Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 166

Historique | Voir | Annoter | Télécharger (1,69 ko)

1 166 adas
\section{An arithmetic for the polynomial hierarchy}
2 156 adas
3 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
4 157 adas
5 157 adas
Use base theory + sharply bounded quantifiers.
6 157 adas
7 157 adas
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?}
8 157 adas
9 157 adas
\begin{definition}
10 157 adas
[Quantifier hierarchy]
11 157 adas
We define:
12 157 adas
\begin{itemize}
13 157 adas
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae.
14 157 adas
	\item (Increase with predicative quantifiers)
15 157 adas
\end{itemize}
16 157 adas
\end{definition}
17 157 adas
18 157 adas
\begin{definition}
19 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
20 166 adas
\begin{itemize}
21 166 adas
	\item $\basic$;
22 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
23 166 adas
	\item $\forall \vec x \in \normal . \exists  y \in \safe .  A \cimp \forall \vec x \in \normal .\exists y\in \normal . A$ (raising) .
24 166 adas
\end{itemize}
25 157 adas
\end{definition}
26 157 adas
27 157 adas
28 157 adas
\begin{lemma}
29 157 adas
[Sharply bounded lemma]
30 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
31 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
32 157 adas
\end{lemma}
33 157 adas
\begin{proof}
34 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
35 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
36 157 adas
	\[
37 157 adas
	\begin{array}{rcl}
38 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
39 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
40 157 adas
	\end{array}
41 157 adas
	\]
42 157 adas
\end{proof}
43 157 adas
44 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
45 157 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.