root / CSL16 / appendix-preliminaries.tex @ 234
Historique | Voir | Annoter | Télécharger (1,65 ko)
1 | 113 | adas | \section{Proof of Thm.~\ref{thm:deduction}, Sect.~\ref{sect:preliminaries}} |
---|---|---|---|
2 | 108 | adas | \label{sect:app-preliminaries} |
3 | 108 | adas | |
4 | 113 | adas | %Equality axioms: |
5 | 113 | adas | %\[ |
6 | 113 | adas | % \begin{array}{rl} |
7 | 113 | adas | %\refl & \forall x . x = x \\ |
8 | 113 | adas | %\symm & \forall x, y. (x = y \limp y = x )\\ |
9 | 113 | adas | %\trans & \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\ |
10 | 113 | adas | %\subst_f & \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) ) \\ |
11 | 113 | adas | %\subst_P & \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y) ) |
12 | 113 | adas | % \end{array} |
13 | 113 | adas | % \] |
14 | 113 | adas | |
15 | 113 | adas | %\begin{theorem}[Theorem \ref{thm:deduction}] |
16 | 113 | adas | %tt |
17 | 113 | adas | %\end{theorem} |
18 | 113 | adas | |
19 | 113 | adas | % \begin{proof}[Proof of Thm.~\ref{thm:deduction}] |
20 | 113 | adas | Suppose $\theory \cup \{ A \}$ proves $B$ and let $\pi$ be a $\theory$-derivation with end-sequent $\seqar B$ and leaves $\seqar A$, i.e.: |
21 | 108 | adas | \[ |
22 | 113 | adas | \vltreeder{\pi}{ \seqar B }{ \seqar A }{\vldots}{\seqar A} |
23 | 113 | adas | \] |
24 | 113 | adas | |
25 | 113 | adas | Then construct the following $\theory$-proof of $!A \limp B$, |
26 | 113 | adas | \[ |
27 | 113 | adas | \vlderivation{ |
28 | 113 | adas | \vlin{\rigrul{\limp}}{}{\seqar !A \limp B}{ |
29 | 113 | adas | \vltr{!A, \pi }{ !A \seqar B }{ |
30 | 113 | adas | \vlin{\lefrul{!}}{}{!A \seqar A}{ |
31 | 113 | adas | \vlin{\id}{}{A\seqar A}{\vlhy{}} |
32 | 113 | adas | } |
33 | 113 | adas | }{ \vlhy{\vldots} }{ |
34 | 113 | adas | \vlin{\lefrul{!}}{}{!A \seqar A}{ |
35 | 113 | adas | \vlin{\id}{}{A\seqar A}{\vlhy{}} |
36 | 113 | adas | } |
37 | 113 | adas | } |
38 | 113 | adas | } |
39 | 113 | adas | } |
40 | 113 | adas | \] |
41 | 113 | adas | where $!A, \pi$ is obtained by appending $!A$ to the antecedent of each sequent in $\pi$, inserting left-contraction steps when necessary. Free variable conditions are satisfied since $A$ is closed (and so also $!A$) and side-conditions are satisfied since $!A$ is a $!$-formula. |
42 | 113 | adas | |
43 | 113 | adas | For the other direction simply extend any $\theory$-proof of $!A \limp B$ as follows: |
44 | 113 | adas | \[ |
45 | 113 | adas | \vlderivation{ |
46 | 113 | adas | \vliin{\cut}{}{ \seqar B }{ |
47 | 113 | adas | \vlin{\rigrul{!}}{}{\seqar !A }{\vlhy{\seqar A}} |
48 | 113 | adas | }{ |
49 | 113 | adas | \vliq{ \inv{{\limp}} }{}{ !A \seqar B }{ \vlhy{\seqar !A \limp B }} |
50 | 113 | adas | } |
51 | 113 | adas | } |
52 | 113 | adas | \] |
53 | 113 | adas | |
54 | 113 | adas | |
55 | 113 | adas | % \end{proof} |