root / CSL17 / arithmetic.tex @ 168
Historique | Voir | Annoter | Télécharger (2,56 ko)
1 | 166 | adas | \section{An arithmetic for the polynomial hierarchy} |
---|---|---|---|
2 | 168 | adas | Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$. |
3 | 156 | adas | |
4 | 168 | adas | |
5 | 157 | adas | (Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
6 | 157 | adas | |
7 | 157 | adas | Use base theory + sharply bounded quantifiers. |
8 | 157 | adas | |
9 | 157 | adas | \anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?} |
10 | 157 | adas | |
11 | 168 | adas | |
12 | 168 | adas | |
13 | 157 | adas | \begin{definition} |
14 | 157 | adas | [Quantifier hierarchy] |
15 | 157 | adas | We define: |
16 | 157 | adas | \begin{itemize} |
17 | 157 | adas | \item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. |
18 | 157 | adas | \item (Increase with predicative quantifiers) |
19 | 157 | adas | \end{itemize} |
20 | 157 | adas | \end{definition} |
21 | 157 | adas | |
22 | 168 | adas | |
23 | 168 | adas | \anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
24 | 168 | adas | |
25 | 168 | adas | |
26 | 157 | adas | \begin{definition} |
27 | 166 | adas | Define the theory $\arith^i$ consisting of the following axioms: |
28 | 166 | adas | \begin{itemize} |
29 | 166 | adas | \item $\basic$; |
30 | 166 | adas | \item $\cpind{\Sigma^\safe_i } $: |
31 | 166 | adas | \end{itemize} |
32 | 168 | adas | and an inference rule: |
33 | 168 | adas | \[ |
34 | 168 | adas | \dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
35 | 168 | adas | \] |
36 | 157 | adas | \end{definition} |
37 | 168 | adas | \anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
38 | 157 | adas | |
39 | 157 | adas | \begin{lemma} |
40 | 157 | adas | [Sharply bounded lemma] |
41 | 157 | adas | Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
42 | 157 | adas | Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
43 | 157 | adas | \end{lemma} |
44 | 157 | adas | \begin{proof} |
45 | 157 | adas | We give the $\forall$ case, the $\exists$ case being dual. |
46 | 157 | adas | The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
47 | 157 | adas | \[ |
48 | 157 | adas | \begin{array}{rcl} |
49 | 157 | adas | f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
50 | 157 | adas | f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
51 | 157 | adas | \end{array} |
52 | 157 | adas | \] |
53 | 157 | adas | \end{proof} |
54 | 157 | adas | |
55 | 157 | adas | Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
56 | 168 | adas | since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
57 | 168 | adas | |
58 | 168 | adas | |
59 | 168 | adas | \subsection{Graphs of some basic functions} |
60 | 168 | adas | Todo: $+1$, |
61 | 168 | adas | |
62 | 168 | adas | \subsection{Encoding sequences in the arithmetic} |
63 | 168 | adas | \todo{} |
64 | 168 | adas | |
65 | 168 | adas | \anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
66 | 168 | adas | |
67 | 168 | adas | |
68 | 168 | adas | \subsection{A sequent calculus presentation} |
69 | 168 | adas | \todo{Write out usual first-order sequent calculus} |
70 | 168 | adas | |
71 | 168 | adas | \subsection{Free-cut free normal form of proofs} |
72 | 168 | adas | \todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |