root / CSL17 / arithmetic.tex @ 166
Historique | Voir | Annoter | Télécharger (1,69 ko)
1 | 166 | adas | \section{An arithmetic for the polynomial hierarchy} |
---|---|---|---|
2 | 156 | adas | |
3 | 157 | adas | (Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
4 | 157 | adas | |
5 | 157 | adas | Use base theory + sharply bounded quantifiers. |
6 | 157 | adas | |
7 | 157 | adas | \anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?} |
8 | 157 | adas | |
9 | 157 | adas | \begin{definition} |
10 | 157 | adas | [Quantifier hierarchy] |
11 | 157 | adas | We define: |
12 | 157 | adas | \begin{itemize} |
13 | 157 | adas | \item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. |
14 | 157 | adas | \item (Increase with predicative quantifiers) |
15 | 157 | adas | \end{itemize} |
16 | 157 | adas | \end{definition} |
17 | 157 | adas | |
18 | 157 | adas | \begin{definition} |
19 | 166 | adas | Define the theory $\arith^i$ consisting of the following axioms: |
20 | 166 | adas | \begin{itemize} |
21 | 166 | adas | \item $\basic$; |
22 | 166 | adas | \item $\cpind{\Sigma^\safe_i } $: |
23 | 166 | adas | \item $\forall \vec x \in \normal . \exists y \in \safe . A \cimp \forall \vec x \in \normal .\exists y\in \normal . A$ (raising) . |
24 | 166 | adas | \end{itemize} |
25 | 157 | adas | \end{definition} |
26 | 157 | adas | |
27 | 157 | adas | |
28 | 157 | adas | \begin{lemma} |
29 | 157 | adas | [Sharply bounded lemma] |
30 | 157 | adas | Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
31 | 157 | adas | Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
32 | 157 | adas | \end{lemma} |
33 | 157 | adas | \begin{proof} |
34 | 157 | adas | We give the $\forall$ case, the $\exists$ case being dual. |
35 | 157 | adas | The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
36 | 157 | adas | \[ |
37 | 157 | adas | \begin{array}{rcl} |
38 | 157 | adas | f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
39 | 157 | adas | f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
40 | 157 | adas | \end{array} |
41 | 157 | adas | \] |
42 | 157 | adas | \end{proof} |
43 | 157 | adas | |
44 | 157 | adas | Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
45 | 157 | adas | since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |