Statistiques
| Révision :

root / CSL17 / completeness.tex @ 223

Historique | Voir | Annoter | Télécharger (595 octet)

1 206 pbaillot
\section{Completeness}\label{sect:completeness}
2 166 adas
3 166 adas
The main result of this section is the following:
4 166 adas
5 166 adas
\begin{theorem}
6 166 adas
	\label{thm:completeness}
7 199 pbaillot
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8 168 adas
\end{theorem}
9 168 adas
10 223 adas
\todo{Add proof sketch. Cut and paste main proof to appendix.}
11 168 adas
12 168 adas
13 168 adas
14 168 adas
15 198 pbaillot
16 168 adas
17 168 adas
18 168 adas
19 171 adas
20 217 pbaillot
21 168 adas
22 168 adas
23 195 pbaillot
24 195 pbaillot
25 168 adas
26 197 pbaillot
27 168 adas
28 168 adas
29 168 adas
30 168 adas
31 168 adas