Statistiques
| Révision :

root / CSL17 / completeness.tex @ 223

Historique | Voir | Annoter | Télécharger (595 octet)

1
\section{Completeness}\label{sect:completeness}
2

    
3
The main result of this section is the following:
4

    
5
\begin{theorem}
6
	\label{thm:completeness}
7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8
\end{theorem}
9

    
10
\todo{Add proof sketch. Cut and paste main proof to appendix.}
11

    
12

    
13

    
14

    
15

    
16

    
17

    
18

    
19

    
20

    
21

    
22

    
23

    
24

    
25

    
26

    
27

    
28

    
29

    
30

    
31

    
32