Statistiques
| Révision :

root / CSL16 / appendix-preliminaries.tex @ 234

Historique | Voir | Annoter | Télécharger (1,65 ko)

1
\section{Proof of Thm.~\ref{thm:deduction}, Sect.~\ref{sect:preliminaries}}
2
\label{sect:app-preliminaries}
3

    
4
%Equality axioms:
5
%\[
6
% \begin{array}{rl}
7
%\refl & \forall x . x = x \\
8
%\symm & \forall x, y. (x = y \limp y = x )\\
9
%\trans & \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\
10
%\subst_f & \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) ) \\
11
%\subst_P & \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y)  )
12
% \end{array}
13
% \]
14

    
15
%\begin{theorem}[Theorem \ref{thm:deduction}]
16
%tt
17
%\end{theorem}
18
 
19
% \begin{proof}[Proof of Thm.~\ref{thm:deduction}]
20
Suppose $\theory \cup \{ A \}$ proves $B$ and let $\pi$ be a $\theory$-derivation with end-sequent $\seqar B$ and leaves $\seqar A$, i.e.:
21
\[
22
\vltreeder{\pi}{ \seqar B }{ \seqar A }{\vldots}{\seqar A}
23
\]
24

    
25
Then construct the following $\theory$-proof of $!A \limp B$,
26
\[
27
\vlderivation{
28
\vlin{\rigrul{\limp}}{}{\seqar !A \limp B}{
29
\vltr{!A, \pi }{ !A \seqar B }{
30
\vlin{\lefrul{!}}{}{!A \seqar A}{
31
\vlin{\id}{}{A\seqar A}{\vlhy{}}
32
}
33
}{ \vlhy{\vldots} }{
34
\vlin{\lefrul{!}}{}{!A \seqar A}{
35
\vlin{\id}{}{A\seqar A}{\vlhy{}}
36
}
37
}
38
}
39
}
40
\]
41
where $!A, \pi$ is obtained by appending $!A$ to the antecedent of each sequent in $\pi$, inserting left-contraction steps when necessary. Free variable conditions are satisfied since $A$ is closed (and so also $!A$) and side-conditions are satisfied since $!A$ is a $!$-formula.
42

    
43
For the other direction simply extend any $\theory$-proof of $!A \limp B$ as follows:
44
\[
45
\vlderivation{
46
\vliin{\cut}{}{ \seqar B }{
47
\vlin{\rigrul{!}}{}{\seqar !A }{\vlhy{\seqar A}}
48
}{
49
\vliq{ \inv{{\limp}} }{}{ !A \seqar B }{ \vlhy{\seqar !A \limp B }}
50
}
51
}
52
\]
53

    
54

    
55
% \end{proof}