Statistiques
| Révision :

root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 190

Historique | Voir | Annoter | Télécharger (9,06 ko)

1 188 pbaillot
2 188 pbaillot
%\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper}
3 188 pbaillot
\documentclass{beamer}
4 188 pbaillot
\usepackage{amsfonts,latexsym,amssymb, amsmath}
5 188 pbaillot
\usepackage{stmaryrd}
6 188 pbaillot
\usepackage{graphicx}
7 188 pbaillot
\usepackage{eepic}
8 188 pbaillot
\usepackage[dvips]{epsfig}
9 188 pbaillot
%\usepackage{psfig}
10 188 pbaillot
%\input head.tex
11 188 pbaillot
\usepackage{proof,bussproofs}
12 188 pbaillot
%\usepackage{ desseins_s}
13 188 pbaillot
14 188 pbaillot
15 188 pbaillot
%\usepackage{microtype}%if unwanted, comment out or use option "draft"
16 188 pbaillot
%\usepackage[dvipsnames]{xcolor}
17 188 pbaillot
18 188 pbaillot
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
19 188 pbaillot
20 188 pbaillot
%\bibliographystyle{plainurl}% the recommended bibstyle
21 188 pbaillot
22 188 pbaillot
%\usepackage[lutzsyntax]{virginialake}
23 188 pbaillot
\input{ph-macros}
24 188 pbaillot
25 188 pbaillot
26 188 pbaillot
27 188 pbaillot
\setbeamercolor{block title}{bg=blue!10}
28 188 pbaillot
\setbeamercolor{block body}{bg=blue!10}
29 188 pbaillot
\definecolor{monred}{HTML}{9D0909}
30 188 pbaillot
%\definecolor{monbleu}{RVB}{0,0,1}
31 188 pbaillot
 \def\red#1{\color{red}{#1}}
32 188 pbaillot
 \def\blue#1{\color{blue}{#1}}
33 188 pbaillot
 \def\green#1{\color{green}{#1}}
34 188 pbaillot
\def\black{}
35 188 pbaillot
\def\BA#1{\color{red}{#1}}
36 188 pbaillot
 \def\ICC#1{\color{blue}{#1}}
37 188 pbaillot
38 188 pbaillot
39 188 pbaillot
%%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%%
40 188 pbaillot
%\def\un#1{\underline{#1}}
41 188 pbaillot
%\def\point#1{{\bf #1.}}
42 188 pbaillot
%%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}}
43 188 pbaillot
%\newcommand{\etq}[1]{\mbox{{\bf #1}}}
44 188 pbaillot
%\newcommand{\Rulone}[1]{%
45 188 pbaillot
%          \begin{center}
46 188 pbaillot
%           \makebox[12cm]{\hspace*{\fill}
47 188 pbaillot
%                 \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill}
48 188 pbaillot
%                }
49 188 pbaillot
%          \end{center}
50 188 pbaillot
%  }
51 188 pbaillot
%
52 188 pbaillot
%\newcommand{\centra}[1]{\begin{center} #1 \end{center}}
53 188 pbaillot
%
54 188 pbaillot
%\newcommand{\Rultwo}[2]{%
55 188 pbaillot
%          \begin{center}
56 188 pbaillot
%           \makebox[12cm]{
57 188 pbaillot
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt}
58 188 pbaillot
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}}
59 188 pbaillot
%                }
60 188 pbaillot
%          \end{center}
61 188 pbaillot
%  }
62 188 pbaillot
%\newcounter{ex}
63 188 pbaillot
%%\newtheorem{example}[ex]{Example}
64 188 pbaillot
%
65 188 pbaillot
%
66 188 pbaillot
%\def\para#1{\paragraph{#1}}
67 188 pbaillot
%\newtheorem{theo}{Theorem}
68 188 pbaillot
%\newtheorem{de}{Definition}
69 188 pbaillot
%\newtheorem{prop}[theo]{Proposition}
70 188 pbaillot
%\newtheorem{lem}[theo]{Lemma}
71 188 pbaillot
%\newtheorem{Cor}[theo]{Corollary}
72 188 pbaillot
%\newtheorem{remark}[theo]{Remark}
73 188 pbaillot
%\newcounter{pb}
74 188 pbaillot
%\newtheorem{problem}[pb]{Problem}
75 188 pbaillot
%\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$}
76 188 pbaillot
77 188 pbaillot
%---------------------
78 188 pbaillot
%% Definition of new colors
79 188 pbaillot
%\newrgbcolor{LemonChiffon}{1. 0.98 0.8}
80 188 pbaillot
%
81 188 pbaillot
%\newrgbcolor{LightBlue}{0.68 0.85 0.9}
82 188 pbaillot
%\newrgbcolor{Dgreen}{0  0.6 0.4}
83 188 pbaillot
%%\newrgbcolor{DBlue}{0  0 0.5}
84 188 pbaillot
%\newrgbcolor{DBlue}{0  0 0.6}
85 188 pbaillot
%\newrgbcolor{Dblue}{0  0 0.6}
86 188 pbaillot
%%----------------------
87 188 pbaillot
%%% MORE Color definitions
88 188 pbaillot
%\newrgbcolor{DarkGray}{.284 .210 .410}
89 188 pbaillot
%\newrgbcolor{Violet}{.2 .2  .9}
90 188 pbaillot
91 188 pbaillot
%---------------------
92 188 pbaillot
93 188 pbaillot
\mode<presentation>
94 188 pbaillot
{
95 188 pbaillot
  \usetheme{Warsaw}
96 188 pbaillot
  % or ...
97 188 pbaillot
98 188 pbaillot
  \setbeamercovered{transparent}
99 188 pbaillot
  % or whatever (possibly just delete it)
100 188 pbaillot
}
101 188 pbaillot
102 188 pbaillot
103 188 pbaillot
\title{Towards an Unbounded Implicit Arithmetic for\\
104 188 pbaillot
the Polynomial Hierarchy
105 188 pbaillot
}
106 188 pbaillot
107 188 pbaillot
\author{Patrick Baillot and Anupam Das}
108 188 pbaillot
\institute{CNRS / ENS Lyon}
109 188 pbaillot
110 188 pbaillot
111 188 pbaillot
\begin{document}
112 188 pbaillot
\maketitle
113 188 pbaillot
114 188 pbaillot
115 188 pbaillot
\begin{frame}
116 188 pbaillot
  \frametitle{Introduction}
117 188 pbaillot
118 188 pbaillot
 2 cousin approaches to logical characterization of complexity classes:
119 188 pbaillot
120 188 pbaillot
\bigskip
121 188 pbaillot
122 188 pbaillot
 \begin{tabular}{l|l}
123 188 pbaillot
 \BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity  (91 --)}\\
124 188 pbaillot
      & \ICC{(ICC)}\\
125 188 pbaillot
 \hline
126 188 pbaillot
 &\\
127 188 pbaillot
 & function algebras\\
128 188 pbaillot
 & types/proofs-as-programs\\
129 188 pbaillot
 & arithmetics / logics\\
130 188 pbaillot
 & \\
131 188 pbaillot
 large variety of & resource-free characterizations of\\
132 188 pbaillot
 complexity classes & complexity classes (e.g. ramification)\\
133 188 pbaillot
 &\\
134 188 pbaillot
 corresp. with & extensions to programming languages\\
135 188 pbaillot
 \textit{proof-complexity} &
136 188 pbaillot
 \end{tabular}
137 188 pbaillot
  \end{frame}
138 188 pbaillot
139 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
140 188 pbaillot
141 188 pbaillot
\begin{frame}
142 188 pbaillot
  \frametitle{Introduction}
143 188 pbaillot
144 188 pbaillot
$$  \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$
145 188 pbaillot
146 188 pbaillot
\bigskip
147 188 pbaillot
148 188 pbaillot
 \begin{tabular}{l|l}
149 188 pbaillot
 \BA{Bounded arithmetic}  \qquad \qquad & \ICC{Implicit computational complexity}\\
150 188 pbaillot
 \hline
151 188 pbaillot
 &\\
152 188 pbaillot
  Buss ($S_1$): & Leivant (intrinsic theories): \\
153 188 pbaillot
  $\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
154 188 pbaillot
  &\\
155 188 pbaillot
  FP, FPH & FP
156 188 pbaillot
  \end{tabular}
157 188 pbaillot
  \end{frame}
158 188 pbaillot
159 188 pbaillot
  %%%%%%%%%%%%%%%%%%%%%%%%%%%
160 188 pbaillot
161 188 pbaillot
\begin{frame}
162 188 pbaillot
  \frametitle{{A current limitation of ICC logics}}
163 188 pbaillot
164 188 pbaillot
 \begin{itemize}
165 188 pbaillot
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}}
166 189 pbaillot
\item in particular, {\ICC{ICC logics}}  not so satisfactory for non-deterministic classes
167 188 pbaillot
168 188 pbaillot
e.g. NP, PH (polynomial hierarchy) \dots
169 188 pbaillot
170 188 pbaillot
 \end{itemize}
171 188 pbaillot
 \end{frame}
172 188 pbaillot
173 188 pbaillot
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
174 188 pbaillot
175 188 pbaillot
\begin{frame}
176 188 pbaillot
  \frametitle{Recap : the polynomial hierarchy}
177 188 pbaillot
178 188 pbaillot
 \begin{itemize}
179 188 pbaillot
\item  to be done: definition \dots
180 188 pbaillot
 \end{itemize}
181 188 pbaillot
 \end{frame}
182 188 pbaillot
183 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
184 188 pbaillot
185 188 pbaillot
\begin{frame}
186 188 pbaillot
  \frametitle{Our goal}
187 188 pbaillot
188 189 pbaillot
 design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
189 188 pbaillot
190 188 pbaillot
 \medskip
191 188 pbaillot
192 188 pbaillot
 expected benefits:
193 188 pbaillot
 \begin{itemize}
194 188 pbaillot
\item   bridge  {\BA{bounded arithmetic}}  and {\ICC{ICC logics}}
195 189 pbaillot
\item enlarge the toolbox  of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC)
196 188 pbaillot
\end{itemize}
197 188 pbaillot
 \end{frame}
198 188 pbaillot
199 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
200 188 pbaillot
201 188 pbaillot
\begin{frame}
202 188 pbaillot
  \frametitle{Methodology}
203 188 pbaillot
204 188 pbaillot
 We want to use:
205 188 pbaillot
 \begin{itemize}
206 189 pbaillot
\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
207 189 pbaillot
   \item induction calibrated by logical complexity, from  {\BA{bounded arithmetic}}
208 188 pbaillot
\end{itemize}
209 188 pbaillot
 \end{frame}
210 188 pbaillot
211 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
212 188 pbaillot
213 188 pbaillot
\begin{frame}
214 190 pbaillot
  \frametitle{Ramification}
215 190 pbaillot
216 190 pbaillot
 \begin{itemize}
217 190 pbaillot
\item   ramification, a.k.a. tiering, safe recursion
218 190 pbaillot
\item distinguish two levels of data-types:
219 190 pbaillot
220 190 pbaillot
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion
221 190 pbaillot
222 190 pbaillot
${{N_0}}$ (\textit{safe})  integers cannot; they can just be finitely explored
223 190 pbaillot
\item ramified recursion scheme:
224 190 pbaillot
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$
225 190 pbaillot
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93
226 190 pbaillot
227 190 pbaillot
          logic for FP: Leivant 95, Cantini 00
228 190 pbaillot
\end{itemize}
229 190 pbaillot
 \end{frame}
230 190 pbaillot
231 190 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
232 190 pbaillot
\begin{frame}
233 189 pbaillot
  \frametitle{Ingredients for a logical characterization}
234 188 pbaillot
235 188 pbaillot
 \begin{itemize}
236 189 pbaillot
\item  choose a way to \textit{specify} functions
237 189 pbaillot
\item choose a logic:
238 189 pbaillot
239 189 pbaillot
logical system + axioms, induction scheme
240 189 pbaillot
\item prove soundness:
241 189 pbaillot
242 189 pbaillot
realizability-like argument, with a well-chosen \textit{target language}
243 189 pbaillot
\item prove completeness
244 189 pbaillot
\end{itemize}
245 188 pbaillot
 \end{frame}
246 188 pbaillot
247 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
248 188 pbaillot
249 188 pbaillot
\begin{frame}
250 189 pbaillot
  \frametitle{Specifying the functions}
251 188 pbaillot
252 189 pbaillot
 Various approaches to specify a function $f$:
253 188 pbaillot
 \begin{itemize}
254 189 pbaillot
\item   {\BA{formula specification}} (bounded arithmetic):
255 188 pbaillot
256 189 pbaillot
a formula $A_f$ defines the graph of $f$
257 189 pbaillot
\item {\ICC{equational specification}} (Leivant: intrinsic theories)
258 188 pbaillot
259 189 pbaillot
conjunction of first-order equations defining $f$
260 188 pbaillot
261 189 pbaillot
\item applicative theories (Cantini, Kahle-Oitavem \dots)
262 188 pbaillot
263 189 pbaillot
combinatory term computing $f$
264 189 pbaillot
\item \dots
265 188 pbaillot
266 188 pbaillot
\end{itemize}
267 189 pbaillot
 \end{frame}
268 188 pbaillot
269 189 pbaillot
\begin{frame}
270 189 pbaillot
  \frametitle{Our logical system}
271 188 pbaillot
272 189 pbaillot
 Ramified classical logic (\RC):
273 189 pbaillot
 \begin{itemize}
274 189 pbaillot
\item  1st-order classical logic \dots
275 189 pbaillot
\item \dots over the language:
276 188 pbaillot
\begin{itemize}
277 189 pbaillot
 \item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$
278 189 pbaillot
 \item predicates: $\leq, {\ICC{N_0}},  {\ICC{N_1}}$
279 188 pbaillot
\end{itemize}
280 189 pbaillot
\item with axioms:
281 189 pbaillot
 \begin{itemize}
282 189 pbaillot
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$)
283 188 pbaillot
\smallskip
284 188 pbaillot
285 189 pbaillot
notation:
286 188 pbaillot
287 189 pbaillot
$\begin{array}{lcl}
288 189 pbaillot
\succ{0}x &:=& 2\cdot x\\
289 189 pbaillot
\succ{1}x & :=& \succ{}(2\cdot x)
290 188 pbaillot
\end{array}
291 189 pbaillot
 $
292 189 pbaillot
      \item polynomial induction IND:
293 188 pbaillot
 \end{itemize}
294 188 pbaillot
 \end{itemize}
295 189 pbaillot
 {\small $$    A(0)
296 189 pbaillot
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) )
297 189 pbaillot
\rightarrow  (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) )
298 189 pbaillot
\rightarrow  \forall x^{\normal} . A(x) $$
299 189 pbaillot
   }
300 189 pbaillot
301 189 pbaillot
   Define all that within a sequent calculus system.
302 189 pbaillot
303 189 pbaillot
  $\mathcal{C}$-\RC\  is \RC\ with IND restricted to formulas $A$ belonging to the class  $\mathcal{C}$ of formulas.
304 189 pbaillot
 \end{frame}
305 188 pbaillot
306 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
307 188 pbaillot
308 189 pbaillot
\begin{frame}
309 189 pbaillot
  \frametitle{Classification of quantifications}
310 188 pbaillot
311 189 pbaillot
 Write $Q$ for $\forall$ or $\exists$.
312 189 pbaillot
 \begin{itemize}
313 189 pbaillot
\item   safe ($N_0$)/normal ($N_1$) quantifiers:
314 188 pbaillot
315 189 pbaillot
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$
316 189 pbaillot
\item sharply bounded quantifiers:
317 189 pbaillot
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$
318 188 pbaillot
\end{itemize}
319 189 pbaillot
 \end{frame}
320 188 pbaillot
321 189 pbaillot
%%%%%%%%%%%
322 189 pbaillot
\begin{frame}
323 189 pbaillot
  \frametitle{Quantifier hierarchy}
324 188 pbaillot
325 189 pbaillot
 We define:
326 189 pbaillot
 \begin{itemize}
327 189 pbaillot
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers,
328 189 pbaillot
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers,
329 189 pbaillot
\item  $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers,
330 189 pbaillot
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$.
331 188 pbaillot
\end{itemize}
332 188 pbaillot
\end{frame}
333 188 pbaillot
334 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
335 188 pbaillot
336 189 pbaillot
\begin{frame}
337 189 pbaillot
  \frametitle{Result and work-in-progress}
338 188 pbaillot
339 189 pbaillot
 \begin{theorem}[Soundness]
340 189 pbaillot
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
341 189 pbaillot
 \end{theorem}
342 188 pbaillot
343 189 pbaillot
  \begin{conjecture}[Soundness]
344 189 pbaillot
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
345 189 pbaillot
 \end{conjecture}
346 188 pbaillot
347 188 pbaillot
\end{frame}
348 188 pbaillot
349 188 pbaillot
\end{document}
350 188 pbaillot
351 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
352 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
353 188 pbaillot
%----------
354 188 pbaillot
355 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
356 188 pbaillot
357 189 pbaillot
\begin{frame}
358 189 pbaillot
  \frametitle{}
359 188 pbaillot
360 189 pbaillot
 \begin{itemize}
361 189 pbaillot
\item   \end{itemize}
362 189 pbaillot
 \end{frame}
363 188 pbaillot
364 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%