Statistiques
| Révision :

root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 190

Historique | Voir | Annoter | Télécharger (9,06 ko)

1

    
2
%\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper}
3
\documentclass{beamer}
4
\usepackage{amsfonts,latexsym,amssymb, amsmath}
5
\usepackage{stmaryrd}
6
\usepackage{graphicx} 
7
\usepackage{eepic}
8
\usepackage[dvips]{epsfig}
9
%\usepackage{psfig}
10
%\input head.tex
11
\usepackage{proof,bussproofs}
12
%\usepackage{ desseins_s}
13

    
14

    
15
%\usepackage{microtype}%if unwanted, comment out or use option "draft"
16
%\usepackage[dvipsnames]{xcolor}
17

    
18
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
19

    
20
%\bibliographystyle{plainurl}% the recommended bibstyle
21

    
22
%\usepackage[lutzsyntax]{virginialake}
23
\input{ph-macros}
24

    
25

    
26

    
27
\setbeamercolor{block title}{bg=blue!10}
28
\setbeamercolor{block body}{bg=blue!10}
29
\definecolor{monred}{HTML}{9D0909}
30
%\definecolor{monbleu}{RVB}{0,0,1}
31
 \def\red#1{\color{red}{#1}}
32
 \def\blue#1{\color{blue}{#1}}
33
 \def\green#1{\color{green}{#1}}
34
\def\black{}
35
\def\BA#1{\color{red}{#1}}
36
 \def\ICC#1{\color{blue}{#1}}
37

    
38

    
39
%%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%%
40
%\def\un#1{\underline{#1}}
41
%\def\point#1{{\bf #1.}}
42
%%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}}
43
%\newcommand{\etq}[1]{\mbox{{\bf #1}}}
44
%\newcommand{\Rulone}[1]{%
45
%          \begin{center}
46
%           \makebox[12cm]{\hspace*{\fill}
47
%                 \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill}
48
%                }
49
%          \end{center}
50
%  }
51
%
52
%\newcommand{\centra}[1]{\begin{center} #1 \end{center}}
53
%
54
%\newcommand{\Rultwo}[2]{%
55
%          \begin{center}
56
%           \makebox[12cm]{
57
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt}
58
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}}
59
%                }
60
%          \end{center}
61
%  }
62
%\newcounter{ex}
63
%%\newtheorem{example}[ex]{Example}
64
%
65
%
66
%\def\para#1{\paragraph{#1}}
67
%\newtheorem{theo}{Theorem}
68
%\newtheorem{de}{Definition}
69
%\newtheorem{prop}[theo]{Proposition}
70
%\newtheorem{lem}[theo]{Lemma}
71
%\newtheorem{Cor}[theo]{Corollary}
72
%\newtheorem{remark}[theo]{Remark}
73
%\newcounter{pb}
74
%\newtheorem{problem}[pb]{Problem}
75
%\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$}
76

    
77
%---------------------
78
%% Definition of new colors
79
%\newrgbcolor{LemonChiffon}{1. 0.98 0.8}
80
%
81
%\newrgbcolor{LightBlue}{0.68 0.85 0.9}
82
%\newrgbcolor{Dgreen}{0  0.6 0.4}
83
%%\newrgbcolor{DBlue}{0  0 0.5}
84
%\newrgbcolor{DBlue}{0  0 0.6}
85
%\newrgbcolor{Dblue}{0  0 0.6}
86
%%----------------------
87
%%% MORE Color definitions
88
%\newrgbcolor{DarkGray}{.284 .210 .410}
89
%\newrgbcolor{Violet}{.2 .2  .9}
90

    
91
%---------------------
92

    
93
\mode<presentation>
94
{
95
  \usetheme{Warsaw}
96
  % or ...
97

    
98
  \setbeamercovered{transparent}
99
  % or whatever (possibly just delete it)
100
}
101

    
102

    
103
\title{Towards an Unbounded Implicit Arithmetic for\\
104
the Polynomial Hierarchy
105
}
106

    
107
\author{Patrick Baillot and Anupam Das}
108
\institute{CNRS / ENS Lyon}
109

    
110

    
111
\begin{document}
112
\maketitle
113

    
114

    
115
\begin{frame}
116
  \frametitle{Introduction}
117
 
118
 2 cousin approaches to logical characterization of complexity classes:
119
 
120
\bigskip 
121

    
122
 \begin{tabular}{l|l}
123
 \BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity  (91 --)}\\
124
      & \ICC{(ICC)}\\
125
 \hline
126
 &\\
127
 & function algebras\\
128
 & types/proofs-as-programs\\
129
 & arithmetics / logics\\
130
 & \\
131
 large variety of & resource-free characterizations of\\
132
 complexity classes & complexity classes (e.g. ramification)\\
133
 &\\
134
 corresp. with & extensions to programming languages\\
135
 \textit{proof-complexity} &
136
 \end{tabular}
137
  \end{frame}
138

    
139
%%%%%%%%%%%%%%%%%%%%%%%%%%%
140

    
141
\begin{frame}
142
  \frametitle{Introduction}
143
 
144
$$  \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$
145
 
146
\bigskip 
147

    
148
 \begin{tabular}{l|l}
149
 \BA{Bounded arithmetic}  \qquad \qquad & \ICC{Implicit computational complexity}\\
150
 \hline
151
 &\\
152
  Buss ($S_1$): & Leivant (intrinsic theories): \\
153
  $\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
154
  &\\
155
  FP, FPH & FP
156
  \end{tabular}
157
  \end{frame}
158
  
159
  %%%%%%%%%%%%%%%%%%%%%%%%%%%
160

    
161
\begin{frame}
162
  \frametitle{{A current limitation of ICC logics}}
163
 
164
 \begin{itemize}
165
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}}
166
\item in particular, {\ICC{ICC logics}}  not so satisfactory for non-deterministic classes
167

    
168
e.g. NP, PH (polynomial hierarchy) \dots
169

    
170
 \end{itemize}
171
 \end{frame}
172
 
173
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
174

    
175
\begin{frame}
176
  \frametitle{Recap : the polynomial hierarchy}
177
 
178
 \begin{itemize}
179
\item  to be done: definition \dots
180
 \end{itemize}
181
 \end{frame}
182

    
183
%%%%%%%%%%%%%%%%%%%%%%%%%%%
184

    
185
\begin{frame}
186
  \frametitle{Our goal}
187
 
188
 design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
189
 
190
 \medskip 
191
 
192
 expected benefits:
193
 \begin{itemize}
194
\item   bridge  {\BA{bounded arithmetic}}  and {\ICC{ICC logics}}
195
\item enlarge the toolbox  of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC)
196
\end{itemize}
197
 \end{frame}
198

    
199
%%%%%%%%%%%%%%%%%%%%%%%%%%%
200

    
201
\begin{frame}
202
  \frametitle{Methodology}
203
 
204
 We want to use:
205
 \begin{itemize}
206
\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
207
   \item induction calibrated by logical complexity, from  {\BA{bounded arithmetic}}
208
\end{itemize}
209
 \end{frame}
210

    
211
%%%%%%%%%%%%%%%%%%%%%%%%%%%
212

    
213
\begin{frame}
214
  \frametitle{Ramification}
215
 
216
 \begin{itemize}
217
\item   ramification, a.k.a. tiering, safe recursion
218
\item distinguish two levels of data-types:
219

    
220
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion
221

    
222
${{N_0}}$ (\textit{safe})  integers cannot; they can just be finitely explored
223
\item ramified recursion scheme:
224
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$
225
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93
226

    
227
          logic for FP: Leivant 95, Cantini 00 
228
\end{itemize}
229
 \end{frame}
230

    
231
%%%%%%%%%%%%%%%%%%%%%%%%%%%
232
\begin{frame}
233
  \frametitle{Ingredients for a logical characterization}
234
 
235
 \begin{itemize}
236
\item  choose a way to \textit{specify} functions
237
\item choose a logic:
238

    
239
logical system + axioms, induction scheme
240
\item prove soundness:
241

    
242
realizability-like argument, with a well-chosen \textit{target language}
243
\item prove completeness
244
\end{itemize}
245
 \end{frame}
246

    
247
%%%%%%%%%%%%%%%%%%%%%%%%%%%
248

    
249
\begin{frame}
250
  \frametitle{Specifying the functions}
251
 
252
 Various approaches to specify a function $f$:
253
 \begin{itemize}
254
\item   {\BA{formula specification}} (bounded arithmetic):
255

    
256
a formula $A_f$ defines the graph of $f$
257
\item {\ICC{equational specification}} (Leivant: intrinsic theories)
258

    
259
conjunction of first-order equations defining $f$
260

    
261
\item applicative theories (Cantini, Kahle-Oitavem \dots)
262

    
263
combinatory term computing $f$
264
\item \dots
265

    
266
\end{itemize}
267
 \end{frame}
268

    
269
\begin{frame}
270
  \frametitle{Our logical system}
271
 
272
 Ramified classical logic (\RC):
273
 \begin{itemize}
274
\item  1st-order classical logic \dots
275
\item \dots over the language:
276
\begin{itemize}
277
 \item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$
278
 \item predicates: $\leq, {\ICC{N_0}},  {\ICC{N_1}}$
279
\end{itemize}
280
\item with axioms:
281
 \begin{itemize}
282
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$)
283
\smallskip
284

    
285
notation:
286

    
287
$\begin{array}{lcl}
288
\succ{0}x &:=& 2\cdot x\\
289
\succ{1}x & :=& \succ{}(2\cdot x)
290
\end{array}
291
 $
292
      \item polynomial induction IND:
293
 \end{itemize}
294
 \end{itemize}
295
 {\small $$    A(0) 
296
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) )
297
\rightarrow  (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) 
298
\rightarrow  \forall x^{\normal} . A(x) $$
299
   }
300
   
301
   Define all that within a sequent calculus system.
302
   
303
  $\mathcal{C}$-\RC\  is \RC\ with IND restricted to formulas $A$ belonging to the class  $\mathcal{C}$ of formulas.
304
 \end{frame}
305

    
306
%%%%%%%%%%%%%%%%%%%%%%%%%%%
307

    
308
\begin{frame}
309
  \frametitle{Classification of quantifications}
310
 
311
 Write $Q$ for $\forall$ or $\exists$.
312
 \begin{itemize}
313
\item   safe ($N_0$)/normal ($N_1$) quantifiers:
314

    
315
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$
316
\item sharply bounded quantifiers:
317
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$
318
\end{itemize}
319
 \end{frame}
320

    
321
%%%%%%%%%%%
322
\begin{frame}
323
  \frametitle{Quantifier hierarchy}
324
 
325
 We define:
326
 \begin{itemize}
327
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers,
328
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers,
329
\item  $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers,
330
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$.
331
\end{itemize}
332
\end{frame}
333

    
334
%%%%%%%%%%%%%%%%%%%%%%%%%%%
335

    
336
\begin{frame}
337
  \frametitle{Result and work-in-progress}
338
 
339
 \begin{theorem}[Soundness]
340
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
341
 \end{theorem}
342
 
343
  \begin{conjecture}[Soundness]
344
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
345
 \end{conjecture}
346

    
347
\end{frame}
348

    
349
\end{document}
350

    
351
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
352
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
353
%----------
354

    
355
%%%%%%%%%%%%%%%%%%%%%%%%%%%
356

    
357
\begin{frame}
358
  \frametitle{}
359
 
360
 \begin{itemize}
361
\item   \end{itemize}
362
 \end{frame}
363

    
364
%%%%%%%%%%%%%%%%%%%%%%%%%%%