Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 168

Historique | Voir | Annoter | Télécharger (2,56 ko)

1 166 adas
\section{An arithmetic for the polynomial hierarchy}
2 168 adas
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$.
3 156 adas
4 168 adas
5 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
6 157 adas
7 157 adas
Use base theory + sharply bounded quantifiers.
8 157 adas
9 157 adas
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?}
10 157 adas
11 168 adas
12 168 adas
13 157 adas
\begin{definition}
14 157 adas
[Quantifier hierarchy]
15 157 adas
We define:
16 157 adas
\begin{itemize}
17 157 adas
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae.
18 157 adas
	\item (Increase with predicative quantifiers)
19 157 adas
\end{itemize}
20 157 adas
\end{definition}
21 157 adas
22 168 adas
23 168 adas
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
24 168 adas
25 168 adas
26 157 adas
\begin{definition}
27 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
28 166 adas
\begin{itemize}
29 166 adas
	\item $\basic$;
30 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
31 166 adas
\end{itemize}
32 168 adas
and an inference rule:
33 168 adas
\[
34 168 adas
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
35 168 adas
\]
36 157 adas
\end{definition}
37 168 adas
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
38 157 adas
39 157 adas
\begin{lemma}
40 157 adas
[Sharply bounded lemma]
41 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
42 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
43 157 adas
\end{lemma}
44 157 adas
\begin{proof}
45 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
46 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
47 157 adas
	\[
48 157 adas
	\begin{array}{rcl}
49 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
50 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
51 157 adas
	\end{array}
52 157 adas
	\]
53 157 adas
\end{proof}
54 157 adas
55 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
56 168 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
57 168 adas
58 168 adas
59 168 adas
\subsection{Graphs of some basic functions}
60 168 adas
Todo: $+1$,
61 168 adas
62 168 adas
\subsection{Encoding sequences in the arithmetic}
63 168 adas
\todo{}
64 168 adas
65 168 adas
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
66 168 adas
67 168 adas
68 168 adas
\subsection{A sequent calculus presentation}
69 168 adas
\todo{Write out usual first-order sequent calculus}
70 168 adas
71 168 adas
\subsection{Free-cut free normal form of proofs}
72 168 adas
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}