Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 172

Historique | Voir | Annoter | Télécharger (3,22 ko)

1
\section{An arithmetic for the polynomial hierarchy}
2
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3

    
4
The $\basic$ axioms are as follows:
5
\[
6
\begin{array}{l}
7
\safe (0) \\
8
\forall x^\safe . \safe (\succ{} x) \\
9
\forall x^\safe . 0 \neq \succ{} (x) \\
10
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
11
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )
12
\end{array}
13
\]
14
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
15

    
16

    
17

    
18
\begin{definition}
19
[Derived functions and notations]
20
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
21
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
22
\end{definition}
23

    
24
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
25

    
26
Use base theory + sharply bounded quantifiers.
27

    
28

    
29

    
30

    
31
\begin{definition}
32
[Quantifier hierarchy]
33
We define:
34
\begin{itemize}
35
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. 
36
	\item (Increase with predicative quantifiers)
37
\end{itemize}	
38
\end{definition}
39

    
40

    
41
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
42

    
43

    
44
\begin{definition}
45
Define the theory $\arith^i$ consisting of the following axioms:
46
\begin{itemize}
47
	\item $\basic$;
48
	\item $\cpind{\Sigma^\safe_i } $:
49
\end{itemize}
50
and an inference rule:
51
\[
52
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
53
\]
54
\end{definition}
55
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
56

    
57
\begin{lemma}
58
[Sharply bounded lemma]
59
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
60
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
61
\end{lemma}
62
\begin{proof}
63
	We give the $\forall$ case, the $\exists$ case being dual.
64
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
65
	\[
66
	\begin{array}{rcl}
67
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
68
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
69
	\end{array}
70
	\]
71
\end{proof}
72

    
73
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
74
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
75

    
76

    
77
\subsection{Graphs of some basic functions}
78
Todo: $+1$,  
79

    
80
\subsection{Encoding sequences in the arithmetic}
81
\todo{}
82

    
83
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
84

    
85

    
86
\subsection{A sequent calculus presentation}
87
\todo{Write out usual first-order sequent calculus}
88

    
89
\subsection{Free-cut free normal form of proofs}
90
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}