root / CSL17 / completeness.tex @ 166
Historique | Voir | Annoter | Télécharger (481 octet)
1 |
\section{Completeness} |
---|---|
2 |
|
3 |
The main result of this section is the following: |
4 |
|
5 |
\begin{theorem} |
6 |
\label{thm:completeness} |
7 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall \vec u \in \normal . \forall \vec x \in \safe. \exists ! y \in \safe . A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$. |
8 |
\end{theorem} |