root / CSL17 / arithmetic.tex @ 168
Historique | Voir | Annoter | Télécharger (2,56 ko)
1 |
\section{An arithmetic for the polynomial hierarchy} |
---|---|
2 |
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$. |
3 |
|
4 |
|
5 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
6 |
|
7 |
Use base theory + sharply bounded quantifiers. |
8 |
|
9 |
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?} |
10 |
|
11 |
|
12 |
|
13 |
\begin{definition} |
14 |
[Quantifier hierarchy] |
15 |
We define: |
16 |
\begin{itemize} |
17 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. |
18 |
\item (Increase with predicative quantifiers) |
19 |
\end{itemize} |
20 |
\end{definition} |
21 |
|
22 |
|
23 |
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
24 |
|
25 |
|
26 |
\begin{definition} |
27 |
Define the theory $\arith^i$ consisting of the following axioms: |
28 |
\begin{itemize} |
29 |
\item $\basic$; |
30 |
\item $\cpind{\Sigma^\safe_i } $: |
31 |
\end{itemize} |
32 |
and an inference rule: |
33 |
\[ |
34 |
\dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
35 |
\] |
36 |
\end{definition} |
37 |
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
38 |
|
39 |
\begin{lemma} |
40 |
[Sharply bounded lemma] |
41 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
42 |
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
43 |
\end{lemma} |
44 |
\begin{proof} |
45 |
We give the $\forall$ case, the $\exists$ case being dual. |
46 |
The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
47 |
\[ |
48 |
\begin{array}{rcl} |
49 |
f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
50 |
f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
51 |
\end{array} |
52 |
\] |
53 |
\end{proof} |
54 |
|
55 |
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
56 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
57 |
|
58 |
|
59 |
\subsection{Graphs of some basic functions} |
60 |
Todo: $+1$, |
61 |
|
62 |
\subsection{Encoding sequences in the arithmetic} |
63 |
\todo{} |
64 |
|
65 |
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
66 |
|
67 |
|
68 |
\subsection{A sequent calculus presentation} |
69 |
\todo{Write out usual first-order sequent calculus} |
70 |
|
71 |
\subsection{Free-cut free normal form of proofs} |
72 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |