root / CSL17 / completeness.tex @ 166
Historique | Voir | Annoter | Télécharger (481 octet)
1 | 166 | adas | \section{Completeness} |
---|---|---|---|
2 | 166 | adas | |
3 | 166 | adas | The main result of this section is the following: |
4 | 166 | adas | |
5 | 166 | adas | \begin{theorem} |
6 | 166 | adas | \label{thm:completeness} |
7 | 166 | adas | For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall \vec u \in \normal . \forall \vec x \in \safe. \exists ! y \in \safe . A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$. |
8 | 166 | adas | \end{theorem} |