Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 166

Historique | Voir | Annoter | Télécharger (1,69 ko)

1
\section{An arithmetic for the polynomial hierarchy}
2

    
3
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
4

    
5
Use base theory + sharply bounded quantifiers.
6

    
7
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?}
8

    
9
\begin{definition}
10
[Quantifier hierarchy]
11
We define:
12
\begin{itemize}
13
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. 
14
	\item (Increase with predicative quantifiers)
15
\end{itemize}	
16
\end{definition}
17

    
18
\begin{definition}
19
Define the theory $\arith^i$ consisting of the following axioms:
20
\begin{itemize}
21
	\item $\basic$;
22
	\item $\cpind{\Sigma^\safe_i } $:
23
	\item $\forall \vec x \in \normal . \exists  y \in \safe .  A \cimp \forall \vec x \in \normal .\exists y\in \normal . A$ (raising) .
24
\end{itemize}
25
\end{definition}
26

    
27

    
28
\begin{lemma}
29
[Sharply bounded lemma]
30
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
31
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
32
\end{lemma}
33
\begin{proof}
34
	We give the $\forall$ case, the $\exists$ case being dual.
35
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
36
	\[
37
	\begin{array}{rcl}
38
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
39
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
40
	\end{array}
41
	\]
42
\end{proof}
43

    
44
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
45
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.