
1427
~~~~~~~~~
1428

    
1429
Florent Chuffart
1430

    
1431
R: Returns the intersection of 2 list on regions.
1432

    
1433

    
1434
Returns the intersection of 2 list on regions.
1435
----------------------------------------------
1436

    
1437

    
1438
Description
1439
~~~~~~~~~~~
1440

    
1441
This function...
1442

    
1443

    
1444
Usage
1445
~~~~~
1446

    
1447
   intersect_region(region1, region2)
1448

    
1449

    
1450
Arguments
1451
~~~~~~~~~
1452

    
1453
"region1"
1454

    
1455
Original regions.
1456

    
1457
"region2"
1458

    
1459
Regions to intersect.
1460

    
1461

    
1462
Author(s)
1463
~~~~~~~~~
1464

    
1465
Florent Chuffart
1466

    
1467
R: Likelihood ratio
1468

    
1469

    
1470
Likelihood ratio
1471
----------------
1472

    
1473

    
1474
Description
1475
~~~~~~~~~~~
1476

    
1477
Compute the log likelihood ratio of two or more set of value.
1478

    
1479

    
1480
Usage
1481
~~~~~
1482

    
1483
   llr_score_nvecs(xs)
1484

    
1485

    
1486
Arguments
1487
~~~~~~~~~
1488

    
1489
"xs"
1490

    
1491
list of vectors.
1492

    
1493

    
1494
Value
1495
~~~~~
1496

    
1497
Returns the log likelihood ratio.
1498

    
1499

    
1500
Author(s)
1501
~~~~~~~~~
1502

    
1503
Florent Chuffart
1504

    
1505

    
1506
Examples
1507
~~~~~~~~
1508

    
1509
   # LOD score for 2 set of values
1510
   mean1=5; sd1=2; card2 = 250
1511
   mean2=6; sd2=3; card1 = 200
1512
   x1 = rnorm(card1, mean1, sd1)
1513
   x2 = rnorm(card2, mean2, sd2)
1514
   min = floor(min(c(x1,x2)))
1515
   max = ceiling(max(c(x1,x2)))
1516
   hist(c(x1,x2), xlim=c(min, max), breaks=min:max)
1517
   lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2)
1518
   lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3)
1519
   lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4)
1520
   llr_score_nvecs(list(x1,x2))
1521

    
1522
R: nm
1523

    
1524

    
1525
nm
1526
--
1527

    
1528

    
1529
Description
1530
~~~~~~~~~~~
1531

    
1532
It provides a set of useful functions allowing to perform quantitative
1533
analysis of nucleosomal epigenome.
1534

    
1535

    
1536
Details
1537
~~~~~~~
1538

    
1539
+-----------------+-----------------------------------------------------+
1540
| Package:        | nucleominer                                         |
1541
+-----------------+-----------------------------------------------------+
1542
| Maintainer:     | Florent Chuffart <florent.chuffart@ens-lyon.fr>     |
1543
+-----------------+-----------------------------------------------------+
1544
| Author:         | Florent Chuffart                                    |
1545
+-----------------+-----------------------------------------------------+
1546
| Version:        | 2.3.45                                              |
1547
+-----------------+-----------------------------------------------------+
1548
| License:        | CeCILL                                              |
1549
+-----------------+-----------------------------------------------------+
1550
| Title:          | nm                                                  |
1551
+-----------------+-----------------------------------------------------+
1552
| Depends:        | seqinr, plotrix, DESeq, cachecache                  |
1553
+-----------------+-----------------------------------------------------+
1554

    
1555

    
1556
Author(s)
1557
~~~~~~~~~
1558

    
1559
Florent Chuffart
1560

    
1561
R: Plot the distribution of reads.
1562

    
1563

    
1564
Plot the distribution of reads.
1565
-------------------------------
1566

    
1567

    
1568
Description
1569
~~~~~~~~~~~
1570

    
1571
This fuxntion use the deseq nomalization feature to compare
1572
qualitatively the distribution.
1573

    
1574

    
1575
Usage
1576
~~~~~
1577

    
1578
   plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE)
1579

    
1580

    
1581
Arguments
1582
~~~~~~~~~
1583

    
1584
"strain"
1585

    
1586
The strain to considere.
1587

    
1588
"marker"
1589

    
1590
The marker to considere.
1591

    
1592
"res"
1593

    
1594
Data
1595

    
1596
"all_samples"
1597

    
1598
Global list of samples.
1599

    
1600
"NEWPLOT"
1601

    
1602
If FALSE the curve will be add to the current plot.
1603

    
1604

    
1605
Author(s)
1606
~~~~~~~~~
1607

    
1608
Florent Chuffart
1609

    
1610
R: sign from strand
1611

    
1612

    
1613
sign from strand
1614
----------------
1615

    
1616

    
1617
Description
1618
~~~~~~~~~~~
1619

    
1620
Get the sign of strand
1621

    
1622

    
1623
Usage
1624
~~~~~
1625

    
1626
   sign_from_strand(strands)
1627

    
1628

    
1629
Arguments
1630
~~~~~~~~~
1631

    
1632
+-----------------+------+
1633
+-----------------+------+
1634

    
1635

    
1636
Value
1637
~~~~~
1638

    
1639
If strand in forward then returns 1 else returns -1
1640

    
1641

    
1642
Author(s)
1643
~~~~~~~~~
1644

    
1645
Florent Chuffart
1646

    
1647
R: Substract to a list of regions an other list of regions that...
1648

    
1649

    
1650
Substract to a list of regions an other list of regions that intersect it.
1651
--------------------------------------------------------------------------
1652

    
1653

    
1654
Description
1655
~~~~~~~~~~~
1656

    
1657
This fucntion embed a recursive part. It occurs when a substracted
1658
region split an original region on two.
1659

    
1660

    
1661
Usage
1662
~~~~~
1663

    
1664
   substract_region(region1, region2)
1665

    
1666

    
1667
Arguments
1668
~~~~~~~~~
1669

    
1670
"region1"
1671

    
1672
Original regions.
1673

    
1674
"region2"
1675

    
1676
Regions to substract.
1677

    
1678

    
1679
Author(s)
1680
~~~~~~~~~
1681

    
1682
Florent Chuffart
1683

    
1684
R: Switch a pairlist
1685

    
1686

    
1687
Switch a pairlist
1688
-----------------
1689

    
1690

    
1691
Description
1692
~~~~~~~~~~~
1693

    
1694
Take a pairlist key:value and return the switched pairlist value:key.
1695

    
1696

    
1697
Usage
1698
~~~~~
1699

    
1700
   switch_pairlist(l)
1701

    
1702

    
1703
Arguments
1704
~~~~~~~~~
1705

    
1706
"l"
1707

    
1708
The pairlist to switch.
1709

    
1710

    
1711
Value
1712
~~~~~
1713

    
1714
The switched pairlist.
1715

    
1716

    
1717
Author(s)
1718
~~~~~~~~~
1719

    
1720
Florent Chuffart
1721

    
1722

    
1723
Examples
1724
~~~~~~~~
1725

    
1726
   l = list(key1 = "value1", key2 = "value2")
1727
   print(switch_pairlist(l))
1728

    
1729
R: Translate coords of a genome region.
1730

    
1731

    
1732
Translate coords of a genome region.
1733
------------------------------------
1734

    
1735

    
1736
Description
1737
~~~~~~~~~~~
1738

    
1739
This function is used in the examples, usualy you have to define your
1740
own translation function and overwrite this one using *unlockBinding*
1741
features. Please, refer to the example.
1742

    
1743

    
1744
Usage
1745
~~~~~
1746

    
1747
   translate_cur(roi, strain2, config = NULL, big_cur = NULL)
1748

    
1749

    
1750
Arguments
1751
~~~~~~~~~
1752

    
1753
"roi"
1754

    
1755
Original genome region of interest.
1756

    
1757
"strain2"
1758

    
1759
The strain in wich you want the genome region of interest.
1760

    
1761
"config"
1762

    
1763
GLOBAL config variable
1764

    
1765
"big_cur"
1766

    
1767
A largest region than roi use to filter c2c if it is needed.
1768

    
1769

    
1770
Author(s)
1771
~~~~~~~~~
1772

    
1773
Florent Chuffart
1774

    
1775

    
1776
Examples
1777
~~~~~~~~
1778

    
1779
   # Define new translate_cur function...
1780
   translate_cur = function(roi, strain2, config) {
1781
       strain1 = roi$strain_ref
1782
       if (strain1 == strain2) {
1783
           return(roi)
1784
       } else {
1785
         stop("Here is my new translate_cur function...")
1786
       }
1787
   }
1788
   # Binding it by uncomment follwing lines.
1789
   # unlockBinding("translate_cur", as.environment("package:nm"))
1790
   # unlockBinding("translate_cur", getNamespace("nm"))
1791
   # assign("translate_cur", translate_cur, "package:nm")
1792
   # assign("translate_cur", translate_cur, getNamespace("nm"))
1793
   # lockBinding("translate_cur", getNamespace("nm"))
1794
   # lockBinding("translate_cur", as.environment("package:nm"))
1795

    
1796
R: Translate a list of regions from a strain ref to another.
1797

    
1798

    
1799
Translate a list of regions from a strain ref to another.
1800
---------------------------------------------------------
1801

    
1802

    
1803
Description
1804
~~~~~~~~~~~
1805

    
1806
This function is an eloborated call to translate_cur.
1807

    
1808

    
1809
Usage
1810
~~~~~
1811

    
1812
   translate_regions(regions, combi, cur_index, config = NULL, roi)
1813

    
1814

    
1815
Arguments
1816
~~~~~~~~~
1817

    
1818
"regions"
1819

    
1820
Regions to be translated.
1821

    
1822
"combi"
1823

    
1824
Combination of strains.
1825

    
1826
"cur_index"
1827

    
1828
The region of interest index.
1829

    
1830
"config"
1831

    
1832
GLOBAL config variable
1833

    
1834
"roi"
1835

    
1836
The region of interest.
1837

    
1838

    
1839
Author(s)
1840
~~~~~~~~~
1841

    
1842
Florent Chuffart
1843

    
1844
R: Aggregate regions that intersect themnselves.
1845

    
1846

    
1847
Aggregate regions that intersect themnselves.
1848
---------------------------------------------
1849

    
1850

    
1851
Description
1852
~~~~~~~~~~~
1853

    
1854
This function is based on sort of lower bounds to detect regions that
1855
intersect. We compare lower bound and upper bound of the porevious
1856
item. This function embed a while loop and break break regions list
1857
become stable.
1858

    
1859

    
1860
Usage
1861
~~~~~
1862

    
1863
   union_regions(regions)
1864

    
1865

    
1866
Arguments
1867
~~~~~~~~~
1868

    
1869
"regions"
1870

    
1871
The Regions to be aggregated
1872

    
1873

    
1874
Author(s)
1875
~~~~~~~~~
1876

    
1877
Florent Chuffart
1878

    
1879
R: Watching analysis of samples
1880

    
1881

    
1882
Watching analysis of samples
1883
----------------------------
1884

    
1885

    
1886
Description
1887
~~~~~~~~~~~
1888

    
1889
This function allows to view analysis for a particuler region of the
1890
genome.
1891

    
1892

    
1893
Usage
1894
~~~~~
1895

    
1896
   watch_samples(replicates, read_length, plot_ref_genome = TRUE,
1897
       plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE,
1898
       plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE,
1899
       plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE,
1900
       change_col = TRUE, plot_wp_nucs = TRUE, plot_fuzzy_nucs = TRUE,
1901
       plot_wp_nuc_model = TRUE, plot_common_nucs = FALSE, plot_common_unrs = FALSE,
1902
       plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE, plot_sample_id = FALSE,
1903
       aggregated_intra_strain_nucs = NULL, aligned_inter_strain_nucs = NULL,
1904
       height = 10, main = NULL, xlab = NULL, ylab = "#reads (per million reads)",
1905
       config = NULL)
1906

    
1907

    
1908
Arguments
1909
~~~~~~~~~
1910

    
1911
"replicates"
1912

    
1913
replicates under the form...
1914

    
1915
"read_length"
1916

    
1917
length of the reads
1918

    
1919
"plot_ref_genome"
1920

    
1921
Plot (or not) reference genome.
1922

    
1923
"plot_arrow_raw_reads"
1924

    
1925
Plot (or not) arrows for raw reads.
1926

    
1927
"plot_arrow_nuc_reads"
1928

    
1929
Plot (or not) arrows for reads aasiocied to a nucleosome.
1930

    
1931
"plot_squared_reads"
1932

    
1933
Plot (or not) reads in the square fashion.
1934

    
1935
"plot_coverage"
1936

    
1937
Plot (or not) reads in the covergae fashion. fashion.
1938

    
1939
"plot_gaussian_reads"
1940

    
1941
Plot (or not) gaussian model of a F anf R reads.
1942

    
1943
"plot_gaussian_unified_reads"
1944

    
1945
Plot (or not) gaussian model of a nuc.
1946

    
1947
"plot_ellipse_nucs"
1948

    
1949
Plot (or not) ellipse for a nuc.
1950

    
1951
"change_col"
1952

    
1953
Change the color of each nucleosome.
1954

    
1955
"plot_wp_nucs"
1956

    
1957
Plot (or not) cluster of nucs
1958

    
1959
"plot_fuzzy_nucs"
1960

    
1961
Plot (or not) cluster of fuzzy
1962

    
1963
"plot_wp_nuc_model"
1964

    
1965
Plot (or not) gaussian model for a cluster of nucs
1966

    
1967
"plot_common_nucs"
1968

    
1969
Plot (or not) aligned reads.
1970

    
1971
"plot_common_unrs"
1972

    
1973
Plot (or not) unaligned nucleosomal refgions (UNRs).
1974

    
1975
"plot_wp_nucs_4_nonmnase"
1976

    
1977
Plot (or not) clusters for non inputs samples.
1978

    
1979
"plot_chain"
1980

    
1981
Plot (or not) clusterised nuceosomes between mnase samples.
1982

    
1983
"plot_sample_id"
1984

    
1985
Plot (or not) the sample id for each sample.
1986

    
1987
"aggregated_intra_strain_nucs"
1988

    
1989
list of aggregated intra strain nucs. If NULL, it will be computed.
1990

    
1991
"aligned_inter_strain_nucs"
1992

    
1993
list of aligned inter strain nucs. If NULL, it will be computed.
1994

    
1995
"height"
1996

    
1997
Number of reads in per million read for each sample, graphical
1998
parametre for the y axis.
1999

    
2000
"main"
2001

    
2002
main title of the produced plot
2003

    
2004
"xlab"
2005

    
2006
xlab of the produced plot
2007

    
2008
"ylab"
2009

    
2010
ylab of the produced plot
2011

    
2012
"config"
2013

    
2014
GLOBAL config variable
2015

    
2016

    
2017
Author(s)
2018
~~~~~~~~~
2019

    
2020
Florent Chuffart