Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 168

Historique | Voir | Annoter | Télécharger (2,56 ko)

1
\section{An arithmetic for the polynomial hierarchy}
2
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$.
3

    
4

    
5
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
6

    
7
Use base theory + sharply bounded quantifiers.
8

    
9
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?}
10

    
11

    
12

    
13
\begin{definition}
14
[Quantifier hierarchy]
15
We define:
16
\begin{itemize}
17
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. 
18
	\item (Increase with predicative quantifiers)
19
\end{itemize}	
20
\end{definition}
21

    
22

    
23
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
24

    
25

    
26
\begin{definition}
27
Define the theory $\arith^i$ consisting of the following axioms:
28
\begin{itemize}
29
	\item $\basic$;
30
	\item $\cpind{\Sigma^\safe_i } $:
31
\end{itemize}
32
and an inference rule:
33
\[
34
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
35
\]
36
\end{definition}
37
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
38

    
39
\begin{lemma}
40
[Sharply bounded lemma]
41
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
42
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
43
\end{lemma}
44
\begin{proof}
45
	We give the $\forall$ case, the $\exists$ case being dual.
46
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
47
	\[
48
	\begin{array}{rcl}
49
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
50
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
51
	\end{array}
52
	\]
53
\end{proof}
54

    
55
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
56
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
57

    
58

    
59
\subsection{Graphs of some basic functions}
60
Todo: $+1$,  
61

    
62
\subsection{Encoding sequences in the arithmetic}
63
\todo{}
64

    
65
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
66

    
67

    
68
\subsection{A sequent calculus presentation}
69
\todo{Write out usual first-order sequent calculus}
70

    
71
\subsection{Free-cut free normal form of proofs}
72
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}