root / CSL17 / arithmetic.tex @ 172
Historique | Voir | Annoter | Télécharger (3,22 ko)
1 |
\section{An arithmetic for the polynomial hierarchy} |
---|---|
2 |
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. |
3 |
|
4 |
The $\basic$ axioms are as follows: |
5 |
\[ |
6 |
\begin{array}{l} |
7 |
\safe (0) \\ |
8 |
\forall x^\safe . \safe (\succ{} x) \\ |
9 |
\forall x^\safe . 0 \neq \succ{} (x) \\ |
10 |
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
11 |
\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y ) |
12 |
\end{array} |
13 |
\] |
14 |
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.} |
15 |
|
16 |
|
17 |
|
18 |
\begin{definition} |
19 |
[Derived functions and notations] |
20 |
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol. |
21 |
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively. |
22 |
\end{definition} |
23 |
|
24 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
25 |
|
26 |
Use base theory + sharply bounded quantifiers. |
27 |
|
28 |
|
29 |
|
30 |
|
31 |
\begin{definition} |
32 |
[Quantifier hierarchy] |
33 |
We define: |
34 |
\begin{itemize} |
35 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. |
36 |
\item (Increase with predicative quantifiers) |
37 |
\end{itemize} |
38 |
\end{definition} |
39 |
|
40 |
|
41 |
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
42 |
|
43 |
|
44 |
\begin{definition} |
45 |
Define the theory $\arith^i$ consisting of the following axioms: |
46 |
\begin{itemize} |
47 |
\item $\basic$; |
48 |
\item $\cpind{\Sigma^\safe_i } $: |
49 |
\end{itemize} |
50 |
and an inference rule: |
51 |
\[ |
52 |
\dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
53 |
\] |
54 |
\end{definition} |
55 |
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
56 |
|
57 |
\begin{lemma} |
58 |
[Sharply bounded lemma] |
59 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
60 |
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
61 |
\end{lemma} |
62 |
\begin{proof} |
63 |
We give the $\forall$ case, the $\exists$ case being dual. |
64 |
The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
65 |
\[ |
66 |
\begin{array}{rcl} |
67 |
f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
68 |
f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
69 |
\end{array} |
70 |
\] |
71 |
\end{proof} |
72 |
|
73 |
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
74 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
75 |
|
76 |
|
77 |
\subsection{Graphs of some basic functions} |
78 |
Todo: $+1$, |
79 |
|
80 |
\subsection{Encoding sequences in the arithmetic} |
81 |
\todo{} |
82 |
|
83 |
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
84 |
|
85 |
|
86 |
\subsection{A sequent calculus presentation} |
87 |
\todo{Write out usual first-order sequent calculus} |
88 |
|
89 |
\subsection{Free-cut free normal form of proofs} |
90 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |