root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 190
Historique | Voir | Annoter | Télécharger (9,06 ko)
1 | 188 | pbaillot | |
---|---|---|---|
2 | 188 | pbaillot | %\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper} |
3 | 188 | pbaillot | \documentclass{beamer} |
4 | 188 | pbaillot | \usepackage{amsfonts,latexsym,amssymb, amsmath} |
5 | 188 | pbaillot | \usepackage{stmaryrd} |
6 | 188 | pbaillot | \usepackage{graphicx} |
7 | 188 | pbaillot | \usepackage{eepic} |
8 | 188 | pbaillot | \usepackage[dvips]{epsfig} |
9 | 188 | pbaillot | %\usepackage{psfig} |
10 | 188 | pbaillot | %\input head.tex |
11 | 188 | pbaillot | \usepackage{proof,bussproofs} |
12 | 188 | pbaillot | %\usepackage{ desseins_s} |
13 | 188 | pbaillot | |
14 | 188 | pbaillot | |
15 | 188 | pbaillot | %\usepackage{microtype}%if unwanted, comment out or use option "draft" |
16 | 188 | pbaillot | %\usepackage[dvipsnames]{xcolor} |
17 | 188 | pbaillot | |
18 | 188 | pbaillot | %\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory |
19 | 188 | pbaillot | |
20 | 188 | pbaillot | %\bibliographystyle{plainurl}% the recommended bibstyle |
21 | 188 | pbaillot | |
22 | 188 | pbaillot | %\usepackage[lutzsyntax]{virginialake} |
23 | 188 | pbaillot | \input{ph-macros} |
24 | 188 | pbaillot | |
25 | 188 | pbaillot | |
26 | 188 | pbaillot | |
27 | 188 | pbaillot | \setbeamercolor{block title}{bg=blue!10} |
28 | 188 | pbaillot | \setbeamercolor{block body}{bg=blue!10} |
29 | 188 | pbaillot | \definecolor{monred}{HTML}{9D0909} |
30 | 188 | pbaillot | %\definecolor{monbleu}{RVB}{0,0,1} |
31 | 188 | pbaillot | \def\red#1{\color{red}{#1}} |
32 | 188 | pbaillot | \def\blue#1{\color{blue}{#1}} |
33 | 188 | pbaillot | \def\green#1{\color{green}{#1}} |
34 | 188 | pbaillot | \def\black{} |
35 | 188 | pbaillot | \def\BA#1{\color{red}{#1}} |
36 | 188 | pbaillot | \def\ICC#1{\color{blue}{#1}} |
37 | 188 | pbaillot | |
38 | 188 | pbaillot | |
39 | 188 | pbaillot | %%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%% |
40 | 188 | pbaillot | %\def\un#1{\underline{#1}} |
41 | 188 | pbaillot | %\def\point#1{{\bf #1.}} |
42 | 188 | pbaillot | %%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}} |
43 | 188 | pbaillot | %\newcommand{\etq}[1]{\mbox{{\bf #1}}} |
44 | 188 | pbaillot | %\newcommand{\Rulone}[1]{% |
45 | 188 | pbaillot | % \begin{center} |
46 | 188 | pbaillot | % \makebox[12cm]{\hspace*{\fill} |
47 | 188 | pbaillot | % \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill} |
48 | 188 | pbaillot | % } |
49 | 188 | pbaillot | % \end{center} |
50 | 188 | pbaillot | % } |
51 | 188 | pbaillot | % |
52 | 188 | pbaillot | %\newcommand{\centra}[1]{\begin{center} #1 \end{center}} |
53 | 188 | pbaillot | % |
54 | 188 | pbaillot | %\newcommand{\Rultwo}[2]{% |
55 | 188 | pbaillot | % \begin{center} |
56 | 188 | pbaillot | % \makebox[12cm]{ |
57 | 188 | pbaillot | % \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt} |
58 | 188 | pbaillot | % \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}} |
59 | 188 | pbaillot | % } |
60 | 188 | pbaillot | % \end{center} |
61 | 188 | pbaillot | % } |
62 | 188 | pbaillot | %\newcounter{ex} |
63 | 188 | pbaillot | %%\newtheorem{example}[ex]{Example} |
64 | 188 | pbaillot | % |
65 | 188 | pbaillot | % |
66 | 188 | pbaillot | %\def\para#1{\paragraph{#1}} |
67 | 188 | pbaillot | %\newtheorem{theo}{Theorem} |
68 | 188 | pbaillot | %\newtheorem{de}{Definition} |
69 | 188 | pbaillot | %\newtheorem{prop}[theo]{Proposition} |
70 | 188 | pbaillot | %\newtheorem{lem}[theo]{Lemma} |
71 | 188 | pbaillot | %\newtheorem{Cor}[theo]{Corollary} |
72 | 188 | pbaillot | %\newtheorem{remark}[theo]{Remark} |
73 | 188 | pbaillot | %\newcounter{pb} |
74 | 188 | pbaillot | %\newtheorem{problem}[pb]{Problem} |
75 | 188 | pbaillot | %\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$} |
76 | 188 | pbaillot | |
77 | 188 | pbaillot | %--------------------- |
78 | 188 | pbaillot | %% Definition of new colors |
79 | 188 | pbaillot | %\newrgbcolor{LemonChiffon}{1. 0.98 0.8} |
80 | 188 | pbaillot | % |
81 | 188 | pbaillot | %\newrgbcolor{LightBlue}{0.68 0.85 0.9} |
82 | 188 | pbaillot | %\newrgbcolor{Dgreen}{0 0.6 0.4} |
83 | 188 | pbaillot | %%\newrgbcolor{DBlue}{0 0 0.5} |
84 | 188 | pbaillot | %\newrgbcolor{DBlue}{0 0 0.6} |
85 | 188 | pbaillot | %\newrgbcolor{Dblue}{0 0 0.6} |
86 | 188 | pbaillot | %%---------------------- |
87 | 188 | pbaillot | %%% MORE Color definitions |
88 | 188 | pbaillot | %\newrgbcolor{DarkGray}{.284 .210 .410} |
89 | 188 | pbaillot | %\newrgbcolor{Violet}{.2 .2 .9} |
90 | 188 | pbaillot | |
91 | 188 | pbaillot | %--------------------- |
92 | 188 | pbaillot | |
93 | 188 | pbaillot | \mode<presentation> |
94 | 188 | pbaillot | { |
95 | 188 | pbaillot | \usetheme{Warsaw} |
96 | 188 | pbaillot | % or ... |
97 | 188 | pbaillot | |
98 | 188 | pbaillot | \setbeamercovered{transparent} |
99 | 188 | pbaillot | % or whatever (possibly just delete it) |
100 | 188 | pbaillot | } |
101 | 188 | pbaillot | |
102 | 188 | pbaillot | |
103 | 188 | pbaillot | \title{Towards an Unbounded Implicit Arithmetic for\\ |
104 | 188 | pbaillot | the Polynomial Hierarchy |
105 | 188 | pbaillot | } |
106 | 188 | pbaillot | |
107 | 188 | pbaillot | \author{Patrick Baillot and Anupam Das} |
108 | 188 | pbaillot | \institute{CNRS / ENS Lyon} |
109 | 188 | pbaillot | |
110 | 188 | pbaillot | |
111 | 188 | pbaillot | \begin{document} |
112 | 188 | pbaillot | \maketitle |
113 | 188 | pbaillot | |
114 | 188 | pbaillot | |
115 | 188 | pbaillot | \begin{frame} |
116 | 188 | pbaillot | \frametitle{Introduction} |
117 | 188 | pbaillot | |
118 | 188 | pbaillot | 2 cousin approaches to logical characterization of complexity classes: |
119 | 188 | pbaillot | |
120 | 188 | pbaillot | \bigskip |
121 | 188 | pbaillot | |
122 | 188 | pbaillot | \begin{tabular}{l|l} |
123 | 188 | pbaillot | \BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity (91 --)}\\ |
124 | 188 | pbaillot | & \ICC{(ICC)}\\ |
125 | 188 | pbaillot | \hline |
126 | 188 | pbaillot | &\\ |
127 | 188 | pbaillot | & function algebras\\ |
128 | 188 | pbaillot | & types/proofs-as-programs\\ |
129 | 188 | pbaillot | & arithmetics / logics\\ |
130 | 188 | pbaillot | & \\ |
131 | 188 | pbaillot | large variety of & resource-free characterizations of\\ |
132 | 188 | pbaillot | complexity classes & complexity classes (e.g. ramification)\\ |
133 | 188 | pbaillot | &\\ |
134 | 188 | pbaillot | corresp. with & extensions to programming languages\\ |
135 | 188 | pbaillot | \textit{proof-complexity} & |
136 | 188 | pbaillot | \end{tabular} |
137 | 188 | pbaillot | \end{frame} |
138 | 188 | pbaillot | |
139 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
140 | 188 | pbaillot | |
141 | 188 | pbaillot | \begin{frame} |
142 | 188 | pbaillot | \frametitle{Introduction} |
143 | 188 | pbaillot | |
144 | 188 | pbaillot | $$ \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$ |
145 | 188 | pbaillot | |
146 | 188 | pbaillot | \bigskip |
147 | 188 | pbaillot | |
148 | 188 | pbaillot | \begin{tabular}{l|l} |
149 | 188 | pbaillot | \BA{Bounded arithmetic} \qquad \qquad & \ICC{Implicit computational complexity}\\ |
150 | 188 | pbaillot | \hline |
151 | 188 | pbaillot | &\\ |
152 | 188 | pbaillot | Buss ($S_1$): & Leivant (intrinsic theories): \\ |
153 | 188 | pbaillot | $\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\ |
154 | 188 | pbaillot | &\\ |
155 | 188 | pbaillot | FP, FPH & FP |
156 | 188 | pbaillot | \end{tabular} |
157 | 188 | pbaillot | \end{frame} |
158 | 188 | pbaillot | |
159 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
160 | 188 | pbaillot | |
161 | 188 | pbaillot | \begin{frame} |
162 | 188 | pbaillot | \frametitle{{A current limitation of ICC logics}} |
163 | 188 | pbaillot | |
164 | 188 | pbaillot | \begin{itemize} |
165 | 188 | pbaillot | \item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}} |
166 | 189 | pbaillot | \item in particular, {\ICC{ICC logics}} not so satisfactory for non-deterministic classes |
167 | 188 | pbaillot | |
168 | 188 | pbaillot | e.g. NP, PH (polynomial hierarchy) \dots |
169 | 188 | pbaillot | |
170 | 188 | pbaillot | \end{itemize} |
171 | 188 | pbaillot | \end{frame} |
172 | 188 | pbaillot | |
173 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
174 | 188 | pbaillot | |
175 | 188 | pbaillot | \begin{frame} |
176 | 188 | pbaillot | \frametitle{Recap : the polynomial hierarchy} |
177 | 188 | pbaillot | |
178 | 188 | pbaillot | \begin{itemize} |
179 | 188 | pbaillot | \item to be done: definition \dots |
180 | 188 | pbaillot | \end{itemize} |
181 | 188 | pbaillot | \end{frame} |
182 | 188 | pbaillot | |
183 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
184 | 188 | pbaillot | |
185 | 188 | pbaillot | \begin{frame} |
186 | 188 | pbaillot | \frametitle{Our goal} |
187 | 188 | pbaillot | |
188 | 189 | pbaillot | design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH |
189 | 188 | pbaillot | |
190 | 188 | pbaillot | \medskip |
191 | 188 | pbaillot | |
192 | 188 | pbaillot | expected benefits: |
193 | 188 | pbaillot | \begin{itemize} |
194 | 188 | pbaillot | \item bridge {\BA{bounded arithmetic}} and {\ICC{ICC logics}} |
195 | 189 | pbaillot | \item enlarge the toolbox of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC) |
196 | 188 | pbaillot | \end{itemize} |
197 | 188 | pbaillot | \end{frame} |
198 | 188 | pbaillot | |
199 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
200 | 188 | pbaillot | |
201 | 188 | pbaillot | \begin{frame} |
202 | 188 | pbaillot | \frametitle{Methodology} |
203 | 188 | pbaillot | |
204 | 188 | pbaillot | We want to use: |
205 | 188 | pbaillot | \begin{itemize} |
206 | 189 | pbaillot | \item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
207 | 189 | pbaillot | \item induction calibrated by logical complexity, from {\BA{bounded arithmetic}} |
208 | 188 | pbaillot | \end{itemize} |
209 | 188 | pbaillot | \end{frame} |
210 | 188 | pbaillot | |
211 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
212 | 188 | pbaillot | |
213 | 188 | pbaillot | \begin{frame} |
214 | 190 | pbaillot | \frametitle{Ramification} |
215 | 190 | pbaillot | |
216 | 190 | pbaillot | \begin{itemize} |
217 | 190 | pbaillot | \item ramification, a.k.a. tiering, safe recursion |
218 | 190 | pbaillot | \item distinguish two levels of data-types: |
219 | 190 | pbaillot | |
220 | 190 | pbaillot | ${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion |
221 | 190 | pbaillot | |
222 | 190 | pbaillot | ${{N_0}}$ (\textit{safe}) integers cannot; they can just be finitely explored |
223 | 190 | pbaillot | \item ramified recursion scheme: |
224 | 190 | pbaillot | $$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$ |
225 | 190 | pbaillot | \item function algebra for FP: Bellantoni-Cook 92, Leivant 93 |
226 | 190 | pbaillot | |
227 | 190 | pbaillot | logic for FP: Leivant 95, Cantini 00 |
228 | 190 | pbaillot | \end{itemize} |
229 | 190 | pbaillot | \end{frame} |
230 | 190 | pbaillot | |
231 | 190 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
232 | 190 | pbaillot | \begin{frame} |
233 | 189 | pbaillot | \frametitle{Ingredients for a logical characterization} |
234 | 188 | pbaillot | |
235 | 188 | pbaillot | \begin{itemize} |
236 | 189 | pbaillot | \item choose a way to \textit{specify} functions |
237 | 189 | pbaillot | \item choose a logic: |
238 | 189 | pbaillot | |
239 | 189 | pbaillot | logical system + axioms, induction scheme |
240 | 189 | pbaillot | \item prove soundness: |
241 | 189 | pbaillot | |
242 | 189 | pbaillot | realizability-like argument, with a well-chosen \textit{target language} |
243 | 189 | pbaillot | \item prove completeness |
244 | 189 | pbaillot | \end{itemize} |
245 | 188 | pbaillot | \end{frame} |
246 | 188 | pbaillot | |
247 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
248 | 188 | pbaillot | |
249 | 188 | pbaillot | \begin{frame} |
250 | 189 | pbaillot | \frametitle{Specifying the functions} |
251 | 188 | pbaillot | |
252 | 189 | pbaillot | Various approaches to specify a function $f$: |
253 | 188 | pbaillot | \begin{itemize} |
254 | 189 | pbaillot | \item {\BA{formula specification}} (bounded arithmetic): |
255 | 188 | pbaillot | |
256 | 189 | pbaillot | a formula $A_f$ defines the graph of $f$ |
257 | 189 | pbaillot | \item {\ICC{equational specification}} (Leivant: intrinsic theories) |
258 | 188 | pbaillot | |
259 | 189 | pbaillot | conjunction of first-order equations defining $f$ |
260 | 188 | pbaillot | |
261 | 189 | pbaillot | \item applicative theories (Cantini, Kahle-Oitavem \dots) |
262 | 188 | pbaillot | |
263 | 189 | pbaillot | combinatory term computing $f$ |
264 | 189 | pbaillot | \item \dots |
265 | 188 | pbaillot | |
266 | 188 | pbaillot | \end{itemize} |
267 | 189 | pbaillot | \end{frame} |
268 | 188 | pbaillot | |
269 | 189 | pbaillot | \begin{frame} |
270 | 189 | pbaillot | \frametitle{Our logical system} |
271 | 188 | pbaillot | |
272 | 189 | pbaillot | Ramified classical logic (\RC): |
273 | 189 | pbaillot | \begin{itemize} |
274 | 189 | pbaillot | \item 1st-order classical logic \dots |
275 | 189 | pbaillot | \item \dots over the language: |
276 | 188 | pbaillot | \begin{itemize} |
277 | 189 | pbaillot | \item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$ |
278 | 189 | pbaillot | \item predicates: $\leq, {\ICC{N_0}}, {\ICC{N_1}}$ |
279 | 188 | pbaillot | \end{itemize} |
280 | 189 | pbaillot | \item with axioms: |
281 | 189 | pbaillot | \begin{itemize} |
282 | 189 | pbaillot | \item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$) |
283 | 188 | pbaillot | \smallskip |
284 | 188 | pbaillot | |
285 | 189 | pbaillot | notation: |
286 | 188 | pbaillot | |
287 | 189 | pbaillot | $\begin{array}{lcl} |
288 | 189 | pbaillot | \succ{0}x &:=& 2\cdot x\\ |
289 | 189 | pbaillot | \succ{1}x & :=& \succ{}(2\cdot x) |
290 | 188 | pbaillot | \end{array} |
291 | 189 | pbaillot | $ |
292 | 189 | pbaillot | \item polynomial induction IND: |
293 | 188 | pbaillot | \end{itemize} |
294 | 188 | pbaillot | \end{itemize} |
295 | 189 | pbaillot | {\small $$ A(0) |
296 | 189 | pbaillot | \rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) ) |
297 | 189 | pbaillot | \rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) |
298 | 189 | pbaillot | \rightarrow \forall x^{\normal} . A(x) $$ |
299 | 189 | pbaillot | } |
300 | 189 | pbaillot | |
301 | 189 | pbaillot | Define all that within a sequent calculus system. |
302 | 189 | pbaillot | |
303 | 189 | pbaillot | $\mathcal{C}$-\RC\ is \RC\ with IND restricted to formulas $A$ belonging to the class $\mathcal{C}$ of formulas. |
304 | 189 | pbaillot | \end{frame} |
305 | 188 | pbaillot | |
306 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
307 | 188 | pbaillot | |
308 | 189 | pbaillot | \begin{frame} |
309 | 189 | pbaillot | \frametitle{Classification of quantifications} |
310 | 188 | pbaillot | |
311 | 189 | pbaillot | Write $Q$ for $\forall$ or $\exists$. |
312 | 189 | pbaillot | \begin{itemize} |
313 | 189 | pbaillot | \item safe ($N_0$)/normal ($N_1$) quantifiers: |
314 | 188 | pbaillot | |
315 | 189 | pbaillot | $$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$ |
316 | 189 | pbaillot | \item sharply bounded quantifiers: |
317 | 189 | pbaillot | $$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$ |
318 | 188 | pbaillot | \end{itemize} |
319 | 189 | pbaillot | \end{frame} |
320 | 188 | pbaillot | |
321 | 189 | pbaillot | %%%%%%%%%%% |
322 | 189 | pbaillot | \begin{frame} |
323 | 189 | pbaillot | \frametitle{Quantifier hierarchy} |
324 | 188 | pbaillot | |
325 | 189 | pbaillot | We define: |
326 | 189 | pbaillot | \begin{itemize} |
327 | 189 | pbaillot | \item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers, |
328 | 189 | pbaillot | \item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers, |
329 | 189 | pbaillot | \item $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers, |
330 | 189 | pbaillot | \item $\Sigma^\safe= \cup_i \Sigma^\safe_i$. |
331 | 188 | pbaillot | \end{itemize} |
332 | 188 | pbaillot | \end{frame} |
333 | 188 | pbaillot | |
334 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
335 | 188 | pbaillot | |
336 | 189 | pbaillot | \begin{frame} |
337 | 189 | pbaillot | \frametitle{Result and work-in-progress} |
338 | 188 | pbaillot | |
339 | 189 | pbaillot | \begin{theorem}[Soundness] |
340 | 189 | pbaillot | If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
341 | 189 | pbaillot | \end{theorem} |
342 | 188 | pbaillot | |
343 | 189 | pbaillot | \begin{conjecture}[Soundness] |
344 | 189 | pbaillot | If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
345 | 189 | pbaillot | \end{conjecture} |
346 | 188 | pbaillot | |
347 | 188 | pbaillot | \end{frame} |
348 | 188 | pbaillot | |
349 | 188 | pbaillot | \end{document} |
350 | 188 | pbaillot | |
351 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
352 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
353 | 188 | pbaillot | %---------- |
354 | 188 | pbaillot | |
355 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
356 | 188 | pbaillot | |
357 | 189 | pbaillot | \begin{frame} |
358 | 189 | pbaillot | \frametitle{} |
359 | 188 | pbaillot | |
360 | 189 | pbaillot | \begin{itemize} |
361 | 189 | pbaillot | \item \end{itemize} |
362 | 189 | pbaillot | \end{frame} |
363 | 188 | pbaillot | |
364 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |