root / CSL17 / completeness.tex @ 223
Historique | Voir | Annoter | Télécharger (595 octet)
1 | 206 | pbaillot | \section{Completeness}\label{sect:completeness} |
---|---|---|---|
2 | 166 | adas | |
3 | 166 | adas | The main result of this section is the following: |
4 | 166 | adas | |
5 | 166 | adas | \begin{theorem} |
6 | 166 | adas | \label{thm:completeness} |
7 | 199 | pbaillot | For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$. |
8 | 168 | adas | \end{theorem} |
9 | 168 | adas | |
10 | 223 | adas | \todo{Add proof sketch. Cut and paste main proof to appendix.} |
11 | 168 | adas | |
12 | 168 | adas | |
13 | 168 | adas | |
14 | 168 | adas | |
15 | 198 | pbaillot | |
16 | 168 | adas | |
17 | 168 | adas | |
18 | 168 | adas | |
19 | 171 | adas | |
20 | 217 | pbaillot | |
21 | 168 | adas | |
22 | 168 | adas | |
23 | 195 | pbaillot | |
24 | 195 | pbaillot | |
25 | 168 | adas | |
26 | 197 | pbaillot | |
27 | 168 | adas | |
28 | 168 | adas | |
29 | 168 | adas | |
30 | 168 | adas | |
31 | 168 | adas |